
GENETICS: S. WRIGHT

THE DIFFERENTIAL EQUATION OF THE DISTRIBUTION OF
GENE FREQUENCIES

By SEWALL WRIGHT

DEPARTMENT OF ZO6LOGY, THE UNIVERSITY OF CHICAGO

Communicated October 15, 1945

The first attempt to determine the mathematical form of the distribution
of gene frequencies in populations was based on the setting up Qf differ-
ential equations for certain special cases (Fisher, 1922,1 19302). A correc-
tion and extension of these results came from expression of the conditions
in an integral equation (Wright, 1929,3 19314). A general solution has
since been obtained for fully stationary distributions by a third method
(Wright, 1937,5 19386). The case of uniform flux has been treated less
generally (Wright, 1938,6 19427). Dr. A. Kolmogorov8 has recently been
kind enough to send me a reprint of an important paper on this subject
which was published in 1935 but which had not previously come to my
attention. While the application is restricted to a particular stationary
distribution, the method of approach points to a more systematic formula-
tion than before.
The situation discussed by Kolmogorov is that of a large population,

consisting of many subgroups of size n, each of which receives a certain
number (k) of immigrants from the general population but otherwise
breeds within itself. The average rate of change of the gene frequency of
subgroups, in which p is the freqttency of a given gene, is represented by
A = (Ap) = (k/n) (p- p) where p is the mean value of p in the whole
population. The variance of p, due to accidents of sampling in one gener-
ation, is represented by B = 2l(Ap)2 = pq/2n, q = 1 - p. It is stated,
without demonstration, that the distribution u(p) of gene frequencies
among subgroups after a stationary state has been reached, answers to the
differential equation

2
1a2 aBu) (1)

The pertinent solution is given as

u(p) = p4kp-1q4kq-.1/B(4k-, 4kq) (2)

The effect of selection in this situation is discussed briefly without, how-
ever, modifying u(p) by introduction of the selection term, ap2q, into A.

It is noted that the same formula (2) had previously been derived by the
present author4 by a different method. Equation (1) has, however,
broader implications if valid for the general case A = 2((Ap), B = 2(Ap)2
and not inerely for the particuair ease A (k/n) (p - p), B = pq/2n.
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The Immediate Factors of Evolutionary Change.-The immediate factors
that tend to cause systematic changes (Aq) in gene frequency (q) may be
listed exhaustively4' I as (a) mutation pressure, Aq = v(1 - q) - uq,
where v and u are the rates of mutation to and from the gene in question,
(b) immigration pressure, Aq = m(qj - q) (Kolmogorov's A) where m is
the proportion of replacement by immigrants and qi is the gene frequency
in these, and (c) selection pressure, which may take widely diverse forms
but in the important case of constant relative selectivre values (W) for
each multiple factor genotype in a random breeding population takes the

form Aq = q( -. q) b-/rW, where r is 1 in haploids, 2 in diploids, the

usual case, 1.5 for sex linked genes (if equal numbers of males and females),
4 in tetraploids, etc.7' I In addition to these systematic pressures are (d)
the random variations, 8q, due to accidents of sampling, the variance of
which is Ca. = q(l - q)/rN in a population of effective size N (Kolmo-
gorov's B). The diploid case (r = 2) will be assumed in what follows.

The Stationary Distribution of Gene Frequencies.-Systematic pressure
toward the gene frequency, at which Aq = 0 and the cumulative effects of
accidents of sampling determine a probability curve (p(q) describing the
frequencies which would be exhibited in the long run by the value of q for
a particular gene in a population subject to constant conditions. This
distribution may also be interpreted as that exhibited at one time by the
values of q in a group of populations that are all subject to the same condi-
tions (as in the case of Kolmogorov's u(p)). The deviations from the bi-
nomial square formula for genotypic frequencies in the total population,
depend on the variance of (p(q) under this interpretation.4 8, 10 In other
cases 40(q) may be used as the distribution at any time within either a class
of non-allelic genes or an extensive series of multiple alleles,1' all subject to
the same condations.
That equation (1) is, in fact, completely general for the stationary form

of distribution may be shown by a slight modification of a method5' 6 that
has been used for derivation of so(qj.
The conditions for stability of the distribution (including the terminal

classes q = 0, q = 1) may be represented by two equations expressing the
persistence of the mean and variance, respectively

J'(q + Sq + Aq)(p(q)dq = fo1q(p(q)dq. (3)
fo'(q - q + Sq + Aq)240(q)dq = fo'(q - q)2(q)dq. (4)

Noting that the mean value of Sq is zero, and that Sq is not correlated
with q or Aq, these equations reduce to the following if the term in (Aq)2
in (4) may be ignored. It may be noted in this connection that this term is
negligible if Aq is of the same order as a or less, while if of higher order,
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systematic pressure dominates the results so completely that the distribu-
tion formula itself becomes unimportant.

Jf1Aq(p(q)dq = 0. (3a)
2 fo1(q -q)Aq(o(q)dq + J;fO1co(q)dq = 0. (4a)

Putting Aq(p(q)dq = dx(q) these conditions become

x(l) - x(O) = 0. (3b)

2jf'x(q)dq - 2[x(l) + -(x(l) - x(O))] - fOVYq((q)dq = 0. (4b)
Substituting (3b) in (4b) the latter becomes

fo1[2x(q) - 2x(l) - o-p(q)]dq = 0. (4c)
A solution is obtained by removing the integral sign since the resulting

equation not only satisfies (4c) but also (3b) (noting that a' = 0 if q = 0
or if q = 1, there being no sampling variance without alternatives in the
sample).

x(q) - x(l) = 1/2,WP(q) (5)

This can be solved for jp(q) by differentiating the logarithm of the left-
'hand number and making the appropriate substitutions.6

(p(q) = (C/o 2)e2f(,A/ff )dq (6)

where C is a constant such that ]o'(o(q)dq = 1.
Since q increases by steps of 1/2N in a population of size N, the frequency

of a given value of q is f(q) = p(q)/2N. From a study4 of simple cases
(N = 2 or 3) in which the frequencies in the stationary state can be deter-
mined algebraically and from a more elaborate investigation by R. A.
Fisher2 of the subterminal region in certain cases, it appears that the fre-
quencies are given with considerable accuracy by the formula except for
the terminal classes, q = 0, q = 1. Consideration of the exchanges which
occur between the terminal and neighboring classes leads4 to the following
approximate estimate for the terminal class, q = 0. That for q = 1 is
analogous.

f(O) = f(1/2N)/4N[mqj + v]. (7)

The differential equation for the completely stationary case is given by
differentiation of (5). It comes under equation (1).

2- (4o'(q)) - Aqzp(q) = 0. (8)2 dq
Since Aq(p(q) is the proportion of the distribution which tends to be

caried past a specified value, of q by t-he systematic pressure Aq, the other
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term must represent the net proportion which tends to be carried in the
opposite direction by accidents of sampling in each generation.

The Case of Steady Flux.-There may be a practically stationary state of
the proportions in all intermediate values of q in spite of steadily increasing
frequency of one terminal class at the expense of the other, provided that
the proportion lost by the donor terminal class is negligible. This cannot
be the case if either mutation rate or immigration rate is appreciable, but
may hold in the presence of strong selection pressure since selection pressure
is nil in populations in which q = 0 or q = 1.
The differential equation for the case of steady flux must differ from (8)

by a constant term (D), the net proportion of the total (excluding the
recipient class) that is carried past each value of q in each generation.

ld 2
2 dy (4aq(p(q)) - Aqp(q) + D = 0. (9)

This is the general form given by one integration of (1) which is therefore
the general differential equation for a steady state of the intermediate
classes. It may be r.educed to a linear equation of the first order by making
the substitution, y = raq(p(q).

Y _ 2l(y + 2D = 0. (10)dq /2

The solution for (p(q) is as follows:

(p(q) = [e2f(Aa/(aq)dQ/oTI[cl- 2Dfe-2f ( q)dq]. (11)

The simplest special case is that in which Aq may be treated as zero
(although there could be no flux if it were absolutely zero).

C 2D
f(q) = (-) 1q(12)

The case under (12) that is most important genetically is that of irre-
versible mutation at a rate so low that the donor class (q = 0, or q = 1) is
not appreciably depleted. According to direction of mutation,

f(q) = 2v/q, orf(q) = 2v/(1 - q). (13)
The ratio of the subterminal classes (1/2Nin this case) gives the probabil-

ity that a single neutral mutation may reach fixation instead of elimination.
Returning to (12) the case in which D = 0 yields the corresponding sim-

plest solution for a completely stationary state

so(q) = 1/ [2(0.577 + log 2N)q(l- q)] (terminal classes excluded). (14)
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The case in which there are constant relative selection coefficients for all

genotypes (Aq = q(l - q) aW/rW) gives an apparently simple but in

general rather refractory form (assuming a given set of frequencies of other
genes)

sp(q) = [W2N/c4ae [C - 2Df 2Ndq]. (15)
It will be convenient for later reference to cite the less general case

Aq = q(l - q)(s + tq), a2q = q(l -q)/2N which allows for any degree of
dominance, provided s and t are both small.

f(q) = [e4Ns,+2N I/q(1 - q)] [C - 2Df e (4Nsq+2Nq)dq]* (16)
Non-stationary States.-The general case, in which the proportion at

each value of q is a function of time as well as of q itself, is given by the
following, of which equation (1) is the case in which the left-hand member
is zero. Time (T) is measured in generations.

6p(q, T) _ 6

;?T 2Taq (q[as,p(q T)] -a- [Aqvs(@, T)]. (17)
This can be reduced to an ordinary differential equation in the case in

which the distribution has reached stability of form, with all classes (except

the terminal ones) falling off at the same rate. LetK = - _ p(q,T)
(p(q, T) 6)T

be the rate of decay per generation.

2 dq2 ( (q)) d- (Aq(p(q)) + Kp(q) 0. (18)2dq2 ~dq

It may easily be verified that for the case in which fixation is occurring
under the uncomplicated effect of inbreeding (Aq = 0, K = 1/2N) the only
solution that does not involve negative frequencies is

v = 1, or f(q, T) = Coe-T/2N (19)
In the case of irreversible mutation at an appreciable rate, Aq = v(1 - q)

the rate of decay is easily shown to be K = v. Equation (18) is satisfied
by the following value, originally derived by a different method.

f(q) = 2vq4NW 1. (20)

An analogous solution applies to the effect of swamping by immigration
from a population in which the gene in question is fixed (Aq = m(l -q),
K = m)

f(q) = 2mq4Nml (1
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Comparison with Results by Other Methods.-The first attempt at deter-
mining the distribution of gene frequencies was made by R. A. Fisher'
who arrived at differential equations for certain special cases, in terms,
however, of a different variable than gene frequency, a = cos-' (1 - 2q),
used in order to make the sampling variance constant. A discrepancy be-
tween the rate of decay (K = 1/4N), derived by him for the case in which
Aq -0, and the value, 1/2N, given by a general method12' 13 for determining
the rate of fixation of genes under any system of mating, led the present
author3' 4 to a different approach. The condition for a stationary state of
the intermediate classes except for possible decay at rate K, was repre-
sented by the following equation in which q and x are recipient and donor
classes, respectively, in the exchanges which occur from one generation to
the next.

(1-K) -(q)-
2N

(2N).
(2Nq)![2N(1 - ! .J(x + q\x)2Ng(1 - x - (22)

It could easily be seen that if AX = 0, the equation is satisfied by so(q) =
V(x) = 1, K = 1/(2N + 1), the latter at least a close approximation to the
rate of decay expected in this case. For the simplest stationary state,
K 0, Aq 0, the expression p(q) = Aq 1 + B(1 - q)-l is indicated
(cf. 12). Approximate solutions could also readily be obtained for the
linear pressures of mutation and migration. Selection presented more
difficulty.
On inspection of these results in manuscript, Fisher2 was able to correct

and extend his equations to obtain the following:

I. Case of uniform 'decay (Aq = 0)

by 1 F62y 6
a-T = 4n[bY2 + -- (Y cott)J. (23)

y = Aoe-T/2n sin a' (cf. (19)). (24)

II. Stationary state, no selection (Aq 0)

dy +y cottX= -4nB. (25)

y = A cosec t + 4nB cot V (general, cf. (12)). (26)

y = A cosec t (symmetrical case, cf. (14)). (27)

y = 4nB(cosec 4 + cot 6) (unidirectional mutation, cf. (13)). (28)
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III. Stationary state, selection, no dominance, Aq = aq(l- q)

dy
_ (2an sin t - cot 4)y = -4anA. (29)

y = cosec 4(2A + Be2anCos ) (general, cf. (16), t = 0). (30)

(1-e-2an(1l+cos d))
y = 4 cosec W (1- e+-4an) (unidirectional mutation). (31)

In cases I and II, the results agreed with those obtained from the integral
equation (22), as may be seen by making the substitutions cos t = 1 - 2q,
yd4 = p(q)dq, d4/dq = 1/ Vq(1 - q). In case III it was the author's
turn to make a correction in the selection term (published firsts as e2Ns),
by taking cognizance of a series of small terms erroneously thought to be
negligible but which actually doubled the exponent. With this correction,
there was agreement.4
The most general result' obtained for the completely stationary state by

solution of (22) took into account all of the factors of change in the form
Aq = v(1 - q) - uq - m(q - qi) + q(l - q)(s + tq), o = q(l - q)/2N.

p(q) = Ce4Nsq+2N1q244N(mi+v) -( )m(l

This agrees with that obtained by substituting these values of Aq and of
2 in (6).

The most general result's6 obtained by this method for the case of steady
flux was for Aq - q(1 - q)(s + tq).

f(q) = [64Nsq+2Nlq/2q(l _ q)] [C - 2Dqe-(2NsQff±+N1t(2Nsq, 2Ntq2)]. (33)
where

a2 a4 a'
46(a, 0) = 1 +.-+-+ ...= (e'-e )/2a

3! 5! 7!

b 7b2 27b'
,(0, b) = 1 + 3!+ 5! + 7! ...Emb

Em = (Em.-.1 + Em - 2)/2m(m + 1).
No recurrence formula was recognized for the joint terms, 4(2Nsq,

2Ntq2) but the coefficients were calculated7 up to those pertaining to q9.
The probability of fixation of a single mutation (C = 2v, D = ve2Ns+N1/

4&(2Ns, 2Nt) for irreversible mutations from. class q = 0, or C = 0, D =
-ve(2Ns+N)/i(2Ns, 2Nt) for irreverible mutations from class q = 1),

could be calculated from the ratios of the subterminal classes, (Prob. =
Vi77N for a recessive mutation with selective advantage s, Prob. = 2s
for a dominant mutation with selective advantage s, or for a semidominant
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with selective advantage s in the heterozygote). The last agrees with
Fisher's conclusion.2 Equation (33), with t = 0, is indeed equivalent to
(31).
Comparison of (33) with (16) shows that if the former is correct, the

following must hold:

4t'(2Nsq, 2Ntq2) - (e2NSq+Ntq /q),f e- (4Nsq+2Ntq2)dq. (34)
This was tested by expanding the two exponentials in (34), integrating

each term of the second one and combining. The coefficients were in all
cases identical with those published7 for ql(2Nsq, 2Ntq2).

Equation (22) also gave the solution (20) for the case of uniform decay
under an appreciable mutation rate.4
The integral equation (22) and the differential equation (18) are clearly

equivalent to a close approximation. They are not exact mathematical
equivalents, however, as may be seen from the fact that K must be put
1/(2N + 1) in (22) if Ax = 0 to give the solution so(q) = 1, while it takes
its true value 1/2N in (18) to give the same result. In the other cases (ex-
cept (12)) second order terms have been omitted in the series, obtained as
solutions of the integral equation, which do not appear in the solutions of
the differential equation. Neither equation, of course, represents the natu-
ral conditions exactly since integration is substituted for summation and
differentials for minimal steps (1/2N) in gene frequency.
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