Supporting Information

Identification of a Dual Autophagy and REV-ERB Inhibitor with in Vivo Anticancer Efficacy

Martina Palomba,^{$a, ¥, \ddagger$} Donatella Vecchio,^{$a, ¥, \ddagger$} Giulia Allavena,^{a, ¥} Vito Capaccio,^{<math>a, ¥} Claudia De Mei,^{$a, \circ, †$} Rita Scarpelli,^{$a, §^*$} and Benedetto Grimaldi^{$a, ¥^*$}</sup></sup>

^aFondazione Istituto Italiano di Tecnologia, [¥]Molecular Medicine, [§]Medicinal Chemistry and Technologies for Drug Discovery and Delivery Facility, [°]Nanomaterials for Biomedical Applications, [†]Nanotechnology for Precision Medicine, Via Morego 30, I-16163 Genova, Italy

*Corresponding author:

benedetto.grimaldi@iit.it

rita.scarpelli@iit.it

Contents of Supporting Information:

¹ H NMR and ¹³ C NMR spectra of the final compounds	S2
UPLC traces of the final compounds	S26
Table S1	S50
Figure S1	S 51
Figure S2	S52
Figure S3	S53

Compound 3: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 7: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³CNMR (101 MHz, DMSO-*d*₆)

Compound 8: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 9: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 10: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound **11**: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 12: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 15: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 16: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 17: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 18: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 19: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 20: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 21: ¹HNMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 23: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (151 MHz, DMSO-*d*₆)

Compound 24: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 25: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆)

Compound 4: UPLC/MS analysis

Compound 24: UPLC/MS analysis

Compound	Rt (min)	Method	Compound	Rt (min)	Method
3	3.80	E	15	2.79	E
4	4.60	E	16	3.80	E
5	2.63	E	17	2.85	E
6	3.66	E	18	2.72	E
7	3.65	E	19	4.63	E
8	2.87	E	20	2.30	E
9	2.96	E	21	3.31	E
10	2.22	E	22	2.74	E
11	3.31	E	23	4.04	E
12	2.49	E	24	3.17	E
13	3.70	E	25	3.56	E
14	3.48	E	26	4.00	E

Table S1. Retention times and UPLC analytical method of the final compounds.^a

^aFreshly prepared 10 mM DMSO-*d*₆ stock solutions (used for biological screenings), diluted 20fold or 100 fold in CH₃CN/H₂O (1:1), and directly analyzed. The analysis was performed on an ACQUITY UPLC BEH C18 column (100x2.1mmID, particle size: 1.7µm) with a VanGuard BEH C18 pre-column (5x2.1mmID, particle size: 1.7µm) at 40 °C using 10mM NH₄OAc in H₂O at pH 5 adjusted with AcOH (A) and 10mM NH₄OAc in CH₃CN-H₂O (95:5) at pH 5 (B) as mobile phase at 0.5mL/min. *Method E*: gradient 10 to 90% B over 6.0 min. Flow rate 0.5 mL min⁻¹. Temperature 40 °C. The detection wavelength (λ) was set at 215 nm for relative purity determination.

Figure S1. Compound **24** induces apoptosis in BT-474 cells. (A) BT-474 cells were treated with the indicated concentrations of 24 or DMSO (vehicle). After 24 h, caspase activity was evaluated with a fluorescent inhibitor of caspases covalently bound to the poly-caspase-specific amino acid sequence valine-alanine-aspartic acid (VAD) (SR-VAD-FMK). Count of the percentage of caspase-positive cells is given as mean \pm SEM, n=3. *P<0.05 and ***P<0.001, (one-way ANOVA with Dunnett's multiple comparison test). (B) Protein samples from BT-474 cells treated as in A were probed with specific antibodies against cleaved-PARP (cleaved-PARP) and GAPDH proteins. (C) Quantification of immunoblot analysis from protein samples treated as in B. Relative cleaved PARP expression was calculated normalizing the optical density of cleaved-PARP signals with that of GAPDH. Shown as mean \pm SEM, n=3. **P<0.01 and ***P<0.01 (one-way ANOVA with Dunnett's multiple comparison test).

Figure S2. REV-ERB β silencing abolishes compound **24**-mediated transcriptional response. BT-474 cells were transfected with pooled siRNA sequences against *REV-ERB\beta* (siREV-ERB β) or a non-targeting pool as a control (Control). One day post transfection, cells were treated with DMSO (vehicle) or 5 μ M of compound **24** for 24 h and the expression of the REV-ERB target gene, *BMAL1*, and *REV-ERB\beta* was determined by quantitative reverse transcriptase-PCR (qRT-PCR) using *GAPDH* for normalization. Shown as mean ± SEM, n = 3. *P<0.05, **24**-treated versus vehicle treated control cells; ***P<0.001, **24**- and vehicle-treated siREV-ERB β versus **24**- and vehicletreated control cells (two-way ANOVA with Bonferroni's posttest analysis).

Figure S3. Tolerability of **24** in CD1 mice. (A) Female CD1 mice were treated with i.p. injections of **24** administered according to the schematized schedule treatments. (B) Animal body weight was monitored daily over a 7-day period. Weight of mice the day before staring the treatment was set as 100% and used for calculating the relative body weight (%) and is shown as mean \pm SEM, n = 3 mice per each treatment group.