Supplementary Information

Electrophilic MiniFrags revealed unprecedented binding sites for covalent HDAC8 inhibitors

Aaron B. Keeley^{†a,b,c}, Aleksandra Kopranovic^{†d}, Vincenzo Di Lorenzo^{†a,b,c}, Péter Ábrányi-Balogh^{†a,b,c}, Niklas Jänsch^d, Linh N. Lať^d, László Petri^{a,b,c}, Zoltán Orgován^{a,b,c}, Daniel Pölöske^e, Anna Orlova^e, András György Németh^{a,b,c}, Charlotte Desczyk^d, Tímea Imre^{a,f}, Dávid Bajusz^{a,b,c}, Richard Morigg^e, Franz-Josef Meyer-Almes^d* and György M. Keserű^{a,b,c}*

^aMedicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary.

^bDepartment of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

^cNational Laboratory for Drug Research and Development, H-1117 Budapest, Hungary ^dDepartment of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany.

^eInstitute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria.

^fMS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary

Corresponding Author

*keseru.gyorgy@ttk.hu (G.M.K., lead contact), franz-josef.meyer-almes@h-da.de (F.-J. M.-A.)

Table of Contents

Supplementary Figure S1. Thiol reactivity table for heterocyclic electrophiles.	3
Supplementary Figure S2. Dose-response curves for the determination of IC_{50} -values of HDAC8 biochemical assay with the heterocyclic MiniFrags.	4
Supplementary Figure S3. Dose-response curves for the determination of IC ₅₀ -values on 10 nM HDAC8 and active site mutants with the heterocyclic MiniFrags.	5
Supplementary Figure S4. Dose-response curves for the determination of IC_{50} -values on 100 nM HDAC8 mutants with the heterocyclic MiniFrags.	5
Supplementary Figure S5. The MSMS spectrum and annotation of C6+, D1+, F2+, D3+, F3+, D6+, C modified HDAC8 peptide [1-34]	36+ 6
Supplementary Figure S6. The MSMS spectrum and annotation of C3+ modified HDAC8 peptide [383]	33- 7
Supplementary Figure S7. The MSMS spectrum and annotation of A3+, C3+, C6+, D1+, D2+, F2+, E F3+, G6+ modified HDAC8 peptide [148-165])3+ , 7

Supplementary Figure S8. The MSMS spectrum and annotation of A3+, C3+, C6+, D1+, D2+, D3+	
modified HDAC8 peptide [241-250]	9
Supplementary Figure S9. The MSMS spectrum and annotation of C3+, F2+, D3+, F3+, G6+ modifi HDAC8 peptide [260-287]	ied 10
Supplementary Figure S10. The MSMS spectrum and annotation of F3+ modified HDAC8 peptide [327-357]	11
Supplementary Figure S11. Results of the dilution experiments proving the irreversible covalent labeling for compounds 3 and B6+	11
Supplementary Figure S12. MS Chromatogram for showing the labelling of GSH with F4+ 11	12
Supplementary Figure S13. Results of time dependent IC_{50} measurements and K_I , k_{inact} , k_{inact}/K_I calculations	13
Supplementary Figure S14. Results of the western blot after 72 h treatment of OCI-AML3 cells	14
NMR spectra and HPLC-MS measurements of lead compounds 2-4 and 10-12	14
Supplementary Tables S1, S2, S3 Zipped Excel files	25

Supplementary Figure S1. Thiol reactivity table for heterocyclic electrophiles. Blue dots indicate the position of the warhead. Colouring is in line with the activity, as the darker green colour refers for higher reaction rate and lower half life. Compounds labelled by italic showed parallel reaction with the assay buffer. N.A. stands for "Not available".

					L T	F	Ē			<u> </u>	К	L	N	Р	Q	R
											HZ,Z	HZ,Z	C _N	^O _N	S N	S N
	t _{1/2} (h) of M+ fragment (250 uM) with GSH (5 mM)															
1	Cl	>48	>48	>48	>48	>48	>48	>48	>48	>48	N.A.	>48	N.A.	N.A.	N.A.	N.A.
2	Br	35.20	>48	>48	>48	N.A.	>48	>48	>48	>48	>48	>48	N.A.	N.A.	>48	>48
3	1	>48	>48	>48	>48	N.A.	>48	>48	0.16	>48	>48	>48	0.23	>48	N.A.	N.A.
4	CN	>48	40.90	0.79	2.00	40.50	>48	21.90	>48	>48	N.A.	>48	N.A.	N.A.	N.A.	8.20
5	Vinyl	1.00	>48	0.26	>48	N.A.	>48	18.50	N.A.	N.A.	>48	N.A.	N.A.	N.A.	N.A.	N.A.
6	Ethynyl	>48	>48	2.40	43.80	N.A.	>48	>48	N.A.	N.A.	5.70	2.20	N.A.	N.A.	N.A.	N.A.

Supplementary Figure S2. Dose-response curves for the determination of IC_{50} -values of HDAC8 biochemical assay with the heterocyclic MiniFrags.

Supplementary Figure S3. Dose-response curves for the determination of IC_{50} -values on 10 nM HDAC8 and active site mutants with the heterocyclic MiniFrags.

Supplementary Figure S4. Dose-response curves for the determination of IC_{50} -values on 100 nM HDAC8 mutants with the heterocyclic MiniFrags.

Supplementary Figure S5. The MSMS spectrum and annotation of C6+, D1+, F2+, D3+, F3+, D6+, G6+ modified HDAC8 peptide [1-34]

G6+

n/z, [a

Supplementary Figure S6. The MSMS spectrum and annotation of C3+ modified HDAC8 peptide [33-83]

Supplementary Figure S7. The MSMS spectrum and annotation of A3+, B6+, C3+, C6+, D1+, D2+, F2+, D3+, F3+, G6+, 3 modified HDAC8 peptide [148-165]

S7

F3+

G6+

Supplementary Figure S8. The MSMS spectrum and annotation of A3+, C3+, C6+, D1+, D2+, D3+ modified HDAC8 peptide [241-250]

Supplementary Figure S9. The MSMS spectrum and annotation of **C3+**, **F2+**, **D3+**, **F3+**, **G6+** modified HDAC8 peptide [260-287]

G6+

Supplementary Figure S10. The MSMS spectrum and annotation of **F3+** modified HDAC8 peptide [327-357]

Supplementary Figure S11. Results of the dilution experiments proving the irreversible covalent labeling for compounds **3** and **B6+**

Reversibility of **B6+** and **3** on HDAC8 WT shown as relative enzyme activity before and after dialysis. Error bars represent mean +/- SD, n = 3

Supplementary Figure S12. MS Chromatogram for showing the labelling of GSH with F4+

Supplementary Figure S13. Results of time dependent IC_{50} measurements and K_i, k_{inact} , k_{inact}/K_i calculations

Supplementary Figure S14. Results of the western blot after 72 h treatment of OCI-AML3 cells

¹H, ¹³C NMR spectra and HPLC-MS chromatogram and spectrum of **10**

Peak#	Ret. Time	Height	Area	Area%	Peak#	Ret. Time	Height	Area	Area%
1	0.725	24741	37777	0.532	1	0.731	1889	1712	0.14
2	1.398	6182	14949	0.21	2	1.481	7918	15921	1.302
3	1.48	7303	13471	0.19	3	1.579	442987	1189213	97.282
4	1.578	2451693	7026877	98.907	4	4.677	8151	15595	1.276
5	4.677	9501	11489	0.162	Total		460945	1222441	100
Total		2499419	7104563	100					

¹H, ¹³C NMR spectra and HPLC-MS chromatogram and spectrum of **2**

Peak#	Ret. Time	Height	Area	Area%	Peak#	Ret. Time	Height	Area	Area%
1	0.733	3107	2315	0.143	1	0.729	48007	116486	2.516
2	1.399	1313	5120	0.316	2	1.397	8332	44423	0.959
3	1.618	575510	1595585	98.365	3	1.618	1520747	4449011	96.093
4	2.536	1438	19094	1.177	4	2.428	4781	17338	0.374
Total		581368	1622114	100	5	4.692	7435	2642	0.057
					Total		1589303	4629901	100

$^1\text{H},\,^{13}\text{C}$ NMR spectra and HPLC-MS chromatogram and spectrum of 12

Peak#	Ret. Time	Height	Area	Area%	Peak#	Ret. Time	Height	Area	Area%
1	1.188	4855	19412	0.632	1	1.188	4855	19412	0.632
2	1.369	6076	32406	1.055	2	1.369	6076	32406	1.055
3	2.623	883032	3009149	97.981	3	2.623	883032	3009149	97.981
4	8.907	10740	10203	0.332	4	8.907	10740	10203	0.332
Total		904703	3071170	100	Total		904703	3071170	100

¹H, ¹³C NMR spectra and HPLC-MS chromatogram and spectrum of **4**

Peak#	Ret. Time	Height	Area	Area%	Peak#	Ret. Time	Height	Area	Area%
1	1.412	11222	55150	3.429	1	1.37	165	230	0.149
2	1.851	277	-634	-0.039	2	1.773	546	1103	0.713
3	2.108	4136	13261	0.825	3	2.099	429	1465	0.948
4	2.598	471237	1539452	95.727	4	2.598	48676	151770	98.19
5	7.587	1097	932	0.058	Total		49816	154568	100
Total		487970	1608161	100					

$^1\text{H},\,^{13}\text{C}$ NMR spectra and HPLC-MS chromatogram and spectrum of 11

Peak#	Ret. Time	Height	Area	Area%	Peak#	Ret. Time	Height	Area	Area%
1	0.714	22833	46626	1.416	1	0.777	3516	7793	1.216
2	1.082	15914	48991	1.488	2	1.309	8676	17482	2.728
3	1.432	1266827	3197446	97.096	3	1.432	294473	615542	96.056
Total		1305574	3293063	100	Total		306664	640818	100

$^1\text{H},\,^{13}\text{C}$ NMR spectra and HPLC-MS chromatogram and spectrum of 3

Peak#	Ret. Time	Height	Area	Area%	Peak#	Ret. Time	Height	Area	Area%
1	0.566	92037	113344	2.367	1	0.597	648	751	0.116
2	1.065	23731	105671	2.207	2	0.75	5234	11604	1.796
3	1.368	1130888	4558667	95.201	3	1.367	233787	633822	98.088
4	1.666	5801	10776	0.225	Total		239670	646177	100
Total		1252457	4788458	100					

Supplementary Tables S1, S2, S3

