Title: Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-V β 2+ T cell malignancy

Jingjing Ren^{1,*}⁺, Xiaofeng Liao^{1,*}⁺, Julia M. Lewis¹, Jungsoo Chang¹, Rihao Qu², Kacie R. Carlson¹, Francine Foss³, Michael Girardi^{1,+}

¹Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.

² The Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT, USA.

³Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.

* These authors contributed equally.

+ Co-corresponding authors:

Michael Girardi, MD; Email: michael.girardi@yale.edu

Jingjing Ren, MD, PhD; Email: jingjing.ren@yale.edu

Xiaofeng Liao, PhD; Email: xiaofeng.liao@yale.edu

Supplementary Fig. 1: mCAR-Vβ2 T cell development.

а

Supplementary Fig. 1: mCAR-V β 2 T cell development.

a, Representative flow cytometry of total T cells from a CTCL patient with a V β 2+ malignancy stained with a panel of anti-V β antibodies showing the distribution of V β family usage and predominance of V β 2. **b**, Key components of CAR-V β 2 construction in a lentiviral vector. **c**, Key components of TCR- β chain TRBV20-1 containing construction in a lentiviral vector. **d**, GFP and surface CAR-V β 2 expression in mCAR-V β 2 T cells determined by flow cytometry. **e**, mcherry and surface TRBV20-1 expression in Jurkat-TRBV20-1 cells determined by flow cytometry. **f**, Live Jurkat-TRBV20-1 cell counts after overnight in vitro killing by allogeneic CAR-CD19 T cells (black) or mCAR-V β 2 T cells (red) at 1:1 of E:T ratio, determined by flow cytometry. **g**, Lentiviral transduction efficiency of CAR-CD19 or mCAR-V β 2 in CD8 T cells from a V β 2+ CTCL patient, determined by flow cytometry detection of GFP. **h**, Live CTCL counts of three V β 2+ CTCL patients after overnight in vitro killing by purified autologous CAR-CD19 T cells (black) or mCAR-V β 2 T cells (red, blue and green) at different E:T ratios, determined by flow cytometry. Source data are provided as a Source Data file.

Supplementary Fig. 2: Allogeneic mCAR-V β 2 T cell generation.

Supplementary Fig. 2: Allogeneic mCAR-V β 2 T cell generation.

a, Flow cytometric histograms showing CD3 expression 2 days post TRAC KO in mCAR-V β 2 T cells before (left) or after (right) residual CD3+ cell depletion. **b**, HLA-A/B/C and **c**, HLA-DR/DP/DQ expression on mCAR-V β 2 T cells with (red) or without (normal control (NC), black) triple (TRAC/B2M/CIITA) KO, determined by flow cytometry. **d**, Lentiviral transduction efficiency of mCAR-V β 2 in CD8 and CD4 T cells from a healthy donor following triple KO, determined by flow cytometry detection of GFP. **e**, Activation marker CD137, CD25 and CD69 expression on triple KO mCAR-V β 2 T cells after overnight in vitro culture alone or mixed with CTCL cells from three different V β 2+ patients and one V β 13.2+ patient, determined by flow cytometry. **f**, V β 2+ PTCL cell count, **g**, V β 2-normal CD4+ T cells from a V β 2 + PTCL patient and treated with (red) or without (NC, black) triple KO mCAR-V β 2 T cells. **e**, n=3 replicates of each group. *p<0.05 and ****p<0.001 by one-way ANOVA. **f-h**, n=3 mice in each group (**f**, p=0.032, **h**, p=0.0026).

Supplementary Fig. 3: CAR expression levels in humanized CAR-Vβ2 T cells.

Supplementary Fig. 3: CAR expression levels in humanized CAR-V β 2 T cells.

a-b, Live counts of CTCL cells from a V β 2+ patient after overnight culture with a set of CAR-V β 2 T cells humanized via two different in silico strategies provided by **a**, the BioPhi algorithm or **b**, a third-party contractor (mAbvice), as determined by flow cytometry. c, GFP+% and d, average GFP expression intensity of the GFP+ population of CAR-V β 2 T cells after humanization using the BioPhi in silico algorithm, as determined by flow cytometry. e, GFP+% and f, average GFP expression intensity of the GFP+ population of CAR-V β 2 T cells after humanization by mAbvice, as determined by flow cytometry. Source data are provided as a Source Data file.

2									
a	hCAR-Vβ2-								
	(V1-	(V7-4-							
	46*01_2_V	46*01_2_V	46*01_2_V	46*01_2_V	46*01_3_V	46*01_3_V	46*01_3_V	46*01_3_V	1*02_1_V4-
	4-1*01_2)	4-1*01_3)	1-39*01_1)	1-39*01_2)	4-1*01_2)	4-1*01_3)	1-39*01_1)	1-39*01_2)	1*01_2)
	hCAR-Vβ2-								
	(V7-4-								
	1*02_1_V4-	1*02_1_V1-	1*02_1_V1-	1*02_2_V4-	1*02_2_V4-	1*02_2_V1-	1*02_2_V1-	CAR-CD19	mcak-vp2
	1*01_3)	39*01_1)	39*01_2)	1*01_2)	1*01_3)	39*01_1)	39*01_2)		
	hCAR-Vβ2-								
	(V1-	(V1-	(V1-	(V1-	(V1/OR21-	(V1/OR21-	(V1/OR21-	(V1/OR21-	(V1-
	46*01_1_V	46*01_1_V	46*01_1_V	46*01_1_V	1*01_V7-	1*01_V7-	1*01_V4-	1*01_V3D-	2*06_V7-
	7-3*01_1)	7-3*01_2)	4-1*01_1)	3D-20*02)	3*01_1)	3*01_2)	1*01_1)	20*02)	3*01_1)
	hCAR-Vβ2-								
	(V1-	CAR-CD19	mCAR-Vβ2						
	2*06_V7-	2*06_V4-	2*06_V3D-	3*01_V7-	3*01_V7-	3*01_V4-	3*01_V3D-		
	3*01_2)	1*01_1)	20*02)	3*01_1)	3*01_2)	1*01_1)	20*02)		

Supplementary Fig. 4: Immune reactivity of candidate humanized CAR-Vβ2.

h					HC 1				
b	u ² Q5 Q6 u ⁴ 3.96 6.12	05 Q6 	u ² Q5 Q6 u ⁴ 5.28 7.98	^{11²} Q5 Q6 ^{11⁴} 3.32 7.15	U ² Q5 Q6 U ⁴ 5.48 5.01	10 ² Q5 Q6 10 ⁴ 4.31 5.06	05 Q6 	US Q6 4.72 5.93	05 Q6
	08 29 - 4989 07		08 1 1	Q8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		u ⁴ u ⁴ 08 0 07	2 ··· · · · · · · · · · · · · · · · · ·	Q8 6 4 4 6 9 07
	GFP	GFP	GFP	GFP		GFP	GFP	GFP	428.5 0.6 0.6 0.6 GFP
	u ² Q5 Q6 u ⁴ 3.03 7.19	u ² QS Q6 2.86 7.12	u ² Q5 Q6 u ⁴ 3.66 7.97	¹² QS Q6 ¹⁴ 4.55 6.16	U ² U ⁴ Q5 3.51 5.77	¹¹² Q5 Q6 14.96 5.38	¹¹ 4.52 6.83	12 QS Q6 5.86 4.94	QS Q6 6.80 4.30
			5 ut	5 u ⁴	5	5		5 ···	
	GFP	25.4 64.6 GFP	GFP			11 35.4 54.2 GFP	32.4 56.3 GFP	46.6 42.6	44.9 44.0
	U ² QS Q6 U ⁴ 7.41 3.93	U ² Q5 Q6 5.55 5.58	U ² QS Q6 U ⁶ 6.98 7.06	05 Q6 05 7.25 7.52	U ¹ S.68 S.58 U ⁴	05 5.72 06 5.77	QS Q6 4.43 7.60	4.59 6.90	¹¹ 3.22 6.11
			W5 u ⁴		No			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W ⁵
	47.0 41.7 GFP	40.6 48.3 u ⁴ u ⁴ u ⁵ u ⁵ u ⁵	133.2 52.8 11 1 12 12 12 12 12 12 12 12 12 12 12 12	134.4 50.8 134.4 50.8 GFP			26.3 61.6 10 ^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-10⁻}}}}}}}}}	28.1 60.4	27.9 62.8
	^{11²} Q5 Q6 ^{11⁴} 3.07 6.62	u ⁴ Q5 Q6 3.70 7.05	u ² Q5 Q6 u ⁴ 3.25 6.54	u ² Q5 Q6 u ⁴ 3.81 6.75	¹² Q5 Q6 4.31 6.42	2.62 Q6 	05 Q6 2.81 7.42	05 Q6 Q6 5.48 5.61	Q5 Q6 7.35 5.27
	No co		NG u'	5 u ⁴	No at	NO I		ND 11	NG 11
	Q8 Q7 24.1 66.2 GFP	Q7 24.8 64.5 GFP	Q8 Q7 25.0 65.2 GFP	Q8 P 2000 Q7 26.0 63.4 GFP	Q8 Q7 24.8 64.4 GFP	Q8 Q7 20.4 70.0 CFP	07 22.1 67.7 GFP	Q8 07 50.0 38.9 50.0 6FP	Q8 0 47.5 39.9 47.5 GFP
	" Q5 Q6	" Q5 Q6 (1.97 1.84	" Q5 Q6 (2.44 1.80	" Q5 Q6	HC 2	¹² Q5 Q6 0.77 1.47	" Q5 Q6 (1.67 1.13	¹² Q5 Q6 1.77 1.40	05 06 144 2.24
	W B	11' 11' 2' 11'	N 4	2° 4'	Mgi ng	W di la		WS	W M M
	08 0 000 07 034.7 62.3	08 b 4 b 7 32.2 64.0	07 33.1 62.7	08 07 0.8 66.6	48.5 Q7 48.5 48.1	08 90 07 39.6 58.2	08 8 95 95 07 41.7 55.5	Q8 8 07 40.4 56.4	Q8 0 2000 Q7 30.2 66.2
	GFP	GFP	GFP	, ", ", ", ", ", ", ", ", ", ", ", ", ",	GEP	, ",",",",","," CFP	GFP	GFP	GFP
	2 1/20 1.38	u ¹ 2 u ¹	2 1.22 1.23	2 1/3 0.62	109 0.84	1	1.34 1.34 1.34	N	100 1.00
	08 0 00 07 27.7 69.7	08 8 97700 Q7 27.8 70.4	08 0 07 25.8 71.7	08 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	08 0 07 33.5 64.5	08 0 07 36.2 60.6	08 66 07 36.6 07 60.8	08 07 08 0464	Q8 8 000 07 035.1 62.8
	GFP	GEP	GFP	GEP GEP	GFP	GFP 05 06	GFP	GFP 05 Q6	GFP
	u ¹ 2.08 1.46	2 u ⁴ 1.91 1.42	u ² 2.20 1.86	u ⁴ 2.23 1.84	01114 0.83	u ¹ 1.00 1.79	108 108 108	1.08 1.08	u ² 1.34 1.08
	108 077 1 07 101 52.4 44.1	u ¹ 08 07 45.6 51.1	u ⁴ 08 09 09 07 38.7 57.2	Q8 8 07 42.5 53.4	08 07 42.4 55.6	08 Q7 40.3 56.3	08 07 30.2 66.5	08 8 9 9 9 07 31.4 65.7	08 0 07 30.0 67.4
	GFP	GEP 05 Q6	GFP	GFP GFP	GFP	GFP 05 06	GFP	CFP 05 06	GFP Q6
	u ¹ 1.25 1.68	u ⁴ 1.60 1.74	u ⁴ .141 1.75	u ⁴ 1.10 1.64	u ⁴ 1.36 1.84	u ⁵ 0.98 2.08	u ¹ 115 1.41	u ¹ 0.93	u ¹ 1.89 0.92
	Q8 0 0 07 26.2 70.9	08 Q7 26.5 70.2	Q8 Q7 26.8 70.1	08 07 28.9 68.3	08 00 07 028.9 67.9	08 0 07 25.7 71.3	08 07 24.3 73.2	08 07 07 44.2 54.1	Q8 8 Q7 44.4 52.8
	GFP	GFP	GFP	GFP	нс з	GFP	GFP	GFP	GFP
	05 Q6 05 4.48 7.51	05 Q6 6.46 8.81	u ² Q5 Q6 u ⁴ 5.60 8.08	4.90 7.87	QS Q6 4.53	10 ² Q5 Q6 10 ⁴ 5.99 7.13	05 Q6 01 7.17 S.81	42 Q5 Q6 6.67 6.32	Q5 Q6 6.04 9.57
			ž		No -	No al		2	2
	Q8 5 58.5 129.5 58.5 GFP	Q7 27.5 GFP	Q8 5 58.5 27.8 58.5 GFP	Q8 07 25.8 61.4 GFP	46.2 42.7 GFP	Q8 36.6 GFP	07 49.2 GFP	Q8 Q7 49.5 GFP	Q8 9 57.5 26.9 57.5 GFP
	Q5 Q6 	Q5 Q6 4.78 8.86	Q5 Q6 4.96 9.14	Q5 Q6 6.23 8.65	¹¹⁷ Q5 Q6 11 ⁴ 4.90 6.92	¹¹² Q5 Q6 11 ⁴ 5.43 7.65	^{11²} Q5 Q6 5.23 7.45	¹¹² Q5 Q6 11 7.95 5.78	¹¹² Q5 Q6 5.59 7.72
	ð		8	8	8	3 - 1 		ð	8
	Q8 Q7 25.1 61.2 GFP	Q7 24.6 61.8 GFP	Q8 Q7 23.2 62.7 GFP	Q8 33.3 GFP	Q8 Q7 31.3 56.8 GFP	Q8 Q7 33.5 53.4 GFP	Q8 31.1 GFP	45.1 41.2 GFP	408 07 32.9 53.7 GFP
	^{11²} QS Q6 11 ⁴ 6.41 4.70	¹¹⁷ Q5 Q6 5.46 4.80	QS Q6 6.48 5.41	Q5 Q6 	U ² Q5 Q6 U ² 5.57 6.10	" Q5 Q6 " 5.10 5.15	U ¹ U ¹ S.32 Q5 Q6 8.01	4.81 7.98	¹¹ 4.18 0.62
	Mgi a		W ^D u ⁴		Mg 1	No of	10" 10"	Mg n	Mgi ng
	47.3 47.3 GFP	42.3 47.4 GFP	Q7 34.3 34.3 GFP	Q8 35.4 GFP	408 07 38.2 50.1 GFP	Q8 Q7 37.9 51.8 GFP	Q7 26.3 60.4 GFP	Q8 Q7 25.9 61.3 GFP	Q8 Q7 26.4 62.8 GFP
	¹⁰ Q5 Q6 11 ⁴ 2.75 6.44	25 Q6 4.08 7.65	^{10²} Q5 Q6 ^{10⁴} 3.87 6.01	^{10²} Q5 Q6 ^{10⁴} 4.94 7.57	US Q6 US 6.74	4.15 7.15	25 Q6 3.46 7.00	¹² Q5 Q6 12 4.41	05 Q6 6.23 4.96
					W ⁶ u ⁴	No na	u'e	No no	
	101 124.1 124.1 101 101 101 101 101 101 101 1	07 07 24.5 0 0 0 07 63.8 07 63.8 07 63.8	Q7 24.8 65.4 14 10 10 10 10 10 10 10 10 10 10 10 10 10	07 24.9 62.6 0 ¹ 0 ¹ 0 ¹ 0 ¹ 0 ¹ 0 ¹ 0 ¹ 0 ¹	08 07 026.0 63.8 0 07 63.8 0 07 63.8	08 07 22.1 66.6 (5P	07 022.6 06.9 07 66.9 07 66.9	07 49.0 49.0 (5P	08 07 43.6 45.2 14 ³ 4 ³ 4 ³ 4 ³ 4 ³ 4 ³

Supplementary Fig. 4: Immune reactivity of candidate humanized CAR-V β 2.

a, The sample layout used to test for the presence of pre-existing IgM antibody directed against the panel of allogeneic humanized CAR-V β 2 T cells in sera from **b**, three healthy controls or **c**, three CTCL patients, as determined by flow cytometry. **d**, MLR assay to detect killing by CD8 T cells from two donors mixed with TRAC-KO (black) or TRAC/B2M/CIITA (triple)-KO hCAR-V β 2 T cells generated from two additional donors. n=3 replicates of each group. ****p<0.0001 by two-way ANOVA. Source data are provided as a Source Data file.

5:1

Supplementary Fig. 5: CRISPR-AAV system for CAR-Vβ2 T cell generation.

Supplementary Fig. 5: CRISPR-AAV system for CAR-V β 2 T cell generation.

a, Representative flow cytometry showing CD4 and CD8 population percentages and expression of GFP as CAR reporter on AAV-dependent allogeneic mCAR-V β 2 T cells. **b**, Expression of GFP as CAR reporter on mCAR-V β 2 T cells two days and ten days post triple KO and AAV-mCAR-V β 2 transduction, determined by flow cytometry. **c**, Patient derived V β 2+ CTCL cell counts after overnight in vitro co-culture with allogeneic triple KO mCAR-V β 2 pan-T cells generated via CRISPR/AAV system (red) compared to allogeneic triple KO CAR-CD19 pan-T cells generated via lentivirus transduction (black), at different effector to target (E:T) ratios. **d**, Representative flow cytometry showing CD3- purity, CD4 and CD8 population percentages and expression of GFP as CAR reporter on lenti-CAR-CD19, lenti-hCAR-V β 2 and AAV-hCAR-V β 2 T cells. **c**, n=3 replicates in each group. *p<0.05 by two-way ANOVA. Source data are provided as a Source Data file.

Supplementary Fig. 6: hCAR-Vβ2 T cell recovery in cytokine optimization.

Supplementary Fig. 6: hCAR-V β 2 T cell recovery in cytokine optimization.

a, CD8+ % in 7-day and 12-day cytokine expanded CD3- hCAR-V β 2 T cells, determined by flow cytometry. n=3 replicates in each group. **b**, CD45RA+CD45RO+ % of 7-day and 12-day cytokine expanded resting CD8+CD3- hCAR-V β 2 T cells, determined by flow cytometry. **c**, Live total T cell counts during cytokine expansion in vitro, determined by trypan blue cell counting. **d**, Percentage of viable total T cells following 12-day cytokine expansion, determined by trypan blue cell counting. **e**, IFN γ + % of 12-day cytokine expanded resting CD8+CD3- hCAR-V β 2 T cells, determined by Flow cytokine expanded resting CD8+CD3- hCAR-V β 2 T cells, determined by flow cytokine expanded resting CD8+CD3- hCAR-V β 2 T cells, determined by flow cytokine expanded resting CD8+C3- hCAR-V β 2 T cells, determined by flow cytometry. Source data are provided as a Source Data file.

Supplementary Fig. 7: Humanized anti-V β 2 therapeutic antibody with enhanced ADCC.

Supplementary Fig. 7: Humanized anti-V β 2 therapeutic antibody with enhanced ADCC.

a, Lens Culinaris Agglutinin (LCA) expression on the surface of parental expiCHO cells, presorted expiCHO cells post Fut8 KO or post-sorted expiCHO cells post Fut8 KO, determined by flow cytometry. **b**, SDS-PAGE of purified humanized anti-V β 2 antibody sample and denatured protein sample from protein G beads post antibody elution. **c**, Live Jurkat-TRBV20-1 cell counts, after overnight co-culture with NK cells from a healthy donor as effector cells at different E:T ratios without antibody addition (black) or mixed with 100ng/ml mouse anti-V β 2 antibody (blue) or humanized anti-V β 2 antibody (red), determined by flow cytometry. n=3 replicates in each group. **p<0.01 and ****p<0.0001 by two-way ANOVA. Source data are provided as a Source Data file.

Supplementary Fig. 8: Flow cytometry gating strategies.

Supplementary Fig. 8: Flow cytometry gating strategies.

a, Gating strategy for Fig. 1 c-f, Fig. 4 c-d and Fig. 6 c-h. b, Gating strategy for Fig. 2 b-l and Fig.

3. c, Gating strategy for Fig. 4 e-k. d, Gating strategy for Fig. 5 c-f.

Supplementary Table 1.

No.	cytokine combination
1	IL2+IL7+IL15
2	IL7+IL15
3	IL15
4	IL7+IL15+IL21
5	IL15+IL21
6	IL2+IL12
7	IL2+IL18
8	IL2+IL12+IL18
9	IL12+IL15
10	IL15+IL18
11	IL12+IL15+IL18
12	IL7+IL12+IL15
13	IL7+IL15+IL18
14	IL7+IL12+IL15+IL18
15	IL12+IL15+IL21
16	IL15+IL18+IL21
17	IL12+IL15+IL18+II21
18	IL7+IL12+IL15+IL21
19	IL7+IL15+IL18+IL21
20	IL7+IL12+IL15+IL18+IL21

Supplementary Table 2.

Gene	sgRNA sequence		
TRAC	TCAGGGTTCTGGATATCTGT		
B2M	AAGTCAACTTCAATGTCGGA		
CIITA	GTGGCACACTGTGAGCTGCC		
TRBV12-3	GCAAAGGGACACACAGCAGA		
Fut8	AGTTGAAACTCTGAAAATGC		