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General Materials and Methods:1 
 
Unless otherwise noted, all chemicals and reagents for chemical reactions were purchased at the 
highest commercial quality and used without further purification. Liver microsomes were 
purchased from the following vendors: female mouse, male rat, male cynomolgus monkey and 
non-transfected microsomes (Corning, Woburn, MA); dexamethasone- induced male rat, male 
hamster, male dog and pooled male & female human (prepared in-house at Pfizer, Groton, CT); 
and male guinea pig and male rabbit (Xenotech, Lenexa, KS). Note, human and monkey liver 
microsomes are considered biohazardous materials and appropriate precautions should be taken 
during handling and disposal. Recombinant human P450 enzymes heterologously expressed in 
microsomes from Sf9 cells were custom prepared by Panvera (Madison, WI). 
 
Code: 
 
The pipeline, modules, and trained models can be found at https://github.com/emmaking-

smith/SET_LSF_CODE. 
 
Liver Microsomes and Recombinant CYP Enzyme Screen Procedure:  
 
Loratadine (20.0 µM, 10.0 nmol) was incubated with 9 mammalian liver microsomes (2.0 mg/mL) 
and 9 human recombinant P450 enzymes (2.0 mg/mL). The total volume in each well was 0.5 mL 
which contained potassium phosphate buffer (0.1 M, pH 7.4), MgCl2 (3.3 mM, 1.65 µmol) and 
acetonitrile (0.4% v/v). The reaction was initiated with the addition of NADPH (1.3 mM, 0.65 
µmol) and agitated at 37 ˚C in a reciprocal shaking bath at 1” throw for 1 hour. The incubation 
was quenched with the addition of acetonitrile (1.5 mL), followed by centrifugation (1700 g, 5 
min). The supernatant was removed and the solvent reduced using a Genevac centrifuge evaporator. 
The residue was reconstituted in 0.1 mL of 1% formic acid in H2O / 20% acetonitrile, followed 
by centrifugation (1700 g, 5 min). The samples were analyzed using the General HPLC-MS 
Method for Screen Analysis. 
 
Biomimetic Metalloporphyrin Oxidation (BMO) Screen Procedure:  
 
A high throughput BMO screen was completed on a miniature scale, examining the key variables 
of metalloporphyrin, oxidant and solvent. Nine different metalloporphyrins plus control without 
metalloporphyrin, six oxidants and two solvents were screened in a matrix of 120 combinations. 
The remaining variables were held constant according to the standard protocol described below.  
 
The reactions were set-up in two 96-well arrays using miniature 8 x 20 mm (0.2 mL) glass vials 
under standard glove box conditions (H2O and O2 <20 ppm). A 8 x 20 mm (0.2 mL) glass vial 
equipped with stir bar was dispensed the reaction solvent (100 µL, 4.0 mM) followed by a 
solution of 1 (5.0 µL, 0.4 µmol), added as a 0.1 M solution in dichloroethane. Stirring was 
initiated before the metalloporphyrin (4.0 µL, 0.04 µmol) was charged, as a 10.0 mM solution in 
dichloroethane. The vial was treated with a 0.1 M solution of imidazole (2.4 mL, 0.24 µmol) in 
H2O, followed by a 0.4 M solution of formic acid (4.0 µL, 0.16 µmol) in H2O. Finally, the 
oxidant (8.0 µL, 0.08 µmol) was added as a 0.1 M solution in dichloroethane. The reaction vial 
was crimp sealed with a PTFE / Silicone / PTFE septa to the glove box environment before the 

https://github.com/emmaking-smith/SET_LSF_CODE
https://github.com/emmaking-smith/SET_LSF_CODE
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reaction was left to stir at 25 ˚C for 18 hours. After this time period, the reaction was diluted with 
acetonitrile (0.2 mL) and analyzed directly by UPLC/MS. The UPLC/MS method used a 0.1% 
AcOH / NH4CO2H / H2O gradient over 0.8 minutes, running from 5-95% acetonitrile using a 
Waters Acquity UPLC BEH C18 30 x 2.1 mm column at 100 ˚C with a flow rate of 2.5 mL/min 
and a detection wavelength of 210-360 nm. 0.5 µL injections were made directly from diluted 
reaction mixtures and ionization monitored in positive mode. 
 
General Minisci Functionalization with Baran Diversinates™ Procedure: 
 
To 1-dram pressure release vial containing Diversinate™ sulfinate reagent as sodium or zinc salts 
e.g., RSO2Na or (RSO2)2Zn (3 eq - 6eq), was added to a solution of the test substrate molecule (~2 
µmol, 1 eq) in DMSO (~70-100 µL, 30 mM) and TFA (4 eq) followed by tert-butyl hydroperoxide, 
70% in water (5 eq) at room temperature. The resulting reaction mixture was capped and heated 
to 50 ˚C overnight. The crude reaction mixture was dissolved in 3:1 acidic mobile phase (1% 
acetonitrile, 0.1% formic acid) and acetonitrile (~3 mL) then purified via HPLC (XSelect 5 µm 
C18 130 Å, 250 x 10 mm @ 2 mL/min). The respective fractions were pooled, and solvent removed 
using the EZ-2 Elite Genevac (3-hour HPLC setting, 34 ˚C / 238 mbar to 41 ˚C / 7 mbar). Each 
isolate was characterized by MS and NMR. Due to the low amounts of isolates generated, 
gravimetric mass analysis is not possible; qNMR in conjunction with the enhanced sensitivity 
using a 1.7 mm micro-cryoprobe in DMSO-d6 solvent was used to determine the concentration of 
the sample. 
 
General Minisci Functionalization with Molander BF3K Salts Procedure: 
 
To 1-dram pressure release vial containing the test substrate molecule (~2 µmol, 1 eq), potassium 
trifluoroborate salt of the radical (1.5 - 2 eq), in a 1:1 mixture of acetic acid and water to make a 
30 mM solution and Mn(OAc)3 was added in one portion. The resulting reaction mixture was 
capped and heated to 50 ˚C overnight. The crude reaction mixture was dissolved in 3 :1 acidic 
mobile phase (1% acetonitrile, 0.1% formic acid) and acetonitrile (~3 mL) then purified via HPLC 
(XSelect 5 µm C18 130 Å, 250 x 10 mm @ 2 mL/min). The respective fractions were pooled, and 
solvent removed using the EZ-2 Elite Genevac (3-hour HPLC setting, 34 ˚C / 238 mbar to 41 ˚C / 
7 mbar). Each isolate was characterized by MS and NMR. Due to the low amounts of isolates 
generated, gravimetric mass analysis is not possible; qNMR in conjunction with the enhanced 
sensitivity using a 1.7 mm micro-cryoprobe in DMSO-d6 solvent was used to determine the 
concentration of the sample. 
 
Molecule Dynamics Simulations: 
 
Molecule conformations were generated with MOPAC at the PM7 level of theory.2 The underlying 
molecular dynamics (MD) driver was the Atomic Simulation Environment (ASE) package.3 A 
Langevin thermostat controlled the temperature. First, the molecular geometry was optimized 
followed by equilibration to 500 K for 2.5 picoseconds with a timestep of 0.25 femtoseconds. 
Upon equilibration, conformations were sampled every 2 picoseconds from a production run of 
200 picoseconds in the NVT ensemble at 500 Kelvin, using a timestep of 0.5 femtoseconds with 
the same thermostat. This yielded a total of 100 configurations per molecule. 
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The message passing neural network was based on MACE.4 Interatomic distances were 
incorporated as edge features in the message passing neural network, however, angles were not 
part of the edge featurization and no universal node was used in this variation of the message 
passing neural network. A cutoff radius of 5Å was used. 
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Table S1: Reagents Used for Each Reaction Type 
Reaction Type Reagent Count 

Minisci* 

(CF3SO2)2Zn 
(HCF2SO2)2Zn 

cBuBF3K 
Selectfluor 
CF3SO2Na 

CH3CF2SO2Na 
HOCH2SO2Na 
MeOCH2BF3K 

(iPrSO2)2Zn 
iPrBF3K 

(CF3CH2SO2)2Zn 

233 
137 
50 
39 
28 
22 
20 
18 
16 
15 
10 

Photoredox* 
NFSI 
O2 

tBu peracetate 

31 
26 
18 

Electrochem 
H2O 

CF3SO2Na 
CH3CF2SO2Na 

6 
5 
1 

* = Reagents used more than 10 times shown 
 
 
Table S2: Dataset Breakdown 
 
 Minisci Zinc sulfinate 

Minisci P450 Electrochem Photoredox 

Number of 
Total Reactions 1928 463 642 12 93 

Number of 
negative 
reactions 

1056 155 74 0 34 
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Calculating the Fukui Indices: 
Reactivity indices for electrophilicity and nucleophilicity for the i-th atom were computed by 
multiplying the corresponding Fukui index [Fi(+) or Fi(-), respectively] of the i-th atom by global 
electrophilicity / nucleophilicity for the given molecule. 
 
Reactivity indices for radical reactions were taken to be equal to the corresponding Fukui indices 
Fi(0). Global nucleophilicity of the molecule was computed as 8 eV + HOMO, and its global 
electrophilicity as (HOMO+LUMO)2/(4(LUMO-HOMO)), where HOMO and LUMO are the 
HOMO and LUMO energies of the molecule. 
 
Fukui indices of the i-th atom Fi(+), Fi(-) and Fi(0) were computed as differences between the 
atomic charge of the i-th atom in the original molecule qi(N) with N electrons, the charge of the 
same atom after adding one electron to the molecule qi(N+1), and the charge of the same atom 
after removing one electron from the molecule qi(N-1): 
 

𝐹!(+) = 	𝑞!(N) 	−	𝑞!(N + 1) 
𝐹!(+) 	= 	 𝑞!(N − 1) −	𝑞!(N) 

𝐹!(0) =
𝑞!(N − 1) −	𝑞!(N + 1)

2  
 
For electrophilicity and radical indices, quantum chemical computations were run with PBE/6-
311G, and for nucleophilicity with B3LYP/6-311G**. As partial atomic charges, Mulliken charges 
were used. These DFT functionals, basis sets and types of atomic charges were chosen by 
optimizing the predicting performance of the reactivity indices in SNAr and EAS reactions of an 
internal dataset of small organic molecules (unpublished). Quantum chemical computations were 
run in Terachem.5 
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Tie Breakers for F-scores: 
 
Whilst F-scores represented an excellent first pass, it did lead to degenerate best models for a 
variety of loss function weightings. We thus developed our own in-house metric, EKS metric, that 
was more discerning than the F-score. Like the F-score, this metric would provide a single number 
encompassing model accuracy and precision but would be more penalizing towards errors, 
elucidating model performance differences more easily (Figure S1 & S2). It would also address 
the challenge of accurate baselines when evaluating model performance. A model that predicts 
nothing reacts would receive and F-score of 0, and a model that predicts everything reacts would 
receive a non-negative score (Eq. S1). This is slightly unintuitive, as a model that predicts most 
atoms will not undergo functionalization is actually representing a more chemically correct 
understanding of reactivity. The most functionalized molecule only saw 30% number of sites 
reacting, or 70% of its atoms did not react. Indeed, most of the molecules in our dataset saw 1 
reaction site of fewer. 
 
Our in-house metric would give a low score if the model yielded a high number of false positives 
(FP) or false negatives (FN) and a high score if the model yielded a high number of true positives 
(TP) or true negatives (TN). The score should also be dependent upon the scarcity of predicted 
reactive sites. The value of each TP and TN should be dependent on the how frequently the model 
predicts positives and negatives, respectively. An overly cautious model which blindly guesses 
that all atoms are unreactive should receive a lower value for each TN it predicts compared to a 
model that is more judicious about its unreactive predictions. To this end, the following metric 
was used (Eq. S2). The variables, predp and truep refer to the ratio of predicted positives to all 
reactive sites. A predp of 1 indicates a model that predicts all sites react and a predp of 0 indicates 
a model where every molecule is unreactive. As reference, on the retrospective test set, a perfect 
model would receive a score of 119, a model that predicts nothing reacts would receive a score of 
-1.83, and a model that predicts everything reacts would be given a score of -1455. If a prediction 
is only 3% incorrect, the model score drops to 72, and at only 5% incorrect the score becomes 46.5. 
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Equations: 
 
Eq. S1: F-score =	 "	∙	%&

"	∙	%&	'	(&	'()
 

 
 
Eq. S2: score	 = 	FP ∙ log7𝑡𝑟𝑢𝑒*< + FN ∙ log71 − 𝑡𝑟𝑢𝑒*< − TP ∙ log7𝑝𝑟𝑒𝑑*< − TN ∙
log71 − 𝑝𝑟𝑒𝑑*< 
 
Eq. S3: BCE	Loss	 = 	∑ 𝑤! ∙ 	 (𝑦! ∙ log(𝑥!) +	(1 − 𝑦!) ∙ log(1 − 𝑥!))+

!,-  
 
Eq. S4: BCE	weight	1	 = 	𝑥	 ∙ 	𝑦	 ∙ log7𝑝𝑟𝑒𝑑*< +	(1 − 𝑦) ∙ (1 − 𝑥) ∙ log71 − 𝑝𝑟𝑒𝑑*< +
	(1 − 𝑦) ∙ 𝑥	 ∙ log7𝑡𝑟𝑢𝑒*< + 	𝑦	 ∙ 	 (1 − 𝑥) ∙ log71 − 𝑡𝑟𝑢𝑒*< 
 
Eq. S5: BCE	weight	2	 = L	𝑥	 ∙ 	𝑦	 ∙ log7𝑝𝑟𝑒𝑑*< +	(1 − 𝑦) ∙ (1 − 𝑥) ∙ log71 − 𝑝𝑟𝑒𝑑*< +
	(1 − 𝑦) ∙ 𝑥	 ∙ log7𝑡𝑟𝑢𝑒*< + 	𝑦	 ∙ 	 (1 − 𝑥) ∙ log71 − 𝑡𝑟𝑢𝑒*<] 	+	L𝑦 ∙ 𝑥 ∙ log7𝑡𝑟𝑢𝑒*<< +	(1 − 𝑦) ∙
(1 − 𝑥) ∙ log71 − 𝑡𝑟𝑢𝑒*< +	(1 − 𝑦) ∙ 𝑥 ∙ log71 − 𝑝𝑟𝑒𝑑*	< + 	𝑦 ∙ 𝑥 ∙ log7𝑝𝑟𝑒𝑑*<N 
 
 
Eq. S6: BCE	weight	3	 = 2L	𝑥 ∙ 𝑦 ∙ log7𝑝𝑟𝑒𝑑*< +	(1 − 𝑦) ∙ (1 − 𝑥) ∙ log71 − 𝑝𝑟𝑒𝑑*< +
	(1 − 𝑦) ∙ 𝑥 ∙ log7𝑡𝑟𝑢𝑒*< + 	𝑦 ∙ (1 − 𝑥) ∙ log71 − 𝑡𝑟𝑢𝑒*<] 	+	L𝑦 ∙ 𝑥 ∙ log7𝑡𝑟𝑢𝑒*<< +	(1 − 𝑦) ∙
(1 − 𝑥) ∙ log71 − 𝑡𝑟𝑢𝑒*< +	(1 − 𝑦) ∙ 𝑥 ∙ log71 − 𝑝𝑟𝑒𝑑*	< + 	𝑦 ∙ 𝑥 ∙ log7𝑝𝑟𝑒𝑑*<N 
 
 
x = predicted values, w = weighting values, y = experimental values, always 0 or 1 
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Figure S1: The deleterious effect of removing various reaction types from the training data (n=5). 
The bars in the bar charts represent the average with gray dots representing the individual data 
points (initializations with identical values are shown as a single point). Standard error bars shown. 
Source data for each bar chart can be found in source data excel file. 
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Figure S2: The comparisons of the best models', MPNNLSF (best model on retrospective test set) 
and MPNNP450 (best model on P450-only test set) F-scores and normalized EKS scores at various 
Binary Cross Entropy Loss weightings on the retrospective and P450-only test set respectively 
(n=5). MPNN = message passing neural network. Notice that the normalized EKS scores show 
more discernment in model performance between different weightings. Weight 2 for MPNNLSF 
has a nearly identical F-score with weight 3, but EKS scores show a significant edge to weight 3. 
The bars in the bar charts represent the average with gray dots representing the individual data 
points (initializations with identical values are shown as a single point). Standard error bars shown. 
Source data for each bar chart can be found in source data excel file. 
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Figure S3: Comparison of sensitivity of incorrect predictions between EKS score and F-score. 
Analysis performed on the retrospective test set. Source data for each bar chart can be found in 
source data excel file. 
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Figure S4: The effect of removing datapoints that saw no reaction (n=5). The bars in the bar charts 
represent the average with gray dots representing the individual data points (initializations with 
identical values are shown as a single point). Standard error bars shown. Source data for each bar 
chart can be found in source data excel file. 
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Figure S5: Comparison of MPNNLSF (best model on retrospective test set) to the Quantum 
Mechanics-augmented message passing neural network (QM-augmented; molecular dynamics 
simulations on atomic density representations) on the prospective test set (n=1). 
  



 S16 

 
 
Figure S6: Representative molecules in the P450-only test set. 
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Compound Characterizations: 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 9.16 (s, 1H), 8.47 (d, J = 2.9 Hz, 1H), 8.22 (s, 1H), 7.66 (d, J 
= 5.1 Hz, 1H), 7.52 (t, J = 5.8 Hz, 1H), 6.18 (s, 1H), 4.34 (d, J = 5.7 Hz, 2H), 2.39 (s, 3H). 
 
HRMS: calcd for C12H11F3N4O2H+ ([M+H]) 301.0907, found 301.0917. 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.42 (d, J = 8.5 Hz, 1H), 8.36 (d, J = 4.5 Hz, 1H), 8.20 (s, 1H), 
7.65 (dd, J = 8.5, 4.5 Hz, 1H), 7.60 (t, J = 5.8 Hz, 1H), 6.17 (s, 1H), 4.33 (d, J = 5.7 Hz, 2H), 2.39 
(s, 3H). 
 
HRMS: calcd for C12H11F3N4O2H+ ([M+H]) 301.0907, found 301.0907. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 9.37 (s, 1H), 8.69 (d, J = 2.5 Hz, 1H), 8.17 (dd, J = 8.5, 2.5 
Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.00 (t, J = 5.9 Hz, 1H), 6.17 (s, 1H), 4.33 (d, J = 5.8 Hz, 2H), 
2.38 (s, 3H). 
 
HRMS: calcd for C12H11F3N4O2H+ ([M+H]) 301.0907, found 301.0914. 
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.96 (s, 1H), 8.43 (s, 1H), 8.41 (d, J = 5.0 Hz, 1H), 7.50 (d, J 
= 5.0 Hz, 1H), 7.26 (t, J = 5.9 Hz, 1H), 7.12 (t, J = 54.4 Hz, 1H), 6.18 (s, 1H), 4.33 (d, J = 5.8 Hz, 
2H), 2.39 (s, 3H). 
 
HRMS: calcd for C12H12F2N4O2H+ ([M+H]) 283.1001, found 283.1002. 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.33 (s, 1H), 8.32 – 8.29 (m, 2H), 7.51 (dd, J = 8.5, 4.6 Hz, 
1H), 7.48 (t, J = 5.7 Hz, 1H), 7.00 (t, J = 53.8 Hz, 1H), 6.17 (s, 1H), 4.32 (d, J = 5.7 Hz, 2H), 
2.39 (s, 3H). 
 
HRMS: calcd for C12H12F2N4O2H+ ([M+H]) 283.1001, found 283.1008. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 9.19 (s, 1H), 8.64 (d, J = 2.5 Hz, 1H), 8.08 (dd, J = 8.7, 2.5 
Hz, 1H), 7.58 (d, J = 8.6 Hz, 1H), 6.93 (t, J = 5.8 Hz, 1H), 6.85 (t, J = 55.3 Hz, 1H), 6.16 (s, 1H), 
4.32 (d, J = 5.7 Hz, 2H), 2.38 (s, 3H). 
 
HRMS: calcd for C12H12F2N4O2H+ ([M+H]) 283.1001, found 283.1003. 
 
 

 
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.19 (d, J = 4.3 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.80 (s, 
1H), 7.19 (t, J = 5.8 Hz, 1H), 7.16 (dd, J = 8.2, 4.8 Hz, 1H), 6.17 (s, 1H), 4.31 (d, J = 5.7 Hz, 
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2H), 3.76 (p, J = 8.5 Hz, 1H), 2.39 (s, 3H), 2.35 – 2.24 (m, 4H), 2.04 – 1.94 (m, 1H), 1.85 – 1.78 
(m, 1H). 
 
HRMS: calcd for C15H16N4O2H+ ([M+H]) 287.1503, found 287.1511. 
 

 
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.82 (s, 1H), 8.24 (s, 1H), 7.81 (s, 1H), 7.31 (s, 1H), 7.14 (t, 
J = 6.2 Hz, 1H), 6.17 (s, 1H), 4.31 (d, J = 5.8 Hz, 2H), 3.61 (p, J = 9.0, 8.5 Hz, 1H), 2.39 (s, 3H), 
2.39 – 2.32 (m, 2H), 2.09 – 1.96 (m, 3H), 1.84 – 1.77 (m, 1H). 
 
HRMS: calcd for C15H16N4O2H+ ([M+H]) 287.1503, found 287.1506. 
 
 

 
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.81 (s, 1H), 8.49 (s, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.16 (s, 
1H), 6.76 (s, 1H), 6.15 (s, 1H), 4.30 (d, J = 5.9 Hz, 2H), 3.57 (p, J = 8.4, 7.9 Hz, 1H), 2.37 (s, 3H), 
2.27 – 2.19 (m, 4H), 2.00 – 1.93 (m, 1H), 1.86 – 1.78 (m, 1H). 
 
HRMS: calcd for C15H16N4O2H+ ([M+H]) 287.1503, found 287.1496. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.57 (s, 1H), 9.76 (s, 1H), 9.13 (d, J = 2.3 Hz, 1H), 8.81 (dd, 
J = 4.9, 1.7 Hz, 1H), 8.31 (dt, J = 8.0, 2.0 Hz, 1H), 8.13 (s, 1H), 8.12 (d, J = 8.9 Hz, 1H), 8.01 (d, 
J = 8.2 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.62 (dd, J = 8.1, 4.6 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 
7.11 (d, J = 8.4 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 4.11 (q, J = 7.0 Hz, 2H), 1.34 (t, J = 6.8 Hz, 3H). 
 
HRMS: calcd for C22H18F3N3O3H+ ([M+H]) 430.1373, found 430.1366. 
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.90 (s, 1H), 9.64 (s, 1H), 9.15 (s, 1H), 8.81 (d, J = 4.8 Hz, 
1H), 8.34 (dt, J = 8.1, 2.1 Hz, 1H), 8.13 (d, J = 2.2 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 
8.7 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.62 (dd, J = 8.0, 4.7 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H), 7.09 
(d, J = 8.2 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 4.09 (q, J = 6.9 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H). 
 
HRMS: calcd for C22H18F3N3O3H+ ([M+H]) 430.1373, found 430.1375. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.68 (s, 1H), 9.55 (s, 1H), 9.15 (d, J = 2.3 Hz, 1H), 8.79 (dd, 
J = 4.7, 1.7 Hz, 1H), 8.41 (s, 1H), 8.34 (dt, J = 8.0, 2.0 Hz, 1H), 8.28 (d, J = 2.4 Hz, 1H), 8.01 (dd, 
J = 8.0, 2.2 Hz, 1H), 7.73 (d, J = 7.7 Hz, 1H), 7.60 (dd, J = 8.0, 4.8 Hz, 1H), 7.57 (t, J = 8.1 Hz, 
1H), 7.54 (dd, J = 8.8, 2.8 Hz, 1H), 7.30 (d, J = 8.6 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 
7.0 Hz, 3H). 
 
HRMS: calcd for C22H18F3N3O3H+ ([M+H]) 430.1373, found 430.1369. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.68 (s, 1H), 9.52 (s, 1H), 9.15 (s, 1H), 8.79 (d, J = 4.9 Hz, 
1H), 8.42 (s, 1H), 8.34 (dt, J = 8.1, 2.0 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 8.03 (dd, J = 8.0, 2.2 Hz, 
1H), 7.73 (d, J = 7.7 Hz, 1H), 7.60 (dd, J = 8.0, 4.9 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.39 (s, 1H), 
7.37 (d, J = 9.1 Hz, 1H), 4.24 (q, J = 6.9 Hz, 2H), 1.42 (t, J = 6.9 Hz, 3H). 
 
HRMS: calcd for C22H18F3N3O3H+ ([M+H]) 430.1373, found 430.1373. 
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.85 (s, 1H), 9.35 (s, 1H), 9.28 (s, 1H), 8.61 (d, J = 8.0 Hz, 
1H), 8.37 (s, 1H), 8.13 (d, J = 8.1 Hz, 1H), 8.01 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.74 
(d, J = 8.0 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.16 (t, J = 8.1 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.97 
(t, J = 7.7 Hz, 1H), 4.12 (q, J = 7.0 Hz, 2H), 1.38 (t, J = 6.7 Hz, 3H). 
 
HRMS: calcd for C22H18F3N3O3H+ ([M+H]) 430.1373, found 430.1367. 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.87 (s, 1H), 9.33 (s, 1H), 8.85 (d, J = 4.7 Hz, 1H), 8.35 (s, 
1H), 8.23 (d, J = 7.8 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.75 (dd, J = 7.9, 5.0 Hz, 1H), 7.73 (d, J = 7.8 
Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 7.22 (t, J = 53.9 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.10 (d, J = 
8.2 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 1.39 (t, J = 6.9 Hz, 3H). 
 
HRMS: calcd for C22H19F2N3O3H+ ([M+H]) 412.1467, found 412.1472. 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.96 (s, 1H), 9.33 (s, 1H), 9.06 (s, 1H), 8.94 (d, J = 5.1 Hz, 
1H), 8.37 (s, 1H), 7.93 – 7.88 (m, 2H), 7.78 (d, J = 5.1 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.56 (t, 
J = 7.9 Hz, 1H), 7.42 (t, J = 54.6 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H), 6.98 
(t, J = 7.6 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H), 1.39 (t, J = 6.9 Hz, 3H). 
 
HRMS: calcd for C22H19F2N3O3H+ ([M+H]) 412.1467, found 412.1473. 
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.78 (s, 1H), 9.35 (s, 1H), 9.23 (s, 1H), 8.53 (dd, J = 8.1, 2.3 
Hz, 1H), 8.38 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 
7.74 (d, J = 7.7 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.11 (d, J = 8.3 Hz, 
1H), 7.09 (t, J = 55.1 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 1.39 (t, J = 6.9 
Hz, 3H). 
 
HRMS: calcd for C22H19F2N3O3H+ ([M+H]) 412.1467, found 412.1467. 
 
 

 
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.75 (s, 1H), 9.31 (s, 1H), 8.80 – 8.64 (m, 2H), 8.36 (s, 1H), 
7.91 (d, J = 7.9 Hz, 1H), 7.87 (dd, J = 8.0, 2.2 Hz, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.59 (d, J = 5.1 
Hz, 1H), 7.54 (t, J = 7.9 Hz, 1H), 7.16 (td, J = 7.8, 1.7 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.98 (t, 
J = 7.5 Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 3.92 (p, J = 8.8 Hz, 1H), 2.34 – 2.25 (m, 2H), 2.22 – 
2.11 (m, 2H), 2.05 – 1.93 (m, 1H), 1.84 – 1.75 (m, 1H), 1.39 (t, J = 7.0 Hz, 3H). 
 
HRMS: calcd for C25H25N3O3H+ ([M+H]) 416.1969, found 416.1968. 
 
 

 
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.66 (s, 1H), 9.31 (s, 1H), 8.70 (dd, J = 5.0, 1.7 Hz, 1H), 
8.37 (s, 1H), 7.93 – 7.88 (m, 2H), 7.87 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.53 (t, J = 
7.9 Hz, 1H), 7.40 (dd, J = 7.7, 4.9 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.98 
(t, J = 7.6 Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 3.98 (p, J = 8.6 Hz, 1H), 2.45 – 2.34 (m, 2H), 2.26 – 
2.16 (m, 2H), 2.03 – 1.91 (m, 1H), 1.84 – 1.75 (m, 1H), 1.39 (t, J = 6.9 Hz, 3H). 
 
HRMS: calcd for C25H25N3O3H+ ([M+H]) 416.1969, found 416.1960. 
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Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 10.62 (s, 1H), 9.33 (s, 1H), 9.12 (d, J = 2.3 Hz, 1H), 8.40 – 
8.32 (m, 2H), 8.01 (dd, J = 8.1, 2.2 Hz, 1H), 7.89 (dd, J = 7.9, 1.6 Hz, 1H), 7.72 (d, J = 7.7 Hz, 
1H), 7.60 – 7.50 (m, 2H), 7.16 (td, J = 7.8, 1.7 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.98 (t, J = 7.5 
Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 3.79 (p, J = 8.6 Hz, 1H), 2.41 – 2.28 (m, 4H), 2.11 – 2.00 (m, 
1H), 1.94 – 1.85 (m, 1H), 1.39 (t, J = 7.0 Hz, 3H). 
 
HRMS: calcd for C25H25N3O3H+ ([M+H]) 416.1969, found 416.1971. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 11.01 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.30 – 7.21 (m, 5H), 
5.16 (q, J = 17.5, 17.0 Hz, 2H), 5.05 (d, J = 16.5 Hz, 1H), 4.96 (d, J = 16.6 Hz, 1H), 3.46 (s, 3H), 
3.23 (s, 3H), 2.92 (s, 3H). 
 
HRMS: calcd for C22H21F3N8O5H+ ([M+H]) 535.1660, found 535.1666. 
 
 

 
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 11.07 (s, 1H), 7.99 (s, 1H), 7.73 (d, J = 8.1 Hz, 2H), 7.47 (d, 
J = 8.0 Hz, 2H), 5.23 (q, J = 17.7 Hz, 2H), 5.08 (d, J = 16.6 Hz, 1H), 4.95 (d, J = 16.6 Hz, 1H), 
3.45 (s, 3H), 3.20 (s, 3H), 2.93 (s, 3H). 
 
HRMS: calcd for C22H21F3N8O5H+ ([M+H]) 535.1660, found 535.1655. 
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 11.04 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.30 – 7.23 (m, 5H), 
7.12 (t, J = 51.7 Hz, 1H), 5.25 (s, 2H), 5.15 (q, J = 17.0 Hz, 2H), 3.46 (s, 3H), 3.22 (s, 3H), 2.92 
(s, 3H). 
 
HRMS: calcd for C22H22F2N8O5H+ ([M+H]) 517.1754, found 517.1744. 
 
 

 
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 11.02 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 – 7.23 (m, 5H), 
5.16 (s, 2H), 4.97 (d, J = 17.2 Hz, 1H), 4.85 (d, J = 17.0 Hz, 1H), 3.55 (p, J = 8.6 Hz, 1H), 3.46 (s, 
3H), 3.19 (s, 3H), 2.91 (s, 3H), 2.45 – 2.36 (m, 1H), 2.28 – 2.17 (m, 3H), 2.00 – 1.89 (m, 1H), 1.87 
– 1.79 (m, 1H). 
 
HRMS: calcd for C25H28N8O5H+ ([M+H]) 521.2255, found 521.2263. 
 

 
Prepared according to Liver Microsomes and Recombinant CYP Enzyme Screen Procedure and 
Biomimetic Metalloporphyrin Oxidation Screen Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.42 − 8.36 (m, 1H), 7.88 − 7.76 (m, 1H), 7.32 − 7.19 (m, 
3H), 7.14 − 7.07 (m, 1H), 6.11 − 5.55 (m, br, 1H), 5.19 − 5.17 (m, 1H), 4.08 − 4.00 (m, 2H), 3.70 
− 3.55 (m, 2H), 3.50 − 3.45 (m, 1H), 3.27 − 3.11 (m, 2H), 3.07 − 2.74 (m, 1H), 2.43 − 2.01 (m, 
4H), 1.21 − 1.14 (m, 3H). 
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HRMS: calcd for C22H23ClN2O3H+ ([M+H]) 399.1475, found 399.1474. 
 

 
Prepared according to Liver Microsomes and Recombinant CYP Enzyme Screen Procedure and 
Biomimetic Metalloporphyrin Oxidation Screen Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 8.38 − 8.30 (m, 1H), 7.77 − 7.43 (m, 2H), 7.27 (d, J = 8.0 Hz, 
1H), 7.23 − 7.17 (m, 1H), 7.13 − 7.06 (m, 1H), 5.29 − 4.56 (m, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.76 
− 3.56 (m, 2H), 3.50 − 3.33 (m, 1H), 3.27 − 3.12 (m, 2H), 3.06 − 2.73 (m, 1H), 2.46 − 2.35 (m, 
1H), 2.28 − 2.16 (m, 2H), 2.14 − 1.99 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H). 
 
HRMS: calcd for C22H23ClN2O3H+ ([M+H]) 399.1475, found 399.1475. 
 

 
Prepared according to Liver Microsomes and Recombinant CYP Enzyme Screen Procedure and 
Biomimetic Metalloporphyrin Oxidation Screen Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ  8.35 (d, J = 4.7 Hz, 1H), 7.64 − 7.54 (m, 1H), 7.41 − 7.04 (m, 
4H), 5.38 − 4.82 (m, 1H), 4.42 − 3.86 (m, 7H), 3.38 − 3.24 (m, 2H), 2.89 − 2.73 (m, 2H), 2.58 − 
2.12 (m, 2H), 1.20 − 1.10 (m, 3H). 
 
HRMS: calcd for C22H23ClN2O3H+ ([M+H]) 399.1475, found 399.1475. 
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Prepared according to Biomimetic Metalloporphyrin Oxidation Screen Procedure. 
 
1H NMR (600 MHz, DMSO-d6): δ 7.90 (d, J = 2.6 Hz, 1H), 7.29 (d, J = 2.3 Hz, 1H), 7.19 (dd, J 
= 8.1, 2.3 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 6.93 (d, J = 2.7 Hz, 1H), 4.04 (q, J = 7.1 Hz, 2H), 
3.65 − 3.55 (m, 2H), 3.37 − 3.11 (m, 4H), 2.83 − 2.68 (m, 2H), 2.36 − 2.29 (m, 1H), 2.28 − 2.21 
(m, 1H), 2.21 − 2.10 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H) 
 
HRMS: calcd for C22H23ClN2O3H+ ([M+H]) 399.1475, found 399.1478. 
 
 

N
CO2Et

N

Cl

S28

OH



 S27 

Figure S7: 600 MHz 1H NMR spectrum for compound 6 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. Green 
numbered peaks are mapped to their corresponding atom number.  
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Figure S8: 600 MHz 1H NMR spectrum for compound S1 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S9: 600 MHz 1H NMR spectrum for compound S2 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.513.013.5
f1	(ppm)

-10

0

10

20

30

40

50

60

70

80

90

100

110

13
16
11

15

8

3

6

1

6

H
N

8

5

32

O4
N
7

Me
1

9
H
N

11

O10

12

14 N
17

16

15

13

F3C
18



 S30 

Figure S10: 600 MHz 1H NMR spectrum for compound S3 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S11: 600 MHz 1H NMR spectrum for compound S4 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S12: 600 MHz 1H NMR spectrum for compound S5 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S13: 600 MHz 1H NMR spectrum for compound S6 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S14: 600 MHz 1H NMR spectrum for compound S7 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number. 
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Figure S15: 600 MHz 1H NMR spectrum for compound S8 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number. 
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Figure S16: 600 MHz 1H NMR spectrum for compound S9 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number. 
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Figure S17: 600 MHz 1H NMR spectrum for compound 7 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S18: 600 MHz 1H NMR spectrum for compound S10 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number. 
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Figure S19: 600 MHz 1H NMR spectrum for compound S11 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S20: 600 MHz 1H NMR spectrum for compound S12 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S21: 600 MHz 1H NMR spectrum for compound S13 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S22: 600 MHz 1H NMR spectrum for compound S14 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S23: 600 MHz 1H NMR spectrum for compound S15 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S24: 600 MHz 1H NMR spectrum for compound S16 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S25: 600 MHz 1H NMR spectrum for compound S17 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S26: 600 MHz 1H NMR spectrum for compound S18 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S27: 600 MHz 1H NMR spectrum for compound S19 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.
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Figure S28: 600 MHz 1H NMR spectrum for compound S20 in DMSO-d6.  Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number. 
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Figure S29: 600 MHz 1H NMR spectrum for compound 8 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S30: 600 MHz 1H NMR spectrum for compound S21 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S31: 600 MHz 1H NMR spectrum for compound S22 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S32: 600 MHz 1H NMR spectrum for compound S23 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S33: 600 MHz 1H NMR spectrum for compound S24 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S34: 600 MHz 1H NMR spectrum for compound S25 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S35: 600 MHz 1H NMR spectrum for compound S26 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S36: 600 MHz 1H NMR spectrum for compound S27 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number.  
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Figure S37: 600 MHz 1H NMR spectrum for compound S28 in DMSO-d6. Green numbered atoms are atoms with a potential 1H NMR signal. 
Green numbered peaks are mapped to their corresponding atom number. 
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