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General Materials and Methods:'

Unless otherwise noted, all chemicals and reagents for chemical reactions were purchased at the
highest commercial quality and used without further purification. Liver microsomes were
purchased from the following vendors: female mouse, male rat, male cynomolgus monkey and
non-transfected microsomes (Corning, Woburn, MA); dexamethasone- induced male rat, male
hamster, male dog and pooled male & female human (prepared in-house at Pfizer, Groton, CT);
and male guinea pig and male rabbit (Xenotech, Lenexa, KS). Note, human and monkey liver
microsomes are considered biohazardous materials and appropriate precautions should be taken
during handling and disposal. Recombinant human P450 enzymes heterologously expressed in
microsomes from Sf9 cells were custom prepared by Panvera (Madison, WI).

Code:

The pipeline, modules, and trained models can be found at https://github.com/emmaking-
smith/SET_LSF_CODE.

Liver Microsomes and Recombinant CYP Enzyme Screen Procedure:

Loratadine (20.0 uM, 10.0 nmol) was incubated with 9 mammalian liver microsomes (2.0 mg/mL)
and 9 human recombinant P450 enzymes (2.0 mg/mL). The total volume in each well was 0.5 mL
which contained potassium phosphate buffer (0.1 M, pH 7.4), MgCI12 (3.3 mM, 1.65 umol) and
acetonitrile (0.4% v/v). The reaction was initiated with the addition of NADPH (1.3 mM, 0.65
umol) and agitated at 37 °C in a reciprocal shaking bath at 1” throw for 1 hour. The incubation
was quenched with the addition of acetonitrile (1.5 mL), followed by centrifugation (1700 g, 5
min). The supernatant was removed and the solvent reduced using a Genevac centrifuge evaporator.
The residue was reconstituted in 0.1 mL of 1% formic acid in H20 / 20% acetonitrile, followed
by centrifugation (1700 g, 5 min). The samples were analyzed using the General HPLC-MS
Method for Screen Analysis.

Biomimetic Metalloporphyrin Oxidation (BMO) Screen Procedure:

A high throughput BMO screen was completed on a miniature scale, examining the key variables
of metalloporphyrin, oxidant and solvent. Nine different metalloporphyrins plus control without
metalloporphyrin, six oxidants and two solvents were screened in a matrix of 120 combinations.
The remaining variables were held constant according to the standard protocol described below.

The reactions were set-up in two 96-well arrays using miniature 8 x 20 mm (0.2 mL) glass vials
under standard glove box conditions (H>O and O, <20 ppm). A 8 x 20 mm (0.2 mL) glass vial
equipped with stir bar was dispensed the reaction solvent (100 pL, 4.0 mM) followed by a
solution of 1 (5.0 uL, 0.4 umol), added as a 0.1 M solution in dichloroethane. Stirring was
initiated before the metalloporphyrin (4.0 uL, 0.04 pmol) was charged, as a 10.0 mM solution in
dichloroethane. The vial was treated with a 0.1 M solution of imidazole (2.4 mL, 0.24 pmol) in
H:O, followed by a 0.4 M solution of formic acid (4.0 puL, 0.16 pmol) in H2O. Finally, the
oxidant (8.0 pL, 0.08 umol) was added as a 0.1 M solution in dichloroethane. The reaction vial
was crimp sealed with a PTFE / Silicone / PTFE septa to the glove box environment before the
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reaction was left to stir at 25 °C for 18 hours. After this time period, the reaction was diluted with
acetonitrile (0.2 mL) and analyzed directly by UPLC/MS. The UPLC/MS method used a 0.1%
AcOH / NH4CO2H / H2O gradient over 0.8 minutes, running from 5-95% acetonitrile using a
Waters Acquity UPLC BEH C18 30 x 2.1 mm column at 100 °C with a flow rate of 2.5 mL/min
and a detection wavelength of 210-360 nm. 0.5 uL injections were made directly from diluted
reaction mixtures and ionization monitored in positive mode.

General Minisci Functionalization with Baran Diversinates™ Procedure:

To 1-dram pressure release vial containing Diversinate™ sulfinate reagent as sodium or zinc salts
e.g., RSO2Na or (RSO2)2Zn (3 eq - 6eq), was added to a solution of the test substrate molecule (~2
pmol, 1 eq) in DMSO (~70-100 pL, 30 mM) and TFA (4 eq) followed by tert-butyl hydroperoxide,
70% in water (5 eq) at room temperature. The resulting reaction mixture was capped and heated
to 50 °C overnight. The crude reaction mixture was dissolved in 3:1 acidic mobile phase (1%
acetonitrile, 0.1% formic acid) and acetonitrile (~3 mL) then purified via HPLC (XSelect 5 pm
C18130 A, 250 x 10 mm @ 2 mL/min). The respective fractions were pooled, and solvent removed
using the EZ-2 Elite Genevac (3-hour HPLC setting, 34 °C / 238 mbar to 41 °C / 7 mbar). Each
isolate was characterized by MS and NMR. Due to the low amounts of isolates generated,
gravimetric mass analysis is not possible; gqNMR in conjunction with the enhanced sensitivity
using a 1.7 mm micro-cryoprobe in DMSO-ds solvent was used to determine the concentration of
the sample.

General Minisci Functionalization with Molander BF3K Salts Procedure:

To 1-dram pressure release vial containing the test substrate molecule (~2 umol, 1 eq), potassium
trifluoroborate salt of the radical (1.5 - 2 eq), in a 1:1 mixture of acetic acid and water to make a
30 mM solution and Mn(OAc); was added in one portion. The resulting reaction mixture was
capped and heated to 50 °C overnight. The crude reaction mixture was dissolved in 3 :1 acidic
mobile phase (1% acetonitrile, 0.1% formic acid) and acetonitrile (~3 mL) then purified via HPLC
(XSelect 5 um C18 130 A, 250 x 10 mm @ 2 mL/min). The respective fractions were pooled, and
solvent removed using the EZ-2 Elite Genevac (3-hour HPLC setting, 34 °C / 238 mbar to 41 °C/
7 mbar). Each isolate was characterized by MS and NMR. Due to the low amounts of isolates
generated, gravimetric mass analysis is not possible; qNMR in conjunction with the enhanced
sensitivity using a 1.7 mm micro-cryoprobe in DMSO-ds solvent was used to determine the
concentration of the sample.

Molecule Dynamics Simulations:

Molecule conformations were generated with MOPAC at the PM7 level of theory.? The underlying
molecular dynamics (MD) driver was the Atomic Simulation Environment (ASE) package.’* A
Langevin thermostat controlled the temperature. First, the molecular geometry was optimized
followed by equilibration to 500 K for 2.5 picoseconds with a timestep of 0.25 femtoseconds.
Upon equilibration, conformations were sampled every 2 picoseconds from a production run of
200 picoseconds in the NVT ensemble at 500 Kelvin, using a timestep of 0.5 femtoseconds with
the same thermostat. This yielded a total of 100 configurations per molecule.
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The message passing neural network was based on MACE.* Interatomic distances were
incorporated as edge features in the message passing neural network, however, angles were not
part of the edge featurization and no universal node was used in this variation of the message
passing neural network. A cutoff radius of 5A was used.
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Table S1: Reagents Used for Each Reaction Type

Reaction Type Reagent Count
(CF3S02)2Zn 233
(HCFzSOz)zZn 137
cBuBF3;K 50
Selectfluor 39
CF3;SO;Na 28
Minisci* CH3CF2SO2Na 22
HOCH;SO:;Na 20
MeOCHzBF3K 18
(iPrS0O2)2Zn 16
iPrBFs;K 15
(CF5;CH2S03)2Zn 10
NFSI 31
Photoredox* 02 26
tBu peracetate 18
H>O 6
Electrochem CF3SO2Na 5
CH;CF,SO,Na 1

* = Reagents used more than 10 times shown

Table S2: Dataset Breakdown

Minisci Zinc s.u{ﬁifate P450 Electrochem Photoredox
Minisci
Number of
Total Reactions 1928 463 642 12 93
Number of
negative 1056 155 74 0 34
reactions
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Calculating the Fukui Indices:

Reactivity indices for electrophilicity and nucleophilicity for the i-th atom were computed by
multiplying the corresponding Fukui index [Fi(+) or Fi(-), respectively] of the i-th atom by global
electrophilicity / nucleophilicity for the given molecule.

Reactivity indices for radical reactions were taken to be equal to the corresponding Fukui indices
Fi(0). Global nucleophilicity of the molecule was computed as 8§ eV + HOMO, and its global
electrophilicity as (HOMO+LUMO)2/(4(LUMO-HOMO)), where HOMO and LUMO are the
HOMO and LUMO energies of the molecule.

Fukui indices of the i-th atom Fi(+), Fi(-) and Fi(0) were computed as differences between the
atomic charge of the i-th atom in the original molecule ¢(N) with N electrons, the charge of the
same atom after adding one electron to the molecule g(N+1), and the charge of the same atom
after removing one electron from the molecule ¢;(N-1):

Fi(+) = qg(N) — q(N+1)
Fi(+) = qg(N—1) — q;(N)
F.(0) = q;(N—1) ; q;(N + 1)

For electrophilicity and radical indices, quantum chemical computations were run with PBE/6-
311G, and for nucleophilicity with B3LYP/6-311G**. As partial atomic charges, Mulliken charges
were used. These DFT functionals, basis sets and types of atomic charges were chosen by
optimizing the predicting performance of the reactivity indices in SxAr and EAS reactions of an
internal dataset of small organic molecules (unpublished). Quantum chemical computations were
run in Terachem.’
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Tie Breakers for F-scores:

Whilst F-scores represented an excellent first pass, it did lead to degenerate best models for a
variety of loss function weightings. We thus developed our own in-house metric, EKS metric, that
was more discerning than the F-score. Like the F-score, this metric would provide a single number
encompassing model accuracy and precision but would be more penalizing towards errors,
elucidating model performance differences more easily (Figure S1 & S2). It would also address
the challenge of accurate baselines when evaluating model performance. A model that predicts
nothing reacts would receive and F-score of 0, and a model that predicts everything reacts would
receive a non-negative score (Eq. S1). This is slightly unintuitive, as a model that predicts most
atoms will not undergo functionalization is actually representing a more chemically correct
understanding of reactivity. The most functionalized molecule only saw 30% number of sites
reacting, or 70% of its atoms did not react. Indeed, most of the molecules in our dataset saw 1
reaction site of fewer.

Our in-house metric would give a low score if the model yielded a high number of false positives
(FP) or false negatives (FN) and a high score if the model yielded a high number of true positives
(TP) or true negatives (TN). The score should also be dependent upon the scarcity of predicted
reactive sites. The value of each TP and TN should be dependent on the how frequently the model
predicts positives and negatives, respectively. An overly cautious model which blindly guesses
that all atoms are unreactive should receive a lower value for each TN it predicts compared to a
model that is more judicious about its unreactive predictions. To this end, the following metric
was used (Eq. S2). The variables, pred, and true, refer to the ratio of predicted positives to all
reactive sites. A pred, of 1 indicates a model that predicts all sites react and a pred, of 0 indicates
a model where every molecule is unreactive. As reference, on the retrospective test set, a perfect
model would receive a score of 119, a model that predicts nothing reacts would receive a score of
-1.83, and a model that predicts everything reacts would be given a score of -1455. If a prediction
is only 3% incorrect, the model score drops to 72, and at only 5% incorrect the score becomes 46.5.
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Equations:

2-TP

Eq. S1: F-score = ——————
2-TP + FP +FN

Eq. S2: score = FP- log(truep) +FN-log(1 - truep) —TP- log(predp) —TN-
log(l — predp)

Eq. S3: BCE Loss = Y w;* (y; - log(x;) + (1 —y;) -log(1 — x;))

Eq. S4: BCE weight1 = x - y -log(predp) + (1-y)-(1—x)-log(1— predp) +
(1-y)-x -log(true,) + ¥ - (1 —x) -log(1 — true,)

Eq. S5: BCE weight 2 = [x “y -log(predp) + (1-y)-(1—x)-log(1- 'predp) +
1-y)x- log(truep) +y - (1—x)-log(l- truep)] + [y X log(truep)) + (1-y)-
(1—x)-log(1- truep) + (1—y)-x-log(1l- pred, )+ y-x- log(predp)]

Eq. S6: BCE weight 3 = 2[ X-y- log(predp) + (1-y)-(1—x)-log(1— predp) +
1-y)x- log(truep) +y-(1—x)-log(1l— truep)] + [y X log(truep)) + (1-y)-
(1—x)-log(1- truep) + (1—y)-x-log(1l— pred, )+ y-x- log(predp)]

x = predicted values, w = weighting values, y = experimental values, always 0 or 1
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Effect of Dataset Removal
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Figure S1: The deleterious effect of removing various reaction types from the training data (n=5).
The bars in the bar charts represent the average with gray dots representing the individual data
points (initializations with identical values are shown as a single point). Standard error bars shown.
Source data for each bar chart can be found in source data excel file.
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F-score and EKS Score Comparisons
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Figure S2: The comparisons of the best models', MPNNLsr (best model on retrospective test set)
and MPNNp4s0 (best model on P450-only test set) F-scores and normalized EKS scores at various
Binary Cross Entropy Loss weightings on the retrospective and P450-only test set respectively
(n=5). MPNN = message passing neural network. Notice that the normalized EKS scores show
more discernment in model performance between different weightings. Weight 2 for MPNNLsk
has a nearly identical F-score with weight 3, but EKS scores show a significant edge to weight 3.
The bars in the bar charts represent the average with gray dots representing the individual data
points (initializations with identical values are shown as a single point). Standard error bars shown.
Source data for each bar chart can be found in source data excel file.
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Normalized EKS Score vs F Score by Percent Incorrect Prediction on Retrospective Test Set

‘O EKS score
‘O F score
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-0.25

0 1 3 5 10
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Figure S3: Comparison of sensitivity of incorrect predictions between EKS score and F-score.
Analysis performed on the retrospective test set. Source data for each bar chart can be found in
source data excel file.
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Influence of Negative (No Rxn) Data
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Figure S4: The effect of removing datapoints that saw no reaction (n=5). The bars in the bar charts
represent the average with gray dots representing the individual data points (initializations with
identical values are shown as a single point). Standard error bars shown. Source data for each bar
chart can be found in source data excel file.
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Comparison of Models on Prospective
Validation
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0.375
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F-score
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QM-Augmented  MPNN_.sr Fukui
Model

Figure S5: Comparison of MPNNisr (best model on retrospective test set) to the Quantum
Mechanics-augmented message passing neural network (QM-augmented; molecular dynamics
simulations on atomic density representations) on the prospective test set (n=1).
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Figure S6: Representative molecules in the P450-only test set.
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Compound Characterizations:

Me
o H H
\N/ N N X
T
(0] P
N

s1
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

TH NMR (600 MHz, DMSO-ds): & 9.16 (s, 1H), 8.47 (d, J=2.9 Hz, 1H), 8.22 (s, 1H), 7.66 (d, J
= 5.1 Hz, 1H), 7.52 (t, J = 5.8 Hz, 1H), 6.18 (s, 1H), 4.34 (d, J = 5.7 Hz, 2H), 2.39 (s, 3H).

HRMS: calcd for Ci2Hi1F3N4O-H" ([M+H]) 301.0907, found 301.0917.

Me

—
N A
T
(o] ~
F.¢7 N
S2

Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

TH NMR (600 MHz, DMSO-dq): & 8.42 (d,J= 8.5 Hz, 1H), 8.36 (d,J=4.5 Hz, 1H), 8.20 (s, 1H),
7.65 (dd, J = 8.5, 4.5 Hz, 1H), 7.60 (t, J = 5.8 Hz, 1H), 6.17 (s, 1H), 4.33 (d, J = 5.7 Hz, 2H), 2.39
(s, 3H).

HRMS: calcd for Ci2H;1F3N4OH* ([M+H]) 301.0907, found 301.0907.

Me
= H H
O\N/ N\n/N X
(o] | =
N~ CF,
s3

Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

IH NMR (600 MHz, DMSO-de): 5 9.37 (s, 1H), 8.69 (d, J = 2.5 Hz, 1H), 8.17 (dd, J = 8.5, 2.5
Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.00 (t, J = 5.9 Hz, 1H), 6.17 (s, 1H), 4.33 (d, J = 5.8 Hz, 2H),
2.38 (s, 3H).

HRMS: calcd for Ci2Hi1F3N4O-H" ([M+H]) 301.0907, found 301.0914.

Me
= CF,H
o J__N_K
N A
Y
o P
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

TH NMR (600 MHz, DMSO-ds): & 8.96 (s, 1H), 8.43 (s, 1H), 8.41 (d, J= 5.0 Hz, 1H), 7.50 (d, J
= 5.0 Hz, 1H), 7.26 (t, J = 5.9 Hz, 1H), 7.12 (t, J = 54.4 Hz, 1H), 6.18 (s, 1H), 4.33 (d, /= 5.8 Hz,
2H), 2.39 (s, 3H).

HRMS: calcd for CioHi2F2N4O-H™ ([M+H]) 283.1001, found 283.1002.

)

Me
o _ H
HF,C”~ N

S5
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.
'"H NMR (600 MHz, DMSO-de): 8 8.33 (s, 1H), 8.32 — 8.29 (m, 2H), 7.51 (dd, J= 8.5, 4.6 Hz,
1H), 7.48 (t, /= 5.7 Hz, 1H), 7.00 (t, J = 53.8 Hz, 1H), 6.17 (s, 1H), 4.32 (d, /= 5.7 Hz, 2H),
2.39 (s, 3H).

HRMS: calcd for CioHi2F2N4O-H™ ([M+H]) 283.1001, found 283.1008.

Me
= H H
o
NP N N
N A
T CL

N~ CFH
S6

Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.
'"H NMR (600 MHz, DMSO-d¢): 8 9.19 (s, 1H), 8.64 (d, J=2.5 Hz, 1H), 8.08 (dd, /=8.7, 2.5
Hz, 1H), 7.58 (d, /= 8.6 Hz, 1H), 6.93 (t,J= 5.8 Hz, 1H), 6.85 (t, /= 55.3 Hz, 1H), 6.16 (s, 1H),
432 (d, J=5.7 Hz, 2H), 2.38 (s, 3H).

HRMS: calcd for CioHi2F2N4O-H™ ([M+H]) 283.1001, found 283.1003.

Me

oin g
N
N X
1)
c-Bu N
S7

Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

'H NMR (600 MHz, DMSO-dq): 3 8.19 (d, J= 4.3 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.80 (s,
1H), 7.19 (t, J = 5.8 Hz, 1H), 7.16 (dd, J = 8.2, 4.8 Hz, 1H), 6.17 (s, 1H), 4.31 (d, J= 5.7 Hz,
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2H), 3.76 (p, J = 8.5 Hz, 1H), 2.39 (s, 3H), 2.35 — 2.24 (m, 4H), 2.04 — 1.94 (m, 1H), 1.85 - 1.78
(m, 1H).

HRMS: calcd for CisHisN4OH' ([M+H]) 287.1503, found 287.1511.

S8
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

IH NMR (600 MHz, DMSO-de): 5 8.82 (s, 1H), 8.24 (s, 1H), 7.81 (s, 1H), 7.31 (s, 1H), 7.14 (t,
J=6.2Hz, 1H), 6.17 (s, 1H), 4.31 (d, J= 5.8 Hz, 2H), 3.61 (p, J = 9.0, 8.5 Hz, 1H), 2.39 (s, 3H),
2.39 —2.32 (m, 2H), 2.09 — 1.96 (m, 3H), 1.84 — 1.77 (m, 1H).

HRMS: calcd for Ci1sHisN4OH* ([M+H]) 287.1503, found 287.1506.

S9
Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

IH NMR (600 MHz, DMSO-dq): & 8.81 (s, 1H), 8.49 (s, 1H), 7.83 (d, J = 8.5 Hz, 1H), 7.16 (s,
1H), 6.76 (s, 1H), 6.15 (s, 1H), 4.30 (d, J = 5.9 Hz, 2H), 3.57 (p, J = 8.4, 7.9 Hz, 1H), 2.37 (s, 3H),
2.27 —2.19 (m, 4H), 2.00 — 1.93 (m, 1H), 1.86 — 1.78 (m, 1H).

HRMS: calcd for C1sHisN4OH* ([M+H]) 287.1503, found 287.1496.

N EtO
N (o]
() ) g
Z D)‘\N
H
(o]
S10

Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

IH NMR (600 MHz, DMSO-ds): 5 10.57 (s, 1H), 9.76 (s, 1H), 9.13 (d, J = 2.3 Hz, 1H), 8.81 (dd,
J=4.9,1.7 Hz, 1H), 8.31 (dt, J = 8.0, 2.0 Hz, 1H), 8.13 (s, 1H), 8.12 (d, J = 8.9 Hz, 1H), 8.01 (d,
J=82Hz, 1H), 7.69 (d, J= 7.9 Hz, 1H), 7.62 (dd, J= 8.1, 4.6 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H),
7.11 (d,J=8.4 Hz, 1H), 6.98 (t, J= 7.6 Hz, 1H), 4.11 (q, J= 7.0 Hz, 2H), 1.34 (t, J = 6.8 Hz, 3H).

HRMS: calcd for C2xHisF3N3OsH" ([M+H]) 430.1373, found 430.1366.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

IH NMR (600 MHz, DMSO-d): 5 10.90 (s, 1H), 9.64 (s, 1H), 9.15 (s, 1H), 8.81 (d, J = 4.8 Hz,
1H), 8.34 (dt, J= 8.1, 2.1 Hz, 1H), 8.13 (d, J= 2.2 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 7.85 (d, J =
8.7 Hz, 1H), 7.79 (d, J= 7.9 Hz, 1H), 7.62 (dd, J = 8.0, 4.7 Hz, 1H), 7.18 (t, J = 7.9 Hz, 1H), 7.09
(d, J=8.2 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 4.09 (q, J = 6.9 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H).

HRMS: calcd for C2xHisF3N3OsH™ ([M+H]) 430.1373, found 430.1375.

s12
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

TH NMR (600 MHz, DMSO-de): & 10.68 (s, 1H), 9.55 (s, 1H), 9.15 (d, J= 2.3 Hz, 1H), 8.79 (dd,
J=4.7,1.7 Hz, 1H), 8.41 (s, 1H), 8.34 (dt, J= 8.0, 2.0 Hz, 1H), 8.28 (d,J=2.4 Hz, 1H), 8.01 (dd,
J=8.0,2.2 Hz, 1H), 7.73 (d, J= 7.7 Hz, 1H), 7.60 (dd, J = 8.0, 4.8 Hz, 1H), 7.57 (t, J = 8.1 Hz,
1H), 7.54 (dd, J = 8.8, 2.8 Hz, 1H), 7.30 (d, J = 8.6 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 1.42 (t, J =
7.0 Hz, 3H).

HRMS: calcd for C2xHisF3N3OsH" ([M+H]) 430.1373, found 430.1369.

s13
Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

IH NMR (600 MHz, DMSO-d): 5 10.68 (s, 1H), 9.52 (s, 1H), 9.15 (s, 1H), 8.79 (d, J = 4.9 Hz,
1H), 8.42 (s, 1H), 8.34 (dt, J=8.1, 2.0 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 8.03 (dd, J = 8.0, 2.2 Hz,
1H), 7.73 (d,J= 7.7 Hz, 1H), 7.60 (dd, J = 8.0, 4.9 Hz, 1H), 7.57 (t, /= 7.9 Hz, 1H), 7.39 (s, 1H),
7.37(d,J=9.1 Hz, 1H), 4.24 (q, J = 6.9 Hz, 2H), 1.42 (t, J = 6.9 Hz, 3H).

HRMS: calcd for C2xHisF3N3OsH" ([M+H]) 430.1373, found 430.1373.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

IH NMR (600 MHz, DMSO-d): 5 10.85 (s, 1H), 9.35 (s, 1H), 9.28 (s, 1H), 8.61 (d, J = 8.0 Hz,
1H), 8.37 (s, 1H), 8.13 (d, J = 8.1 Hz, 1H), 8.01 (d, J= 7.8 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.74
(d,J=8.0 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.16 (t, J = 8.1 Hz, 1H), 7.10 (d, J= 8.2 Hz, 1H), 6.97
(t,J=7.7 Hz, 1H), 4.12 (q, J= 7.0 Hz, 2H), 1.38 (t, J = 6.7 Hz, 3H).

HRMS: calcd for C2xHisF3N3OsH' ([M+H]) 430.1373, found 430.1367.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.
'"H NMR (600 MHz, DMSO-dg): 6 10.87 (s, 1H), 9.33 (s, 1H), 8.85 (d, /= 4.7 Hz, 1H), 8.35 (s,
1H), 8.23 (d, J= 7.8 Hz, 1H), 7.92 - 7.87 (m, 2H), 7.75 (dd, J=7.9, 5.0 Hz, 1H), 7.73 (d, /= 7.8
Hz, 1H), 7.55 (t, /= 7.9 Hz, 1H), 7.22 (t, J = 53.9 Hz, 1H), 7.16 (t, /= 7.8 Hz, 1H), 7.10 (d, J =
8.2 Hz, 1H), 6.98 (t,J=7.6 Hz, 1H), 4.13 (q,J= 6.9 Hz, 2H), 1.39 (t, /= 6.9 Hz, 3H).

HRMS: calcd for C22H19F2N3O3H' ([M+H]) 412.1467, found 412.1472.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.
'"H NMR (600 MHz, DMSO-ds): 8 10.96 (s, 1H), 9.33 (s, 1H), 9.06 (s, 1H), 8.94 (d, J= 5.1 Hz,
1H), 8.37 (s, 1H), 7.93 — 7.88 (m, 2H), 7.78 (d, J= 5.1 Hz, 1H), 7.74 (d, J= 7.7 Hz, 1H), 7.56 (t,
J=79Hz, 1H), 7.42 (t,J = 54.6 Hz, 1H), 7.16 (t, J= 7.8 Hz, 1H), 7.11 (d, J = 8.1 Hz, 1H), 6.98
(t,J=7.6 Hz, 1H), 4.13 (q, /= 7.0 Hz, 2H), 1.39 (t, J= 6.9 Hz, 3H).

HRMS: calcd for C22Hi9F2N3O3H" ([M+H]) 412.1467, found 412.1473.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

TH NMR (600 MHz, DMSO-de): 5 10.78 (s, 1H), 9.35 (s, 1H), 9.23 (s, 1H), 8.53 (dd, /= 8.1, 2.3
Hz, 1H), 8.38 (s, 1H), 8.02 (d, /= 8.0 Hz, 1H), 7.91 (d, /= 8.1 Hz, 1H), 7.88 (d, /= 7.9 Hz, 1H),
7.74 (d, J = 7.7 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.11 (d, J = 8.3 Hz,
1H), 7.09 (t, J = 55.1 Hz, 1H), 6.98 (d, /= 7.6 Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 1.39 (t, /= 6.9
Hz, 3H).

HRMS: calcd for C22Hi9F2N3O3H" ([M+H]) 412.1467, found 412.1467.
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Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

TH NMR (600 MHz, DMSO-dq): 5 10.75 (s, 1H), 9.31 (s, 1H), 8.80 — 8.64 (m, 2H), 8.36 (s, 1H),
791 (d, J=7.9 Hz, 1H), 7.87 (dd, J = 8.0, 2.2 Hz, 1H), 7.71 (d, J= 7.7 Hz, 1H), 7.59 (d, J = 5.1
Hz, 1H), 7.54 (t, J = 7.9 Hz, 1H), 7.16 (td, J= 7.8, 1.7 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.98 (t,
J=17.5Hz, 1H), 4.13 (g, J = 6.9 Hz, 2H), 3.92 (p, J = 8.8 Hz, 1H), 2.34 — 2.25 (m, 2H), 2.22 —
2.11 (m, 2H), 2.05 — 1.93 (m, 1H), 1.84 — 1.75 (m, 1H), 1.39 (t, J = 7.0 Hz, 3H).

HRMS: calcd for C2sHasN3O3H' ([M+H]) 416.1969, found 416.1968.
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Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

TH NMR (600 MHz, DMSO-de): 5 10.66 (s, 1H), 9.31 (s, 1H), 8.70 (dd, J = 5.0, 1.7 Hz, 1H),
8.37 (s, 1H), 7.93 — 7.88 (m, 2H), 7.87 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.53 (t, J =
7.9 Hz, 1H), 7.40 (dd, J=7.7, 4.9 Hz, 1H), 7.16 (t, J= 7.2 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.98
(t, J=7.6 Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 3.98 (p, J = 8.6 Hz, 1H), 2.45 — 2.34 (m, 2H), 2.26 —
2.16 (m, 2H), 2.03 — 1.91 (m, 1H), 1.84 — 1.75 (m, 1H), 1.39 (t, J = 6.9 Hz, 3H).

HRMS: calcd for C2sH2sN3O3H' ([M+H]) 416.1969, found 416.1960.
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Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

IH NMR (600 MHz, DMSO-dq): & 10.62 (s, 1H), 9.33 (s, 1H), 9.12 (d, J = 2.3 Hz, 1H), 8.40 —
8.32 (m, 2H), 8.01 (dd, J = 8.1, 2.2 Hz, 1H), 7.89 (dd, J = 7.9, 1.6 Hz, 1H), 7.72 (d, J = 7.7 Hz,
1H), 7.60 — 7.50 (m, 2H), 7.16 (td, J = 7.8, 1.7 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.98 (t, J= 7.5
Hz, 1H), 4.13 (q, J = 6.9 Hz, 2H), 3.79 (p, J = 8.6 Hz, 1H), 2.41 — 2.28 (m, 4H), 2.11 — 2.00 (m,
1H), 1.94 — 1.85 (m, 1H), 1.39 (t, /= 7.0 Hz, 3H).

HRMS: calcd for CosHasN3;OsH™ ([M+H]) 416.1969, found 416.1971.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.
'"H NMR (600 MHz, DMSO-de): 5 11.01 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.30 — 7.21 (m, 5H),
5.16 (q,J=17.5,17.0 Hz, 2H), 5.05 (d, J = 16.5 Hz, 1H), 4.96 (d, /= 16.6 Hz, 1H), 3.46 (s, 3H),
3.23 (s, 3H), 2.92 (s, 3H).

HRMS: calcd for C2xH21F3NsOsH" ([M+H]) 535.1660, found 535.1666.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.
'"H NMR (600 MHz, DMSO-de): 5 11.07 (s, 1H), 7.99 (s, 1H), 7.73 (d, J= 8.1 Hz, 2H), 7.47 (d,
J=28.0 Hz, 2H), 5.23 (q, J = 17.7 Hz, 2H), 5.08 (d, J = 16.6 Hz, 1H), 4.95 (d, /= 16.6 Hz, 1H),
3.45 (s, 3H), 3.20 (s, 3H), 2.93 (s, 3H).

HRMS: calcd for C2xH21F3NsOsH™ ([M+H]) 535.1660, found 535.1655.
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Prepared according to General Minisci Functionalization with Baran Diversinates™ Procedure.

O

IH NMR (600 MHz, DMSO-de): 5 11.04 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.30 — 7.23 (m, SH),
7.12 (t,J = 51.7 Hz, 1H), 5.25 (s, 2H), 5.15 (g, J = 17.0 Hz, 2H), 3.46 (s, 3H), 3.22 (s, 3H), 2.92
(s, 3H).

HRMS: calcd for C2oH2F2NsOsH™ ([M+H]) 517.1754, found 517.1744.
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Prepared according to General Minisci Functionalization with Molander BF3K Salts Procedure.

IH NMR (600 MHz, DMSO-de): 5 11.02 (s, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 — 7.23 (m, 5H),
5.16 (s, 2H), 4.97 (d, J = 17.2 Hz, 1H), 4.85 (d, J = 17.0 Hz, 1H), 3.55 (p, J = 8.6 Hz, 1H), 3.46 (s,
3H),3.19 (s, 3H), 2.91 (s, 3H), 2.45 — 2.36 (m, 1H), 2.28 — 2.17 (m, 3H), 2.00 — 1.89 (m, 1H), 1.87
~1.79 (m, 1H).

HRMS: calcd for C2sHasNsOsH' ([M+H]) 521.2255, found 521.2263.
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Prepared according to Liver Microsomes and Recombinant CYP Enzyme Screen Procedure and
Biomimetic Metalloporphyrin Oxidation Screen Procedure.

IH NMR (600 MHz, DMSO-dq): & 8.42 — 8.36 (m, 1H), 7.88 — 7.76 (m, 1H), 7.32 — 7.19 (m,
3H), 7.14 — 7.07 (m, 1H), 6.11 — 5.55 (m, br, 1H), 5.19 = 5.17 (m, 1H), 4.08 — 4.00 (m, 2H), 3.70
—3.55 (m, 2H), 3.50 — 3.45 (m, 1H), 3.27 — 3.11 (m, 2H), 3.07 — 2.74 (m, 1H), 2.43 — 2.01 (m,
4H), 1.21 — 1.14 (m, 3H).
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HRMS: calcd for C2xH23CIN>OsH* ([M+H]) 399.1475, found 399.1474.
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Prepared according to Liver Microsomes and Recombinant CYP Enzyme Screen Procedure and
Biomimetic Metalloporphyrin Oxidation Screen Procedure.

IH NMR (600 MHz, DMSO-ds): 5 8.38 — 8.30 (m, 1H), 7.77 — 7.43 (m, 2H), 7.27 (d, J = 8.0 Hz,
1H), 7.23 = 7.17 (m, 1H), 7.13 — 7.06 (m, 1H), 5.29 — 4.56 (m, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.76
—3.56 (m, 2H), 3.50 — 3.33 (m, 1H), 3.27 — 3.12 (m, 2H), 3.06 — 2.73 (m, 1H), 2.46 — 2.35 (m,
1H), 2.28 — 2.16 (m, 2H), 2.14 — 1.99 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H).

HRMS: calcd for C2xH23CIN>OsH* ([M+H]) 399.1475, found 399.1475.
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Prepared according to Liver Microsomes and Recombinant CYP Enzyme Screen Procedure and
Biomimetic Metalloporphyrin Oxidation Screen Procedure.

IH NMR (600 MHz, DMSO-de): & 8.35 (d, J=4.7 Hz, 1H), 7.64 — 7.54 (m, 1H), 7.41 — 7.04 (m,
4H), 5.38 — 4.82 (m, 1H), 4.42 — 3.86 (m, 7H), 3.38 — 3.24 (m, 2H), 2.89 — 2.73 (m, 2H), 2.58 —
2.12 (m, 2H), 1.20 — 1.10 (m, 3H).

HRMS: calcd for C2xH23CIN>OsH* ([M+H]) 399.1475, found 399.1475.
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Prepared according to Biomimetic Metalloporphyrin Oxidation Screen Procedure.
TH NMR (600 MHz, DMSO-de): 5 7.90 (d, J=2.6 Hz, 1H), 7.29 (d, /= 2.3 Hz, 1H), 7.19 (dd, J
= 8.1, 2.3 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 6.93 (d, J = 2.7 Hz, 1H), 4.04 (q, J = 7.1 Hz, 2H),
3.65 —3.55 (m, 2H), 3.37 — 3.11 (m, 4H), 2.83 — 2.68 (m, 2H), 2.36 — 2.29 (m, 1H), 2.28 — 2.21
(m, 1H), 2.21 —2.10 (m, 2H), 1.17 (t, J=7.1 Hz, 3H)

HRMS: calcd for C2xH23CIN>OsH* ([M+H]) 399.1475, found 399.1478.
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Figure S7: 600 MHz 'H NMR spectrum for compound 6 in DMSO-ds. Green numbered atoms are atoms with a potential "H NMR signal. Green
numbered peaks are mapped to their corresponding atom number.
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Figure S8: 600 MHz 'H NMR spectrum for compound S1 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.

S28



1 ~110

Me
2 3 8 11 1 100
H H 13
40, _I5 N o N 12
N \n/ ) 15
7 6 | 90
o) 216
10 "F,c 14N
18 17 80
70
60
50
6
3 40
30
11
13 16 15
20
8
10

- - L. . JU U -—0

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
135 130 125 120 15 110 105 100 95 90 85 80 75 7.0 6.5 6.0 55 5.0 45 40 35 3.0 25 2.0 15 1.0 05 00 -05
1 (ppm)

Figure S9: 600 MHz 'H NMR spectrum for compound S2 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S10: 600 MHz '"H NMR spectrum for compound S3 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.

Green numbered peaks are mapped to their corresponding atom number.
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Figure S11: 600 MHz 'H NMR spectrum for compound S4 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.

Green numbered peaks are mapped to their corresponding atom number.

S31



170
1
160
150
140

~130

120
110

100

11,16, 13

18
15,8

I L I JL_J

T

100
T
iR
o

296—
| 205

. . . . . . . . . . . . . S e e E B . e S B e S e
135 130 125 120 15 110 105 100 95 90 85 80 75 7.0 6.5 6.0 55 5.0 45 40 35 3.0 25 2.0 15 1.0 05 00 -05
1 (ppm)

Figure S12: 600 MHz '"H NMR spectrum for compound S5 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S13: 600 MHz '"H NMR spectrum for compound S6 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S14: 600 MHz '"H NMR spectrum for compound S7 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S15: 600 MHz '"H NMR spectrum for compound S8 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S16: 600 MHz '"H NMR spectrum for compound S9 in DMSO-ds. Green numbered atoms are atoms with a potential '"H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S17: 600 MHz '"H NMR spectrum for compound 7 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S18: 600 MHz '"H NMR spectrum for compound S10 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
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Green numbered peaks are mapped to their corresponding atom number.
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Figure S19: 600 MHz '"H NMR spectrum for compound S11 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S20: 600 MHz '"H NMR spectrum for compound S12 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S21: 600 MHz '"H NMR spectrum for compound S13 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S22: 600 MHz '"H NMR spectrum for compound S14 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.

Green numbered peaks are mapped to their corresponding atom number.
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Figure S23: 600 MHz '"H NMR spectrum for compound S15 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S24: 600 MHz '"H NMR spectrum for compound S16 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S25: 600 MHz '"H NMR spectrum for compound S17 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S26: 600 MHz '"H NMR spectrum for compound S18 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S27: 600 MHz '"H NMR spectrum for compound S19 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S28: 600 MHz '"H NMR spectrum for compound S20 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S29: 600 MHz '"H NMR spectrum for compound 8 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.

S49



2
10 14 H 15 35 250
N3
12 *__N /GN n 20N / N27
13 7 45 17
N1|;|2 Me 28 200
33
31 33
21 150
100
9,
13,
11
10,
2 12 50
7,19
5 " i

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
135 130 125 120 15 110 105 100 95 90 85 80 75 7.0 6.5 6.0 55 5.0 45 40 35 3.0 25 2.0 15 1.0 05 00 -05
1 (ppm)

Figure S30: 600 MHz '"H NMR spectrum for compound S21 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S31: 600 MHz '"H NMR spectrum for compound S22 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S32: 600 MHz '"H NMR spectrum for compound S23 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S33: 600 MHz '"H NMR spectrum for compound S24 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S34: 600 MHz '"H NMR spectrum for compound S25 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.

S54



7500

7000

6500

6000

5500

5000

4500

27

4000

3500

1 3000
15

2500

26 2000

13
6 17'18 1500

20
1000

500
L_J\__O

~-500

1.00 =
0.29 =

TR
o o
N —

1.36

| 209
1.06
3.85—=

T T T T T T T T T T T T T
7.5 7.0 6.5 6.0 55 5.0 45
1 (ppm)

Figure S35: 600 MHz '"H NMR spectrum for compound S26 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S36: 600 MHz '"H NMR spectrum for compound S27 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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Figure S37: 600 MHz '"H NMR spectrum for compound S28 in DMSO-ds. Green numbered atoms are atoms with a potential 'H NMR signal.
Green numbered peaks are mapped to their corresponding atom number.
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