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S1 Supplementary methods, tables and figures

In Supplementary Table 1, a comprehensive enumeration of the datasets employed for the purposes of training and
evaluating the model is provided. This tabulation offers a detailed overview of the specific datasets utilized in the
model’s development and subsequent testing phase, allowing for an understanding of the data sources that contributed
to the model’s performance.

Supplementary Tables 2 and 3 present the neural network architecture for the XAI-AGE model and the fully-connected
dense neural network model, respectively. These tables elucidate the structural components of each model, providing a
clear depiction of their respective configurations, input and output parameter counts of each layer.
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Supplementary table S1: List of the datasets used for the training and testing of the model.

Study ID Tissue Sample count
TCGA-PCPG Adrenal Gland 3
TCGA-CHOL Bile Duct 9
TCGA-BLCA Bladder 21
GSE27317 Blood Cord 168
GSE34257 Blood Cord 84
GSE36642 Blood Cord 53
GSE36812 Blood Cord 48
GSE27097 Blood PBMC 386
GSE30870 Blood PBMC 38
GSE32149 Blood PBMC 46
GSE36064 Blood PBMC 78
GSE20067 Blood WB 188
GSE20236 Blood WB 93
GSE40279 Blood WB 656
GSE41037 Blood WB 716
GSE41169 Blood WB 95
GSE42861 Blood WB 689
GSE19711 Blood WB 534
TCGA-GBM Brain 1
GSE38873 Brain CRBLM 168
GSE15745 Brain CRBLM, Brain FCTX, Brain PONS, Brain TCTX 498
GSE41826 BrainVariousCells 145
TCGA-BRCA Breast 122
GSE32393 Breast NL 23
GSE25892 Buccal 109
GSE42700 Buccal 53
TCGA-CESC Cervix 3
GSE32146 Colon 24
TCGA-COAD Colorectal 75
TCGA-READ Colorectal 12
GSE22595 Dermal fibroblast 14
TCGA-ESCA Esophagus 16
GSE38291 Fat Adip, Muscle 30
TCGA-HNSC Head and Neck 50
TCGA-KIRC Kidney 356
TCGA-KIRP Kidney 50
TCGA-LIHC Liver 49
TCGA-LUAD Lung 54
TCGA-LUSC Lung 69
GSE17448 MSC (bonemarrow) 16
TCGA-OV Ovary 4
TCGA-PAAD Pancreas 10
GSE36642 Placenta 28
GSE44667 Placenta 40
TCGA-PRAD Prostate 50
GSE28746 Saliva 69
GSE34035 Saliva 183
TCGA-SKCM Skin 2
TCGA-SARC Soft Tissue 4
TCGA-STAD Stomach 27
TCGA-THYM Thymus 2
TCGA-THCA Thyroid 56
GSE30758 Uterine Cervix 151
TCGA-UCEC Uterus 35
GSE36166 various tissues 44
GSE165180 fibroblasts 96
GSE210245 whole blood 36
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Supplementary table S2: The artificial neural network architecture of the XAI-AGE model. Total parameters: 101645

Layer name Type Output shape Number of parameters Connected to
inputs InputLayer 15591 0
h0 Diagonal 15591 31182 inputs
dropout_0 Dropout 15591 0 h0
h1 Dense 1387 47046 dropout_0
dropout_1 Dropout 1387 0 h1
h2 Dense 1066 2462 dropout_1
dropout_2 Dropout 1066 0 h2
h3 Dense 447 1517 dropout_2
dropout_3 Dropout 447 0 h3
h4 Dense 147 594 dropout_3
dropout_4 Dropout 147 0 h4
h5 Dense 26 174 dropout_4
o_linear1 Dense 1 15592 h0
o_linear2 Dense 1 1388 h1
o_linear3 Dense 1 1067 h2
o_linear4 Dense 1 448 h3
o_linear5 Dense 1 148 h4
o_linear6 Dense 1 27 h5
o1 Activation 1 0 o_linear1
o2 Activation 1 0 o_linear2
o3 Activation 1 0 o_linear3
o4 Activation 1 0 o_linear4
o5 Activation 1 0 o_linear5
o6 Activation 1 0 o_linear6

Supplementary table S3: The artificial neural network architecture of the fully connected dense model. Total parameters:
23702217

Layer name Type Output shape Number of parameters Connected to
inputs InputLayer 15591 0
h0 Diagonal 15591 31182 inputs
dropout_0 Dropout 15591 0 h0
h1 Dense 1387 21626104 dropout_0
dropout_1 Dropout 1387 0 h1
h2 Dense 1066 1479608 dropout_1
dropout_2 Dropout 1066 0 h2
h3 Dense 447 476949 dropout_2
dropout_3 Dropout 447 0 h3
h4 Dense 147 65856 dropout_3
dropout_4 Dropout 147 0 h4
h5 Dense 26 3848 dropout_4
o_linear1 Dense 1 15592 h0
o_linear2 Dense 1 1388 h1
o_linear3 Dense 1 1067 h2
o_linear4 Dense 1 448 h3
o_linear5 Dense 1 148 h4
o_linear6 Dense 1 27 h5
o1 Activation 1 0 o_linear1
o2 Activation 1 0 o_linear2
o3 Activation 1 0 o_linear3
o4 Activation 1 0 o_linear4
o5 Activation 1 0 o_linear5
o6 Activation 1 0 o_linear6
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S1.0.1 XAI-AGE design and training

Similarly as first introduced by the P-NET architecture [1], the first layer of XAI-AGE is connected to the second layer
by a set of one-to-one connections, and each node in the second layer is connected to exactly as many nodes of the input
layer as many CpG-s were annotated for a given gene using the minfi R package [2] and each input-node represents a
different beta value for a specific CpG site. CpG sites which were not mapped to any genes were discarded. The output
of each layer is determined as

y = f [(M ∗W )TX]

, where f represents the activation function, M represents the mask matrix derived from the Reactome DB, W represents
the weights matrix, X represents the input matrix, b represents the bias vector, and ∗ represents the Hadamard product.
The f activation function is chosed to be the tanh function to keep the activation values in the [−1, 1] range, and the
outcome nodes have a linear activation.

To allow each hidden layer to be useful on its own, a predictive layer with sigmoid activation was added after each
hidden layer, and the weighted average was determined for the final prediction. The model was trained to minimize the
mean squared error between the chronological age and the predicted age by the neural network.

The learning rate was initialized at 0.001 and actively decreased after every 250 epochs to facilitate smooth convergence,
and the Adam optimizer was used to train the model.

During the inference, the DeepLIFT method was chosen to rank the features in all the layers of the neural network.
DeepLIFT is a backpropagation-based attribution method that assigns a significance value at the sample level to each
feature [3]. The objective of this method is to award scores to each node in each layer, which is realized by calculating
an importance score for each node on based on the difference in between the target activation t and a reference value t0
such that the difference equals the aggregate of the calculated scores for all nodes. As suggested by Elmarakeby et
al. [1], we modified the DeepLIFT scores using a graph-informed function that takes each node’s connectedness into
account. To obtain an aggregated importance score on the samples to compare between tissues and age groups, the
arithmetic average was calculated.

For the training of the elastic net model which is served as a baseline and has a similar methodology as the Horvath
clock, we used the ElasticNet function from the glmnet package [4], with default parameters. The algorithm returned
683 non-zero weights.

We also trained a fully-connected dense model with the same number of nodes as the sparse XAI-AGE model, while
still keeping the first layer sparse, since a dense network having an equal quantity of nodes would possess over 200
million weights, where the weights would be concentrated mostly in the first layer. This newly trained, fully-connected
dense model with sparse first layer contained more than 200 times more parameters, since all the nodes are connected
to all the others between two consecutive layers.

S1.0.2 Data pre-processing

The data for training and evaluating the XAI-AGE model were obtained from public repositories from the Gene
Expression Omnibus [5] database and from the The Cancer Genome Atlas Program official repository [6]. For both
models the beta values were used as the input, and the chronological age from the metadata as the target variable, which
was transformed by the same logarithmic function as described in [7]. For the pan-tissue dataset, we splitted each
cohort to 75% training and 25% testing set, and aggregated the two together to obtain the final training and test set. For
the fibroblast transient reprograming data we simply used the trained models on the pan-tissue dataset, and calculated
the predicted age for each cells.
As a metric to evaluate the test data, the Pearson correlation coefficient and the median absolute error (MAE) were used,
where the MAE is defined as for n samples:

MAE(y, ŷ) = median (|y1 − ŷ1| , ..., |yn − ŷn|)

S1.0.3 Obtaining the importance scores for interpreting the network

The importance scores were calculated on the sample level for all test samples in the pan-tissue dataset, for all cells
in the cell reprogramming cohort and for all cases in the umbilical cord plasma concentrate analysis. In the first set,
the importance scores for all samples independently from each other were calculated. Next, the samples were ordered
by their respective chronological age, and the top 3 largest positively, and top 3 largest negatively changing features
given their z-score transformed importance scores were extracted from each layer of the network. This was done by
calculating the difference of the standardized importance scores at the beginning of the time series and at the end, and
the features having the largest differences were selected. These selected features were then aggregated by their median
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if they assigned to the same chronological age and then plotted and analyzed in the function of the chronological age.
For the reprogramming dataset, the cells were grouped together either by the days since the reprogramming began,
and if they were successfully reprogrammed, failed, or belong to the control group. The examination of the important
features were done similarly as in the first cohort, but this time the days since the initiation of the reprogramming was
considered instead of the chronological age, and the comparison was done between the grouping as described above,
aggregating the samples by median for the three individuals.
Lastly, the same method was applied for the umbilical cord plasma concentrate dataset, but instead of time, only the pre
and post treatment groups were compared to each other and the top three features were analyzed given their importance
score, in both positive and negative trend.

S1.0.4 Statistical analysis and R packages

The XAI-AGE framework was developed using Python 2.8 and Tensorflow. Using the Plotly python package, the
Sankey-plots were rendered. The ggplot2 and ggpubr programs were utilized for plotting and R was used for statistical
analysis to produce correlation coefficients, MAE, and t-tests.

S1.1 Supplementary figures

In Supplementary Figure 1, the outcomes of five-fold cross-validation experiments are presented with the intent of
approximating the error rate and the efficacy of three distinct models: the XAI-AGE model, the elastic net model, and
the fully connected dense neural network model. This estimation process allows for a comprehensive evaluation of each
model’s performance.

Supplementary Figure 2 displays a scatter plot that demonstrates the estimated biological age as determined by the
XAI age model. This visualization encompasses various tissues found within the pan-tissue dataset, elucidating the
distribution of estimated biological ages across these distinct tissue types.

Supplementary Figures 3 through 7 illustrate the standardized importance scores over the chronological age within the
test set of the pan-tissue dataset. Each figure showcases only one layer of the network. On the left side, the top three
decreasing features are displayed, whereas the right side presents the top three increasing features, spanning from the
inception of the dataset to the maximum age contained therein.

Turning to Supplementary Figures 8 through 12, these images depict the standardized importance scores throughout the
days measured, commencing from the initiation of the fibroblast reprogramming experiment. Each figure highlights
one layer of the network at a time, while simultaneously exhibiting the six features that exhibit the most considerable
differences.

In Supplementary Figure 13, the age acceleration predictions generated by the XAI-AGE model are portrayed within
the context of the umbilical cord plasma transfusion dataset. This representation allows for an assessment of the model’s
ability to predict age acceleration based on the available data.

Finally, Supplementary Figures 14 through 19 display the six features that contribute either the largest disparities
between post-treatment and pre-treatment groups or the most significant differences between pre-treatment and post-
treatment within the umbilical cord plasma transfusion dataset. This visualization enables an examination of the impact
of these specific features on the overall results.
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Supplementary figure S1: Results of five-fold cross-validation experiments to estimate the error rate and performance
of the models. Comparison of Mean Absolute Error (MAE) between XAI-AGE, Elastic Net models and the fully
connected dense neural network with sparse first layer models. The MAE for XAI-AGE was significantly lower than
that of the Elastic Net model (Mann-Whitney U test, p-value = 0.028). The dense fully connected neural network
architecture demonstrated superior performance compared to both models.
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Supplementary figure S2: Predicted age for different tissues. The scatter plot of the estimated biological age obtained
using XAI age is shown for the different tissues appearing in the pan-tissue dataset in separate panels, where the tissue
type is indicated in the panel title.
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Supplementary figure S3: Visualizing the standardized importance scores across the chronological age on the test set of
the pan-tissue dataset, showing only the fifth layer of the network. On the left the top 3 decreasing features, on the right
the top 3 increasing features across the time from year zero, to the maximum age of the dataset are shown.
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Supplementary figure S4: Visualizing the standardized importance scores across the chronological age on the test set of
the pan-tissue dataset, showing only the fourth layer of the network. On the left the top 3 decreasing features, on the
right the top 3 increasing features across the time from year zero, to the maximum age of the dataset are shown.
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Supplementary figure S5: Visualizing the standardized importance scores across the chronological age on the test set of
the pan-tissue dataset, showing only the third layer of the network. On the left the top 3 decreasing features, on the right
the top 3 increasing features across the time from year zero, to the maximum age of the dataset are shown.
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Supplementary figure S6: Visualizing the standardized importance scores across the chronological age on the test set of
the pan-tissue dataset, showing only the second layer of the network. On the left the top 3 decreasing features, on the
right the top 3 increasing features across the time from year zero, to the maximum age of the dataset are shown.
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Supplementary figure S7: Visualizing the standardized importance scores across the chronological age on the test set of
the pan-tissue dataset, showing only the first layer of the network. On the left the top 3 decreasing features, on the right
the top 3 increasing features across the time from year zero, to the maximum age of the dataset are shown.
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Supplementary figure S8: Visualizing the standardized importance scores across the days measured from the start of the
reprogramming, showing only the fifth layer of the network and the most different six features between the negative
control, or failed to reprogram group (left) compared to the transiently reprogrammed group (right).
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Supplementary figure S9: Visualizing the standardized importance scores across the days measured from the start of the
reprogramming, showing only the fourth layer of the network and the most different six features between the negative
control, or failed to reprogram group (left) compared to the transiently reprogrammed group (right).

14



Supplementary figure S10: Visualizing the standardized importance scores across the days measured from the start of
the reprogramming, showing only the third layer of the network and the most different six features between the negative
control, or failed to reprogram group (left) compared to the transiently reprogrammed group (right).
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Supplementary figure S11: Visualizing the standardized importance scores across the days measured from the start
of the reprogramming, showing only the second layer of the network and the most different six features between the
negative control, or failed to reprogram group (left) compared to the transiently reprogrammed group (right).
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Supplementary figure S12: Visualizing the standardized importance scores across the days measured from the start of
the reprogramming, showing only the first layer of the network and the most different six features between the negative
control, or failed to reprogram group (left) compared to the transiently reprogrammed group (right).
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Supplementary figure S13: Box plots (A-B) showing the age acceleration predicted age by XAI-AGE in the umblical
cord plasma transfusion dataset. No significant effects were observed between the pre-treatment and post-treatment
groups. Scatter plot (C) showing the correlation between the predicted age by XAI-AGE and chronological age in the
umblical cord plasma transfusion dataset.
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Supplementary figure S14: The six features which either make the largest difference between post-treatment and
pre-treatment groups (first three features on the plot), or the largest differences, but between pre-treatment and post-
treatment (last three on the plot) in the umbilical cord plasma transfusion dataset from the last layer of the network. No
significant effects were observed between the pre-treatment and post-treatment groups.
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Supplementary figure S15: The six features which either make the largest difference between post-treatment and
pre-treatment groups (first three features on the plot), or the largest differences, but between pre-treatment and post-
treatment (last three on the plot) in the umbilical cord plasma transfusion dataset from the fifth layer of the network. No
significant effects were observed between the pre-treatment and post-treatment groups.
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Supplementary figure S16: The six features which either make the largest difference between post-treatment and
pre-treatment groups (first three features on the plot), or the largest differences, but between pre-treatment and post-
treatment (last three on the plot) in the umbilical cord plasma transfusion dataset from the fourth layer of the network.
No significant effects were observed between the pre-treatment and post-treatment groups.
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Supplementary figure S17: The six features which either make the largest difference between post-treatment and
pre-treatment groups (first three features on the plot), or the largest differences, but between pre-treatment and post-
treatment (last three on the plot) in the umbilical cord plasma transfusion dataset from the third layer of the network.
No significant effects were observed between the pre-treatment and post-treatment groups.
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Supplementary figure S18: The six features which either make the largest difference between post-treatment and
pre-treatment groups (first three features on the plot), or the largest differences, but between pre-treatment and post-
treatment (last three on the plot) in the umbilical cord plasma transfusion dataset from the second layer of the network.
No significant effects were observed between the pre-treatment and post-treatment groups.
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Supplementary figure S19: The six features which either make the largest difference between post-treatment and
pre-treatment groups (first three features on the plot), or the largest differences, but between pre-treatment and post-
treatment (last three on the plot) in the umbilical cord plasma transfusion dataset from the first layer of the network. No
significant effects were observed between the pre-treatment and post-treatment groups.
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