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1. We begin by listing some standard definitions in the theory of proba-
bility. A probability space is a set Q of elements w together with a o-field 7
of subsets of 2 on which is defined a completely additive measure P such
that P(2) = 1. A real-valued P-measurable function X = X(w) is a
random variable, and the function F(x) = P{X < x|, where { } de-
notes the set of all w such that the relation within the braces holds, is the
distribution function of X. The.sets of a sequence 4i, 4,, ... are inde-

n
pendent if for every finite set 4;, ..., 4, of distinct integers, P(II4;) =
: r=1

n
TIP(A;,), and the random variables of a sequence X;, X», ... are inde-

r=1
pendent if, for every sequence x;, x3, ... of real numbers, the sets {Xl <
xl}, {Xz < xz}, ... are independent. ’

For purposes of comparison we list the following modes in which a
sequence

X1, X, ... 1

of random variables defined on £ may converge to 0.
(7) The sequence (1) converges to 0 in probability if for every ¢ > 0,

lim P{|X,|> ¢} = 0.
N=—>x
(#5) The sequence (1) converges to 0 with probability 1 if for every e > 0,
lim P{{|X,|> ¢} + {|Xps1]> ¢} + ...} 0.

1t is easily seen that this is equivalent to the usual condition, P {lim X, =

Nn=> 00

0} = 1, and that (¢2) implies (z) but not conversely.
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2. We shall be concerned with a third mode of convergence, which, for
want of a better name, we call complete.
(#91) The sequence (1) converges to 0 completely if for every ¢ > 0,

lim [P{|X,|> ¢} + P{|X,s1]> ¢} + ...]1 = 0.
Clearly, (¢42) implies (#¢). The example: £ = unit interval 0 < w <1,
1
P = Lebesgue measure, X, = 1for0 <w < - and 0 otherwise, shows that

(#6).does not imply (447).

Let us call two sequences of random variables X3, X, ... and 3, Yy, .. .,
defined, respectively, on probability spaces @ and Qi, F-equivalent, if for
every n the distribution function of Y, is identical with that of X,. Defi-
nitions (¢) and (¢4%) are invariant under F-equivalence, while (#2) is not.
However, a sequence X1, Xo, ... of random variables converges to 0 com-
pletely if and only if every F-equivalent sequence converges to 0 with proba-
bility 1. The necessity is obvious; to prove sufficiently consider a sequence
Vi, Yo, ... of independent random variables F-equivalent to the given
sequence. If the sequence Y), Vs, ... converges to 0 with probability 1
then for any e > 0, P{lim sup{|Y,|> ¢}} = 0. Since the sets {|¥| >

n—>o

¢} are independent, it follows from a theorem of Borel-Cantelli! that
YP{|V,]> ¢} = ZP{|X,]|> ¢} <.
n=1 n=1

It follows from this proof that if X1, X,, ... is a sequence of independent
random variables, then definitions (#%) and (#42) are equivalent.

3. Let the random variables X, in (1) be independent with the same
distribution function F(x) = P{X . < x} and such that the expectation
E(X,) = J wxdF(x) = 0. The strong law of large numbers for identically
distributed random variables states that the sequence of random variables
Yy, Vs, ..., where for each n

Yn=(Xl+---+Xn)/n (2)
converges to 0 with probability 1. We shall show in Theorems 1 and 2
that under the same hypotheses the sequence (2) need not converge to 0
completely, but that it will do so under the further hypothesis that /- %,x%d
F(x) < .

4. THEOREM 1. Let (1) be a sequence of independent random variables
with the same distribution function F(x) and such that

%xdF(x) =0, o2 = Jx¥WF(x) < », 3)
Then the sequence (2) converges to 0 completely; i.e., the series
"gl],{lynl> ‘} 4)

converges for every ¢ > 0.
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* Proof. We shall prove the theorem for ¢ = 2. This is no restriction
. L 2.
since we can always consider -X, instead of X,. Moreover, we may assume
€

that ¢2> 0.

Let f(t) = S €dF(x) be the characteristic function of tile distribution
F(x). From (3) it follows that constants a, ', a” exist such that
[1-fO|<ett, |FO|L et [fOI<La”  ©)

Choose and fix a positive § so small that for Itl <45 the following condi-
tions (6) and (7) are satisfied:

| | sin /2| > Bt, l(lr - f(t))zl— 4(1 — f(?)) sin?1/5t + 4 sin?/ot| > Ct2, (6)
where B and C are constants, ' :
[fOl %1  exceptatt =0. )

Let Z be a random variable distributed with the density 3(27) x4
sin4 x and hence the characteristic function :

1 — 3/gt2 + s/azltla 2"
® 1/32(4 — [, 2 4, ®)
4

t
¢
t

TIAIA

AIA

We regard Z as independent of ¥, and use addition in this sense. Since
Y, Z > 1} P Z > 1} =
"t e + nd -
Z V4 zZ
rflil =1} = el )= o wer{fG
and since ‘

ES(EIESVETS WS D AL

it is sufficient to prove that
N-1 VA Z .
AESIFTERS SRR A-TER IEL CC

where 0(1) always denotes a quantity bounded with respect to N.

P{| 7| >.2} < P{

! ¢ z
The characteristic function f” (;) @ (;;s) of YV, + s vanishes for ||

> 4nd; hence by a well-known inversion formula,*
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2o} =L () (5) -
1S o (3) e

P{“Z‘lsl}=’ ()smntlt
né T

Hence, by subtraction the left side of (9) is equal to

17 l«,(‘)NZI (1 — f"(¢)) sin nt dt = }rAN, say.  (10)

T —43 t 8/ a1
From now on we write f for f(£). Direct computation gives the result

(1 — f)?sin }/yNt sin 1/o(N — 1)¢

N-1 !
> (1 —fYsinnt =

b - q(t) sin Y/t
" (1—f)sint 4(1 — f)sin 1/ot-sin 1/oNt sin 1/o(N — 1)¢
' q() q(®)
+ (A= f)fVsin Nt 201 — f +) sin /st cos (N — /)t
q(®) . q® '
(11)
where '

@ = (f—eNf-e™) =01~ f)2 = 4(1 — f) sin® /ot +
4 sin? 1/ot. (12)

By (6) we have |g(t)| > Ct2, |q(t) sin !/at| > C’|t|?, where Cand C’ are con-
stants. Hence when (11) is substituted into (10) and the first inequality of
(5) is used, we see that the first three terms merely contribute 0(1). Conse-
quently,

4 (N1 — ¥ sin Nt — 201 — %+ ) sin V/at cos (N — Vo)t
Ay = :{;‘P(s) P10) dt
+ 0(1). (13)

For § < |¢| < 45 we have, by (7), | f| # 1, henceg(t) = |f — €*|2> (1 —
|f)? > a> 0. Therefore the part of the integral in (13) extended over the
range § < [t] < 45is 0(1), so that (13) holds with 44 replaced by éin the two
3le[?
limits of integration. For |¢| < 8, however, «p( 8) 1— 88’ 3 4+ T
terms with ¢% and It[ 3 are easily seen to contribute 0(1). Hence,

——, and the
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_ A=Y sin N — 20— f7 ) sin Yt cos NV = o)ty
s

tq()
+ 0(1). (14)
Since - '
Ll _|e—-q0 #_k
tg(t) ~ t’q(t) SRR =

where % is a constant, the replacement of ig(f) by #3 in (14) will make a
difference of only 0(1), so that

Ay = f"(l — f)f¥ sin Nt _ sz(l — f¥ * Yy sin 1/5¢ cos (N — f/,)tdt

s 3 =5 3

+ 0(1).. ' ' ‘ . (15)

Let the two mtegrals in (15) be denoted by Iy and J ~, respectively. We
have

N N N g '
1%"/,; f)f 222 d(sin? 1/,Nt) = 0(1) +N‘f {3(1 #ﬁf +f ;f

_ NfY - :(81 - Nf '}smz 1 /gNtdt

Using the first two inequalities of (5) we obtain the result

x| < 0(1) + (6a + 2a) J* S/

N dt+2f| foIdt"'O(l)

1]
since the mtegral involving N is independent of N.

To deal with Jy we observe first that in Jy, sin !/, may be replaced by
1/stand f¥ + 1by f 7, the difference thus made being 0(1). Hence

JN —_ ‘/“(1 _fN) cos (N - 1/2)tdt + 0(1) —

! 2

J I o OV = gy o oy,

We may replace cos (N = 1/)tby cos Nt, since

2L

(cos (N — 1/5)t — cos Nt)dt = 1—1r _f: a- f")%ﬁ

___(N‘ [0ty P{lUI SN =1/ = P{{U+ NYy| S N =4}
| = 0(1),
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where U is a random variable independent of ¥y and whose characteristic
function is 4/t sin 1/¢. Hence
mf2a —fY
S { =57

N2 e 8

fN
Jn = 0(1) + f dsin Nt = 0(1) + —
‘ + gftz—_lf,}d sin? 1/,

® _ ¢N N —-1g _ N -2
- 0(1) +]\72_‘/‘“.{(5(11,3’ )+-4th3 f NN 1;2]' f
— w} sin? 1/, Nidt.

Using all the inequalities (5) we have

[Tx]l <0(1) + (12a + 82’ + 22") S S‘nNt/zthdt

© | grla
+2 /- o)
The proof is now complete.

5. By following the essential steps of the proof of Theorem 1 we obtain
the following theorem, the proof of which is omitted from the present
communication. :

THEOREM 2. If instead of conditions (3) we have

S xdF@) =0, S |xf'dFE) < », J ©dFE) = o (16)

where a is some constant such that %(1 + 5Y ") < a <2, then the series (4)

diverges for every ¢ > 0. (Example: Let X, be distributed with the
density [x|=3 for |x| > 1 and 0 elsewhere.)

Since the finiteness of the second integral in (16) wquld seem rather to
favor than to oppose the convergence of (4), it may be conjectured that
given the first condition of (3), the finiteness of 2 is not only sufficient but
also necessary for the convergence of (4). We have not been able to prove
this.

6. "The following generalization? of the strong law of large numbers is an
immediate consequence of Theorem 1 and the remarks in section 2.

Tueorem 3. Let X (n =1,2,...; r =1 ..., n) be an array of
random variables 'with the same distribution function F(x) and such that (1)

f xdF(x) = 0, f x2dF(x) < », and (2) for each n the random variables

X (”) cn X are mdependent Then the sequence of random variables Y,
Y, ..., where foreachn, ¥, = (X® + ... + X" /n, converges to 0 with
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probability 1. (Note that we do not assume any relation of dependence or
independence between X and X for m # n.)

! See M. Fréchet, Recherches theoriques modernes, Vol. 1, Paris, 1937, p. 27.

2 See H. Cramér, Mathematical methods of statistics, Princeton, 1946, p. 93.

3 Compare F. P. Cantelli, Considerazioni sulla legge uniforme dei grandi numeri ecc.,
Giornale dell 'Istituto Italiano degli Attuari, IV (1933), pp. 331-332; also H. Cramér,
Su un theorema relativo alla leggi uniforme dei grandi numeri, Ibid., V (1934), pp. 1-18.

GREEN'S FUNCTIONS FOR LINEAR DIFFERENTIAL SYSTEMS
' OF INFINITE ORDER

By D. V. WippER

In these PROCEEDINGS! the author sketched a theory whereby a special
differential equation of infinite order

sin =D

y(x) = o(x) )

™
could be solved by use of a Green’s function. The operator on the left of
this equation is interpreted to mean

. D? ; D?
,}ﬂD(l - 1—2> (1 - ;?) y(x),

where D is the operation of differentiation with respect to x. In preparing
the details of this theory the author discovered that much more general
differential equations could be treated by the same method. It is the pur-
pose of the present note to outline this more general theory.

We define an entire function E(s) as follows:

Es=sn<1——>,’ 2
) k=1 a,?
where the constants g, are real and such that
0<m<a<.... (3)

1

— < ®. 4)

A

k=1

Consider now the differential system

ED)y(x) = o) ©)



