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1. We begin by listing some standard definitions in the theory of proba-
bility. A probability space is a set Q of elements co together with a a-field m
of subsets of Q on which is defined a completely additive measure P such
that P(Q) = 1. A real-valued P-measurable function X = X(w) is a
random variable, and the function F(x) = P{X < x }, where } de-
notes the set of all co such that the relation within the braces holds, is the
distribution function of X. The. sets of a sequence A1, A2, ... are inde-

n
pendent if for every finite set is, ..., in of distinct integers, P(IAjr) =

r=l
n

HP(Ai,), and the random variables of a sequence X1, X2, ... are inde-
r-1

pendent if, for every sequence xi, x2, ... of real numbers, the sets X1 <
xI }, {X2 . x2 }, . . . are independent.
For purposes of comparison we list the following modes in which a

sequence

Xl, X2, *.. (1)
of random variables defined on Q may converge to 0.

(i) The sequence (1) converges to 0 in probability if for every e > 0,

limPtIlXl>E} = 0.

(ii) The sequence (1) converges to 0 with probability 1 if for every e> 0,
lim Pt I lXnl > i} + I jXn+11 > e} + . ..)} .

It is easily seen that this is equivalent to the usual condition, P{ lim X, =

01 = 1, and that (ii) implies (i) but not conversely.



MATHEMA TICS: HSU AND ROBBINS

2. We shall be concerned with a third mode of convergence, which, for
want of a better name, we call complete.

(iii) The sequence (1) converges to 0 completely if for every e> 0,
lim [PI lXnl > el + PI IXn+i] > el + *-] °

Clearly, (iii) implies (ii). The example: = unit interval 0 < c < 1,

P = Lebesgue measure, X. = 1 for 0 < co < - and 0 otherwise, shows that
n

(ii).does not imply (iii).
Let us call two sequences of random variables X1, X2, ... and Y1, Y2,

defined, respectively, on probability spaces Q and (1, F-equivalent, if for
every n the distribution function of Yn is identical with that of X,. Defi-
nitions (i) and (iii) are invariant under F-equivalence, while (ii) is not.
However, a sequence X,, X2, ... of random variables converges to 0 com-
pletely if and only if every F-equivalent sequence converges to 0 with proba-
bility 1. The necessity is obvious; to prove sufficiently consider a sequence
Y1, Y2, ... of independent random variables F-equivalent to the given
sequence. If the sequence Y1, Y2, ... converges to 0 with probability 1
then' for any e > 0, P{lim supt IY I > e } = 0. Since the sets { IYI >

e } are independent, it follows from a theorem of Borel-Cantellil that
co co

EPI IYnl> C-} EPI IX,l> E < co.
n=1 n=

It follows from this proof that if X,, X2, ... is a sequence of independent
random variables, then definitions (ii) and (iii) are equivalent.

3. Let the random variables X,, in (1) be independent with the same
distribution function F(x) = P{Xn < x} and such that the expectation
E(Xn) = fJL xdF(x) = 0. The strong law of large numbers for identically
distributed random variables states that the sequence of random variables
Y1, Y2, ..., where for each n

Yn = (XI + . + Xn)/n (2)
converges to 0 with probability 1. We shall show in Theorems 1 and 2
that under the same hypotheses the sequence (2) need not converge to 0
completely, but that it will do so under the further hypothesis that f2ox2d
F(x) < co

4. THEOREM 1. Let (1) be a sequence of independent random variables
with the same distribution function F(x) and such that

f2`0xdF(x) = 0, a2 = f2ox2dF(x) < c. (3)
Then the sequence (2) converges to 0 completely; i.e., the series

co

EPIIYnI>e} (4)f=e
convprges for every e > O.
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Proof. We shall prove the theorem for e - 2. This is no restriction
2

since we can always consider -X. instead of X.. Moreover, we may assume

that a2 > 0.

Let f(t) = f etXdF(x) be the characteristic function of the distribution

F(x). From (3) it follows that constants a, a', af exist such that

1-f(t) I < at2, If'(t) 1. a't,| fD(t) |aI . (5)

Choose and fix a positive 5 so small that for It| .45 the following condi-
tions (6) and (7) are satisfied:

sin l/2tj 2 Bt, 1(1 -f(t))2 - 4(1 - f(t)) sin2 '/2t + 4 sin2 1/2tj > Ct2 (6)

where B and C are constants,

If(Qj $ 1 exceptatt = 0. (7)
Let Z be a random variable distributed with the density 3(27r)-1x'4

sin4 x and hence the characteristic function

1-3/8t2 + 3/.UItI, t < 2,
sP(t) = 1/32(4 - ItI)2, 2 < t < 4, (8)

0O 4 < tt.

We regard Z as independent of Y. and use addition in this sense. Since

Pt{IYn|> 2} < P{ Y, +n } +P -Ia > }

pPIY < 1 -p.n{+n <} ++} 1
and since

co z ~3 co dx 1 1

nXl {| ns ] } -7r n X nl n

it is sufficient to prove that

%'pn- .{ n- p{ yn + - < }1} 0(1), (9)

where 0(1) always denotes a quantity bounded with respect to N.

The characteristic function - ( of Yn + - vanishes for it|
> 4n5; hence by a well-known inversion formula,2
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Z !n /I sin t
{ 1 + Z | < 1 7r..4J f n ( f ) s dt =

1 ,, r (t) f\sin ntdt.

Also,

P{ } t sin ntdt
Hence, by subtraction the left side of (9) is equal to

14 1f\N1
-f E (1 -f'(t)) sin nt dt = AN, say. (10)
7r ..43 t a5/n=1

From now on we write f for f(t). Direct computation gives the result

N-1 fn)i = (1 - f)2 sin '/2Nt sin 1/2(N - 1)t
n=1 q(t) sin I /2t

(1 - f) sin t 4(1 - f) sin '/2t sin 1/2Nt sin 1/2(N - 1)t

+ q(t) q(t)

+ (1 f)fN sin Nt 2(1 -f + ) sin 1/2t cos (N - 1/2)t
q(t) q(t)

(11)
where

q(t) = (f -e")(f-e) = (1 f)2 -4(1 - f) sin2 '/2t +
4 sin2 1/2t. (12)

By (6) we have lq(t) I > Ct2, lq(t) sin l/2t .>C'I tI 3, where C and C' are con-
stants. Hence when (11) is substituted into (10) and the first inequality of
(5) is used, we see that the first three terms merely contribute 0(1). Conse-
quently,

A N =r-) Nf)f sin Nt - 2(1 - fN +1) sin 1/2t cos (N - /2)t
AN2(7 ~~~~~ ~~~~~tq(t)d
+ 0(1). (13)

For5. t| < 46 we have, by (7), IfI| 1, hence q(t) = If - eilI2 > (1-
If 1)2 > a > 0. Therefore the part of the integral in (13) extended over the
range 5 . It < 45 is 0(1), so that (13) holds with 46 replaced by Sin the two

limits of integration. For |t|I 6, however, = 1-- +3-3-- and the

terms with t2 and It|3 are easily seen to contribute 0(1). Hence,
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8 (1 f N sin Nt - 2(1 - fN + 1) sin 1/2t cos (N -/2)dtAN=f tqt)d

+ 0(1). (14)

Since
1 1 21- q(t) 14 k

tq(t) t TtyT)'t

where k is a constant, the replacement of tq(t) by t3 in (14) will make a
difference of only 0(1), so that

AN = (1 - f)N sin Ntdt - 2(1 - fN +.')'sin 1/2tcos (N -/2)tdt

+ 0(1). (15)

Let the two integrals in (15) be denoted by IN and JN, respectively. We
have

I -1 (ffNd d(sin. 2Nt) = 0(1) + 28 3(1tf)fN+fNf
_ NfN - (1 - ff}sin2 1/2Ntdt-

Using the first two inequalities of (5) we obtain the result

Gosin2 l/2Ntd p i-JIJ
IINI < 0(1) + (6a + 2a') Nt2 dt + 2 f f'l dt = 0(1),

since the integral involving N is independent of N.
To deal with JN we observe first that in JN, sin 1/2t may be replaced by

1/2t andfN + 1byf N, the difference thus made being 0(1). Hence

S (1 _ fN) COS, (N-7 /2)td+0(1)JN = t

(1 _ fN) Cos (N- 1/2)t,. + 0(1.
-_ dlo + 0(1)

We may replace cos (N - 1/2)t by cos Nt, since

2 (cos (N- /2)t -cos Nt)dt = - f (1 fN sin_
t2 r1 4

sin (N h/4)tdt = PIIuI < N-I/4 P-P1IU+ NYNI < N-1/4I
= 0(1),
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where U is a random variable independent of YN and whose characteristic
function is 4/t sin 1/4J. Hence

1 co1-_fN2 2 1_fNJN = 0(1) + NfJ d sin Nt = 0(1) + 2f {2(1 fN)

+ Nf' f}d sin2 1/2t

= 0(1) + 2 .r {6(1 -fN) +.4Nf N _ N(N - 1)fN -ft_o 4 13 t

N 2N fj} sin2 1/2Ntdt.

Using all the inequalities (5) we have

IJN < 0(1) + (12a + 8a' + 2a",) f sin2 '/2Ntdt + 2 , lf2-dt 0(1)
co Nt2 co 12

The proof is now complete.
5. By following the essential steps of the proof of Theorem 1 we obtain

the following theorem, the proof of which is omitted from the present
communication.
THEOREM 2. If instead of conditions (3) we have

co co co

f xdF(x) = O, f lxjadF(x) < co, f x2dF(x) = c (16)

where a is some constant such that 2(1 + 51/2) < a < 2, then the series (4)

diverges for every e > 0. (Example: Let X. be distributed with the
density Ix -3 for Ixi 2 1 and 0 elsewhere.)

Since the finiteness of the second integral in (16) wqjld seem rather to
favor than to oppose the convergence of (4), it may be conjectured that
given the first condition of (3), the finiteness of cy2 is not only sufficient but
also necessary for the convergence of (4). We have not been able to prove
this.

6. The following generalization3 of the strong law of large numbers is an
immediate consequence of Theorem 1 and the remarks in section 2.
THEOREM 3. LetX(') (n = 1, 2, ...; r = 1 ..., n) be an array of

random variables with the same distribution function F(x) and such that (1)
co co

f xdF(x) = 0, f x2dF(x) < XD, and (2) for each n the random variables

X() are independent. Then the sequence of random variables Y1,
Y2, ..., where for each n, Yn = (X(n) + ... + Xnt))/n, converges to 0 with
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probability 1. (Note that we do not assume any relation of dependence or
indepenaence between X(r) and X(s) for m $ n.)

1 See M. Frechet, Recherches theoriques modernes, Vol. 1, Paris, 1937, p. 27.
2 See H. Cram&r, Mathematical methods of statistics, Princeton, 1946, p. 93.
Compare F. P. Cantelli, Considerazioni sulla legge uniforme dei grandi numeri ecc.,

Giornale dell 'Istituto Italiano degli Attuari, IV (1933), pp. 331-332; also H. Cram&r,
Su un theorema relativo alla leggi uniforme del grandi numeri, Ibid., V (1934), pp. 1-13.

GREEN'S FUNCTIONS FOR LINEAR DIFFERENTIAL SYSTEMS
OF INFINITE ORDER

BY D. V. WIDDER

In these PROCEEDINGS1 the author sketched a theory whereby a special
differential equation of infinite order

sin,,rD y(x) = (P(x) (1)
7r

could be solved by use of a Green's function. The operator on the left of
this equation is interpreted to mean

hinD 1-
2 P

lim D (1-2)** * (-n )Y(X),

where D is the operation of differentiation with respect to x. In preparing
the details of this theory the author discovered that much more general
differential equations could be treated by the same method. It is the pur-
pose of the present note to outline this more general theory.
We define an entire function E(s) as follows:

E(s) = k1 ( ak ) (2)

where the constants ak are real and such that

O < a, < aa < ............ (3)

co

E 2 < 0.*(4)aks
k = I

Consider now the differential system

E(D)y(x) = .p(x) (
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