Supplementary Information for

Photocatalytic aerobic oxidation of C(sp³)-H bonds

Lei Zhang^{1†}, Run-Han Li^{1†}, Xiao-Xin Li^{1*}, Shengyao Wang², Jiang Liu¹, Xiao-Xuan Hong¹, Long-Zhang Dong¹, Shun-Li Li¹, and Ya-Qian Lan^{1*}

¹School of Chemistry, South China Normal University, Guangzhou 510631, P. R. China.
² College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
[†]These authors contributed equally to this work.

Corresponding Author:

*E-mail: xxli@m.scnu.edu.cn; yqlan@m.scnu.edu.cn.

S1. Materials and measurements

All starting materials, reagents and solvents used in experiments were commercially available, high-grade purity materials and used without further purification. 3,5-dibromoaniline (C₆H₃NH₂Br₂), propanoic acid (C₂H₅COOH), 1,6,7,12-Tetrachloroperylene Tetracarboxylic Acid Dianhydride (C₂₄H₄Cl₄O₆), ammonium cerium nitrate (Ce(NH₄)₂(NO₃)₆), glycine (NH₂CH₂COOH) were purchased from Aladdin. Sodium chloride (NaCl), Benzoic acid (BA, C₆H₅COOH), 1-naphthoic acid (NA, C₁₀H₇COOH), 9-anthroic acid (9-AC, C₁₄H₉COOH) were purchased from Shanghai Haohong Scientific Co. Ltd. Toluene was purchased from Energy Chemical. Phenethyl ethanol, anisole sulfide, benzylamine and their derivatives were purchased from Adamas Reagent Co. Ltd.

	CeBTTD-B	CeBTTD-N	CeBTTD-A
Empirical formula	C ₂₇ H ₁₄ CeCl ₂ NO ₁₀	C ₃₂ H ₁₆ CeCl ₂ NO ₁₀	C ₃₈ H ₂₃ CeCl ₂ N ₂ O ₁₀
Formula weight	723.41	785.48	878.60
Temperature/K	150	150	150
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	C2/c	C2/c	Pnma
a/Å	41.87(2)	41.778(16)	16.7769(4)
b/Å	13.940(7)	13.452(5)	42.5051(9)
c/Å	14.711(8)	15.098(6)	11.4038(3)
$lpha/^{\circ}$	90	90	90
$eta / ^{\circ}$	104.626(16)	99.819(13)	90
γ/°	90	90	90
Volume/Å ³	8308(2)	8361(5)	8132.1(3)
Ζ	8	8	8
$ ho_{ m calc}{ m g/cm^3}$	1.157	1.248	1.435
μ/mm^{-1}	9.998	9.978	10.329
<i>F</i> (000)	2840.0	3096	3496.0
Reflections collected	10206	16611	40067
Independent reflections	$\begin{array}{l} 3944[R_{int}=0.0757,\\ R_{sigma}=0.0931] \end{array}$	$\begin{array}{l} 4205[R_{int}=0.0718,\\ R_{sigma}=0.0651] \end{array}$	$\begin{array}{l} 8027 \; [R_{int} = \\ 0.0884, R_{sigma} = \\ 0.0769] \end{array}$
Data/restraints/parameters	3944/36/372	4205/355/463	8027/568/688
Goodness-of-fit on F^2	1.082	1.064	1.037
Final R indexes [I>=2σ (I)]	$R_1 = 0.0824, wR_2 = 0.2301$ $R_2 = 0.1084, wR_2 = 0.2301$	$R_1 = 0.0813, wR_2 = 0.2182$ $R_2 = 0.1038, wR_2 = 0.2182$	$R_1 = 0.0756, wR_2 = 0.2087$ $R_2 = 0.1173, wP_2 = 0.1173, wP_2 = 0.1173, wP_2 = 0.1173, wP_2 = 0.01173, wP_2 = 0.001173, wP_2 = 0$
Final R indexes [all data]	0.2563	0.2458	0.2482
argest diff. peak/hole / e	1.09/-1.99	1.12/-1.20	0.83/-1.32

Supplementary Table 1. Crystal data and structure refinement of CeBTTD (-B, -N and -A), respectively.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = |\Sigma w (|F_{o}|^{2} - |F_{c}|^{2})| / \Sigma |w(F_{o})^{2}|^{1/2}$

Atom1	Atom2	Length/ Å	Atom1	Atom2	Length/ Å
Ce1	O6 ¹	2.478	Cel	O4	2.561
Cel	O6 ²	2.724	Cel	03	2.573
Cel	01	2.464	Cel	O1w	2.497
Cel	O2 ³	2.436	Cel	O2w	2.539
Cel	O5 ²	2.558			

Supplementary Table 2. Selected bond lengths (Å) of CeBTTD-B.

¹+X, 1-Y, 1/2+Z, ²3/2-X, -1/2+Y, 3/2-Z, ³3/2-X, 1/2-Y, 1-Z.

Supplementary Table 3. Selected bond angles of CeBTTD-B.

Atom1	Atom2	Atom3	Angle/°	Atom1	Atom2	Atom3	Angle/°
O6 ¹	Ce1	O6 ²	72.7(4)	O2 ³	Cel	03	138.1(4)
O 6 ¹	Ce1	O5 ²	120.2(4)	O2 ³	Cel	O1w	71.6(4)
O6 ¹	Ce1	O4	133.7(5)	O2 ³	Ce1	O2w	72.3(5)
O 6 ¹	Ce1	03	86.9(4)	O5 ²	Cel	O6 ²	49.3(4)
O 6 ¹	Cel	O1w	83.1(4)	O5 ²	Cel	O4	82.3(5)
O 6 ¹	Ce1	O2w	146.0(4)	O5 ²	Cel	03	129.2(4)
O1	Cel	O6 ²	70.1(4)	O4	Cel	O6 ²	126.1(4)
O1	Ce1	O6 ¹	71.7(4)	O4	Cel	03	51.7(4)
O1	Cel	O5 ²	75.7(4)	03	Cel	O6 ²	142.6(4)
O1	Ce1	O4	76.8(4)	O1w	Cel	O6 ²	136.1(4)
01	Cel	03	74.0(4)	O1w	Cel	O5 ²	148.1(4)
01	Ce1	O1w	135.5(4)	O1w	Ce1	O4	97.1(4)
01	Ce1	O2w	140.8(4)	O1w	Ce1	O3	68.6(4)
O2 ³	Cel	$O6^1$	76.0(4)	O1w	Cel	O2w	75.6(4)
O2 ³	Ce1	O6 ²	67.4(3)	O2w	Cel	O6 ²	105.2(5)
O2 ³	Ce1	01	132.3(4)	O2w	Cel	O5 ²	73.3(4)
O2 ³	Ce1	O5 ²	92.0(4)	O2w	Cel	O4	75.9(6)
O2 ³	Ce1	O4	147.9(4)	O2w	Ce1	03	108.9(5)

¹+X, 1-Y, -1/2+Z, ²3/2-X, -1/2+Y, 3/2-Z, ³3/2-X, 1/2-Y, 1-Z

Atom1	Atom2	Length/ Å	Atom1	Atom2	Length/ Å
Cel	O6 ²	2.487	Cel	O3	2.560
Cel	O6 ³	2.713	Cel	O4	2.546
Cel	$O2^1$	2.442	Cel	O1w	2.509
Cel	O5 ³	2.521	Cel	O2w	2.545
Cel	01	2.435			

Supplementary Table 4. Selected bond lengths (Å) of CeBTTD-N.

¹1/2-X, 3/2-Y, 1-Z, ²+X, 1-Y, -1/2+Z, ³1/2-X, 1/2+Y, 3/2-Z

Supplementary Table 5. Selected bond angles of CeBTTD-N.

Atom1	Atom2	Atom3	Angle/°	Atom1	Atom2	Atom3	Angle/°
O6 ¹	Cel	O6 ²	72.7(4)	O2 ³	Ce1	O1w	71.6(4)
O 6 ¹	Cel	O6 ³	74.3(4)	01	Ce1	O6 ³	71.1(3)
O6 ¹	Cel	O5 ³	121.7(3)	O1	Ce1	$O2^2$	133.1(3)
O6 ¹	Cel	03	85.2(3)	O1	Ce1	O5 ³	76.4(4)
O6 ¹	Cel	O4	131.7(4)	O1	Ce1	03	73.4(3)
O6 ¹	Cel	O1w	83.2(4)	O1	Ce1	04	76.6(4)
O6 ¹	Cel	O2w	146.4(4)	O1	Ce1	O1w	136.3(4)
$O2^2$	Cel	O6 ¹	76.6(3)	01	Ce1	O2w	141.1(4)
$O2^2$	Cel	O6 ³	67.8(3)	O3	Ce1	O6 ³	143.1(3)
$O2^2$	Cel	O5 ³	92.9(3)	O4	Ce1	O6 ³	127.1(4)
$O2^2$	Cel	03	136.9(3)	O4	Ce1	03	51.0(4)
$O2^2$	Cel	O4	148.4(4)	O1w	Ce1	O6 ³	135.5(3)
$O2^2$	Cel	O1w	70.0(4)	O1w	Cel	O5 ³	146.5(4)
$O2^2$	Cel	O2w	72.4(4)	O1w	Cel	03	69.3(4)
O5 ³	Cel	O6 ³	49.5(3)	O1w	Ce1	04	96.5(4)
O5 ³	Cel	03	129.4(3)	O1w	Cel	O2w	74.4(4)
O5 ³	Cel	04	83.2(4)	O2w	Ce1	O6 ³	104.9(4)
O5 ³	Cel	O2w	73.0(4)	O2w	Ce1	03	109.0(4)
01	Cel	O6 ¹	71.5(3)	O2w	Cel	O4	76.4(5)

¹+X, 1-Y, -1/2+Z, ²1/2-X, 3/2-Y, 1-Z, ³1/2-X, 1/2+Y, 3/2-Z

Atom1	Atom2	Length/ Å	Atom1	Atom2	Length/ Å
Cel	O9	2.477	Cel	07	2.557
Cel	O10	2.581	Cel	O4 ³	2.458
Cel	O3 ²	2.467	Cel	O8	2.499
Ce1	O6	2.451	Cel	O11	2.522
Cel	O6 ¹	2.719	Cel	O12	2.462

Supplementary Table 6. Selected bond lengths (Å) of CeBTTD-A.

¹1-X, 1-Y, 1-Z, ²1/2+X, +Y, 1/2-Z, ³1/2-X, 1-Y, 1/2+Z.

Supplementary Table 7. Selected bond angles of CeBTTD-A.

Atom1	Atom2	Atom3	Angle/°	Atom1	Atom2	Atom3	Angle/°
09	Cel	O10	68.5(6)	07	Ce1	O6 ¹	146.2(2)
09	Ce1	O6 ¹	137.6(4)	O4 ³	Ce1	09	71.1(4)
09	Cel	07	74.8(4)	O4 ³	Ce1	O10	74.2(6)
09	Cel	08	79.3(5)	O4 ³	Ce1	O3 ²	136.2(2)
O10	Ce1	O6 ¹	82.0(5)	O4 ³	Ce1	O6 ¹	72.0(2)
O10	Cel	07	121.9(5)	O4 ³	Ce1	07	126.2(3)
O3 ²	Cel	09	144.5(3)	O4 ³	Ce1	08	148.8(2)
O3 ²	Cel	O10	133.3(4)	O4 ³	Cel	O11	68.7(5)
O3 ²	Cel	O6 ¹	76.2(2)	O4 ³	Ce1	O12	78.2(6)
O3 ²	Cel	07	72.2(2)	O8	Ce1	O10	86.3(6)
O3 ²	Cel	08	75.0(2)	O8	Ce1	O 6 ¹	129.8(2)
O3 ²	Cel	011	134.6(6)	08	Cel	07	50.9(2)
O6	Cel	09	109.8(5)	08	Cel	011	87.3(6)
O6	Cel	O10	144.9(6)	011	Cel	O 6 ¹	140.7(5)
O6	Cel	O3 ²	71.9(2)	O11	Cel	07	64.4(5)
O6	Cel	O6 ¹	77.6(2)	O12	Ce1	O3 ²	139.0(6)
O6	Cel	07	81.8(2)	O12	Ce1	O 6 ¹	103.3(7)
O6	Cel	O4 ³	72.5(3)	O12	Ce1	07	108.2(7)
O6	Cel	08	128.6(2)	012	Cel	08	75.1(7)
O6	Cel	O11	89.0(6)	O12	Cel	O11	70.4(8)
O6	Ce1	012	148.8(6)				

¹1-X,1-Y,1-Z, ²1/2+X,+Y,1/2-Z, ³1/2-X,1-Y,1/2+Z

5-Aminoisophthalic Acid 1,6,7,12-Tetrachloroperylene Tetracarboxylic Acid Dianhydride

N,N-Bis(3,5-dicarboxyl)-1,6,7,12-Tetrachloroperylene-3,4,9,10-Tetracarboxylic Diimide

Supplementary Figure 1. The synthetic route of H₄BTTD.

Supplementary Figure 2. The photograph of **a** CeBTTD-B, **b** CeBTTD-N and **c** CeBTTD-A under an optical microscope.

Supplementary Figure 3. Asymmetric unit in the single-crystal structure of CeBTTD-B. Thermal ellipsoids are drawn with 50% probability. All hydrogen atoms are omitted for clarity. Ce, yellow, Cl, green, O, red, C, gray, N, blue.

Supplementary Figure 4. a The coordination environment of Ce₂ in CeBTTD-B. Each Ce₂ in CeBTTD-B was coordination with four BTTD⁴⁻, two BA⁻ and two coordinated water molecules. All hydrogen atoms are omitted for clarity. Ce, yellow, Cl, green, O, red, C, gray, N, blue. **b** The three-dimensional structural and **c** the corresponding topology diagrams of CeBTTD-B, which the yellow balls represent {Ce₂} and black balls represent BTTD⁴⁻, respectively.

Supplementary Figure 5. Asymmetric unit in the single-crystal structure of CeBTTD-N with the disordered ligands. Thermal ellipsoids are drawn with 50% probability. All hydrogen atoms are omitted for clarity. Ce, yellow, Cl, green, O, red, C, gray, N, blue.

Supplementary Figure 6. a The coordination environment of Ce₂ in CeBTTD-N. Each Ce₂ in CeBTTD-N was coordination with four BTTD⁴⁻, two NA⁻ and two coordinated water molecules. All hydrogen atoms are omitted for clarity. Ce, yellow, Cl, green, O, red, C, gray, N, blue. **b** The three-dimensional structural and **c** the corresponding topology diagrams of CeBTTD-N, which the yellow balls represent $\{Ce_2\}$ and black balls represent BTTD⁴⁻, respectively.

Supplementary Figure 7. The dihedral angle between two benzene rings in BTTD⁴⁻ ligand in CeBTTD HMMJs. **a** The planes of the two benzene rings in BTTD⁴⁻ of CeBTTD-B are almost perpendicular, and the dihedral angle is calculated to be 87.1 degree. **b** The planes of the two benzene rings in BTTD⁴⁻ of CeBTTD-N are completely coincident, and the dihedral angle is 0 degree. **c** There is only a very small angle between the two planes of the benzene rings in BTTD⁴⁻ of CeBTTD-A and the dihedral angle is calculated to be 4.7 degrees. All hydrogen atoms are omitted for clarity.

Supplementary Figure 8. Asymmetric unit in the single-crystal structure of CeBTTD-A with the disordered ligands and solvent molecules. Thermal ellipsoids are drawn with 50% probability. All hydrogen atoms are omitted for clarity. Ce, yellow, Cl, green, O, red, C, gray, N, blue.

Supplementary Figure 9. a The coordination environment of Ce₂ in CeBTTD-A. All hydrogen atoms are omitted for clarity. Ce, yellow, Cl, green, O, red, C, gray, N, blue. **b** The three-dimensional structural and **c** the corresponding topology diagrams of CeBTTD-A, which the yellow balls represent {Ce₂} and black balls represent BTTD⁴⁻, respectively.

Supplementary Figure 10. The experimental (red) and simulated (black) PXRD patterns of CeBTTD-B.

Supplementary Figure 11. The experimental (red) and simulated (black) PXRD patterns of CeBTTD-N.

Supplementary Figure 12. The experimental (red) and simulated (black) PXRD patterns of CeBTTD-A.

Supplementary Figure 13. The FTIR spectra of CeBTTD-B (green), CeBTTD-N (blue) and CeBTTD-A (red), respectively.

Supplementary Figure 14. The TGA curves of CeBTTD-B (green), CeBTTD-N (blue) and CeBTTD-A (red), respectively.

Supplementary Figure 15. a XPS survey spectra and High-resolution peaks of Ce 3d spectrum of **b** CeBTTD-B, **c** CeBTTD-N and **d** CeBTTD-A, respectively. There is no satellite peak located around 916.0 eV, which suggest that Ce ions in CeBTTD HMMJs are all in +3 oxidation state.¹

Supplementary Figure 16. UV-Visible diffuse reflection spectra for CeBTTD-B and its motifs (BA and H₄BTTD).

Supplementary Figure 17. UV-Visible diffuse reflection spectra for CeBTTD-N and its motifs (NA and H₄BTTD).

Supplementary Figure 18. Mott-Schottky plot measurement for CeBTTD-B. Inset: Energy diagram of the HOMO and LUMO levels of CeBTTD-B.

Supplementary Figure 19. Mott-Schottky plot measurement for CeBTTD-N. Inset: Energy diagram of the HOMO and LUMO levels of CeBTTD-N.

Supplementary Figure 20. Photoluminescence (PL) emission spectra of CeBTTD HMMJs and ligands under excitation at 400 nm.

Supplementary Figure 21. Standard curves of a toluene, b benzyl alcohol, c benzaldehyde and d benzoic acid by GC analysis.

	Photocatalyst r.t.	- ()^ + ()	Сон
Entry	Photocatalyst	Reaction Condition	Conversion (%)
1	CeBTTD-A	normal	99
2	CeBTTD-N	normal	trace
3	CeBTTD-B	normal	trace
4	CeBTTD-A	no substrate	trace
5	CeBTTD-A	N ₂ replace O ₂	trace
6	no catalyst	normal	trace
7	CeBTTD-A	dark	trace
8	9-AC (homogeneous photocatalyst)	normal	48
9	H4BTTD	normal	trace
10	H4BTTD : 9-AC (2 mg : 1 mg)	normal	70
11	H4BTTD : 9-AC : CeCl ₃ (2 mg : 1 mg : 2 mg)	normal	72

Supplementary Table 8. The photocatalytic performance of toluene oxidation with different photocatalysts.

Normal condition: 5 mg photocatalyst, 0.1 mmol substrate, 24 hours, 3 mL CH₃CN as the reagent, 300 W xenon light irradiation (300-1100 nm), 1 atm O₂.

	R to Ce	eBTTD-A r.t. R) * R#	ОН
D	A tracenhore	Yield	l (%)	Conversion
ĸ	Atmosphere	R-ph-CHO	R-ph-COOH	(%)
nЦ	O_2	trace	98	98
<i>p</i> -11	Air	2	93	95
р-	O_2	trace	99	99
OCH ₃	Air	trace	97	97
n-CN	O_2	10	62	72
<i>p</i> -CN	Air	7	50	57
πE	O_2	trace	98	98
р-г	Air	2	96	98
C1	O_2	3	95	98
<i>p</i> -CI	Air	19	66	85
Л	O_2	13	76	89
<i>p</i> -Вr	Air	22	53	75
. D.	O_2	22	55	77
<i>0</i> -Br	Air	10	45	55
			CC	OH-ph-COOH
n CU-	O_2	trace	trace	74
р-Сп3	Air	trace	trace	53

Supplementary Table 9. Photocatalytic performance of oxidation of toluene derivatives with CeBTTD-A as the photocatalyst.

Condition: 5 mg photocatalyst, 0.1 mmol substrate, 24 hours, 3 mL CH₃CN as the reagent, 300 W xenon light irradiation (300-1100 nm).

Supplementary Figure 22. The PXRD pattern of CeBTTD-A before (blue) and after (red) the photocatalytic tests.

Supplementary Figure 23. The FTIR spectra for CeBTTD-A before (blue) and after (red) the photocatalytic tests.

Supplementary Figure 24. Standard curves of **a** ethylbenzene and **b** acetophenone by GC analysis.

		otocatalyst	
Entry	Photocatalyst	Reaction Condition	Conversion (%)
1	CeBTTD-A	normal	99
2	CeBTTD-N	normal	1
3	CeBTTD-B	normal	trace
4	CeBTTD-A	no substrate	trace
5	CeBTTD-A	N ₂ replace O ₂	trace
6	no catalyst	normal	trace
7	CeBTTD-A	dark	trace
8	9-AC (homogeneous photocatalyst)	normal	35
9	H4BTTD	normal	trace
10	H4BTTD : 9-AC (2 mg : 1 mg)	normal	65
11	H4BTTD : 9-AC : CeCl ₃ (2 mg : 1 mg : 2 mg)	normal	63

Supplementary Table 10. The photocatalytic performance of ethylbenzene oxidation with different photocatalysts.

Normal condition: 5 mg photocatalyst, 0.1 mmol substrate, 12 hours, 3 mL CH₃CN as the reagent, 300 W xenon light irradiation (300-1100 nm), 1 atm O₂.

Supplementary Figure 25. Photocatalytic performance for aerobic oxidation of cyclohexene. Reaction condition: 0.1 mmol substrates, 5 mg CeBTTD-A as the photocatalyst, air or O_2 as reaction atmosphere, 24 hours, 3 mL CH₃CN as the reagent, 300-1100 nm xenon light source.

Supplementary Figure 26. a The reaction equipment and b the illumination equipment for the solvent-free ten-gram-scale reaction of ethylbenzene oxidation. The photocatalytic experiment was carried out on a 300 W xenon lamp (λ =300~1100 nm). Before the catalytic tests, 100 mg CeBTTD-A as the photocatalyst and 10 g ethylbenzene were added in 250 mL three-necked flask. Through controlling by air generator and flowmeter, fresh air is injected into the reaction system at a flow rate of 1 mL/min. Meanwhile, the reaction environment was controlled at room temperature by using thermostatic waterbath and cooling water circulation.

			Tempe-	Pressure		Ethyl-	Y	ield	Illuminat	DC
	Catalyst	Oxidant	rature (°C)	(bar)	Solvent	benzene (mmol)	%	µmol/ g	ion	Ref.
1	CeBTTD-A	Air	rt.	1	Solvent-free	94.2	91.4	861	300-780 nm	This work
2	CF3SO2Na	O2	rt.	1	CH3CN	10	89	22.81	400-405 nm blue light	2
3	Chlorinated BiOBr/TiO ₂	O ₂	rt.	1	Solvent-free	8.17		14.21	420-780 nm	3
4	VO@g-C3N4	H ₂ O ₂	rt.	1	CH₃CN	1	99	39.62	40 W domestic bulb	4
5	[Fe(TPA)(MeC N)2](ClO4)2/RF T	Air	rt.	1	CH3CN, H2O, HClO4	0.02	74	62.8	440 nm	5
6	Cs ₃ Bi ₂ Br ₉ /SBA -15	Air	rt.	1	Solvent-free	41.03	0.16	65.8	≥420 nm	6
7	TTMBPY · 3Br	Air	rt.	1	CH ₃ CN	0.1	82	64.06	365 nm LED	7
8	[BSPy][Otf]	O ₂	rt.	1	CH ₃ CN	1	92	50.36	365 nm	8
9	<i>p</i> -BiOBr	O ₂	rt.	1	H2O, t- BuOH	0.2	93	9.3	>400 nm	9
10	a-Fe ₂ O ₃	O ₂	40	1	CH3CN, NHPI	0.1	74	7.4	455 nm LED	10
11	Cercosporin	O ₂	rt.	1	KBr, CH3OH	0.25	78	73.03	23 W CFL	11
12	Imide- acridinium salt PC III	Air	rt.	1	CH3CN, H2O	0.1	96	24.62	457 nm LEDs	12
13	SA-Fe-TCN	O2	60	1	CH ₃ CN, NHPI, TEA	0.5	99	9.9	> 420 nm	13
14	Cu-PMOF-3 (Fe)	Air	60	1	CH3CN, NHPI	0.2	82	41		14
15	bisCu	O ₂	70	5	CH ₃ CN, NHPI	5	72	72		15
16	Mo(VI)-V(V)	O ₂	75	1	CH3COOH, NHPI	1	80	61.54		16
17	Pt-BNP	O ₂ , TBHP	80	1	H ₂ O	9.43	93	58.13		17

Supplementary Table 11. Comparison of the photocatalytic aerobic oxidation of ethylbenzene activities of the reported heterogeneous materials.

18	Bioderived Cu ₃ (PO ₄) ₂	O ₂	100	40	CH3CN, NHPI	1	93	9.3	18
19	(La,Sr) _{0.5} - (Mn,Co) _{0.5} O _{2.38}	O ₂	90	20	CH3COOH, NHPI	13.75	37	101.7 5	19
20	LC-N-8.9	TBHP	80	1	H ₂ O	1	91	91.3	20
21	MFM-170	TBHP	65	1	CH ₃ CN	0.25	30	3	21
22	rac-1	H ₂ O ₂	rt.	1	CH3COOH, CH3CN	0.5	82	53.95	22
23	SDC-A	TBHP	80	1	Solvent-free	1	93	46.5	23
24	DACAQ/NHPI /HY	O ₂	80	3	CH ₃ CN, NHPI	16.41	61	79.48	24
25	Fe-N-C-700	TBHP	rt.	1	H ₂ O	0.5	99	49.5	25
26	[Fe(qpy)](ClO ₄) ₂	Oxone	80	1	CH ₃ CN, H ₂ O	0.2	41	11.33	26
27	0.5%Pd@C- GluA-550	Air	120	1	Solvent-free	32.83	13	219.1 4	27
28	[(pymox- Me ₂)RuCl ₂] ⁺ B F ⁴⁻	t- BuOOH	rt.	1	H ₂ O	1	83	136.0 7	28

The green area represents the photocatalytic systems, the blue area represents the thermocatalytic systems.

Supplementary Figure 28. TA spectra of 9-AC, H₄BTTD and CeBTTD-A probed within the region of 450-780 nm. excitation wavelength: **a** 9-AC (340 nm), **b** H₄BTTD (400 nm) and **c** CeBTTD-A (400 nm).

Supplementary Figure 29. In situ high-resolution Ce *3d* XPS spectra of CeBTTD-A in dark (black curve) and light (red curve) conditions.

Supplementary Figure 30. Calculated absorption spectrum of CeBTTD-A.

λ_{abs}	f	Major Contributions	Major Assignments
547	0.428	H-3→L (96%),	BTTD→BTTD
484	0.031	H-1→L+1 (49%)	9-AC→BTTD
415	0.062	H→L+2 (76%)	9-AC→9-AC
412	0.074	H-1→L+2 (78%)	9-AC→9-AC
397	0.042	H-1→L+4 (86%)	9-AC→9-AC

Supplementary Table 12. Absorption peaks λ_{abs} [in eV (nm)], the oscillator strengths (*f*), major contributions and assignments (H and L represent HOMO and LUMO, respectively).

Supplementary Figure 31. The calculated major frontier molecular orbital distributions involved in excitation process of Supplementary Table 12.

¹H NMR and GC-MS analysis of products.

Supplementary Figure 32. ¹H NMR spectrum of the reaction product using toluene as substrate in Figure 4a.

Supplementary Figure 33. Mass spectrum of the reaction product using toluene as substrate.

Supplementary Figure 34. ¹H NMR spectrum of the reaction product using 4-methylanisole as substrate in Figure 4a.

Supplementary Figure 35. Mass spectrum of the reaction product using 4-methylanisole as substrate.

Supplementary Figure 36. ¹H NMR spectrum of the reaction product using p-fluorotoluene as substrate in Figure 4a.

Supplementary Figure 37. Mass spectrum of the reaction product using p-fluorotoluene as substrate.

Supplementary Figure 38. ¹H NMR spectrum of the reaction product using 4chlorotoluene as substrate in Figure 4a.

Supplementary Figure 39. Mass spectrum of the reaction product using 4-chlorotoluene as substrate.

Supplementary Figure 40. ¹H NMR spectrum of the reaction product using pbromotoluene as substrate in Figure 4a.

Supplementary Figure 41. Mass spectrum of the reaction product using p-bromotoluene as substrate.

Supplementary Figure 42. ¹H NMR spectrum of the reaction product using p-tolunitrile as substrate in Figure 4a.

Supplementary Figure 43. Mass spectrum of the reaction product using p-tolunitrile as substrate.

Supplementary Figure 44. ¹H NMR spectrum of the reaction product using 2-bromotoluene as substrate in Figure 4a.

Supplementary Figure 45. Mass spectrum of the reaction product using 2-bromotoluene as substrate.

Supplementary Figure 46. ¹H NMR spectrum of the reaction product using paraxylene as substrate in Figure 4a.

Supplementary Figure 47. Mass spectrum of the reaction product using paraxylene as substrate.

Supplementary Figure 48. ¹H NMR spectrum of the reaction product using ethylbenzene as substrate in Figure 4a.

Supplementary Figure 49. Mass spectrum of the reaction product using ethylbenzene as substrate.

Supplementary Figure 50. ¹H NMR spectrum of the reaction product using 4ethylanisole as substrate in Figure 4a.

Supplementary Figure 51. Mass spectrum of the reaction product using 4-ethylanisole as substrate.

Supplementary Figure 52. ¹H NMR spectrum of the reaction product using 1-ethyl-4-fluorobenzene as substrate in Figure 4a.

Supplementary Figure 53. Mass spectrum of the reaction product using 1-ethyl-4-fluorobenzene as substrate.

Supplementary Figure 54. ¹H NMR spectrum of the reaction product using 1-chloro-4-ethylbenzene as substrate in Figure 4a.

Supplementary Figure 55 Mass spectrum of the reaction product using 1-chloro-4ethylbenzene as substrate.

Supplementary Figure 56. ¹H NMR spectrum of the reaction product using 1-bromo-4-ethylbenzene as substrate in Figure 4a.

Supplementary Figure 57. Mass spectrum of the reaction product using 1-bromo-4ethylbenzene as substrate.

Supplementary Figure 58. ¹H NMR spectrum of the reaction product using 4ethylbenzonitrile as substrate in Figure 4a.

Supplementary Figure 59. Mass spectrum of the reaction product using 4-ethylbenzonitrile as substrate.

Supplementary Figure 60. ¹H NMR spectrum of the reaction product using 2-bromoethylbenzene as substrate in Figure 4a.

Supplementary Figure 61. Mass spectrum of the reaction product using 2-bromoethylbenzene as substrate.

Supplementary Figure 62. ¹H NMR spectrum of the reaction product using 1,4diethylbenzene as substrate in Figure 4a.

Supplementary Figure 63. Mass spectrum of the reaction product using 1,4diethylbenzene as substrate.

Supplementary References

- 1. Bêche, E., *et al.* Ce 3*d* XPS investigation of cerium oxides and mixed cerium oxide ($Ce_x Ti_y O_z$). Surf. Interface Anal. **40**, 264-267 (2008).
- 2 Zhu, X. *et al.* Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C-H bonds. *Green Chem.* **22**, 4357-4363 (2020).
- 3 Yuan, R. *et al.* Chlorine-Radical-Mediated Photocatalytic Activation of C-H Bonds with Visible Light. *Angew. Chem. Int. Ed.* **52**, 1035-1039 (2013).
- 4 Verma, S., Nasir Baig, R. B., Nadagouda, M. N. & Varma, R. S. Photocatalytic C-H Activation of Hydrocarbons over VO@g-C₃N₄. *ACS Sustainable Chem. Eng.* **4**, 2333-2336 (2016).
- 5 Mühldorf, B. & Wolf, R. C-H Photooxygenation of Alkyl Benzenes Catalyzed by Riboflavin Tetraacetate and a Non-Heme Iron Catalyst. *Angew. Chem. Int. Ed.* **55**, 427-430 (2016).
- 6 Dai, Y. *et al.* A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C-H Bond Activation. *Angew. Chem. Int. Ed.* **59**, 5788-5796 (2020).
- Ma, S. *et al.* Redox-active and Brønsted basic dual sites for photocatalytic activation of benzylic
 C–H bonds based on pyridinium derivatives. *Green Chem.* 24, 2492-2498 (2022).
- 8 Wu, J. *et al.* Brønsted acid-catalysed aerobic photo-oxygenation of benzylic C-H bonds. *Green Chem.* **25**, 940-945 (2023).
- 9 Cao, X. *et al.* Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation. *J. Am. Chem. Soc.* 144, 3386-3397 (2022).
- 10 Zhang, C. *et al.* Generation and Confinement of Long-Lived N-Oxyl Radical and Its Photocatalysis. *J. Am. Chem. Soc.* **140**, 2032-2035 (2018).
- Li, J. *et al.* Cercosporin-bioinspired selective photooxidation reactions under mild conditions. *Green Chem.* 21, 6073-6081 (2019).
- 12 Uygur, M. *et al.* Metal- and additive-free C-H oxygenation of alkylarenes by visible-light photoredox catalysis. *Green Chem.* **23**, 3392-3399 (2021).
- Xiao, X. *et al.* A Unique Fe-N₄ Coordination System Enabling Transformation of Oxygen into Superoxide for Photocatalytic C-H Activation with High Efficiency and Selectivity. *Adv. Mater.* 34, 2200612 (2022).
- 14 Liu, G. *et al.* A series of highly stable porphyrinic metal-organic frameworks based on iron–oxo chain clusters: design, synthesis and biomimetic catalysis. *J. Mater. Chem. A* 8, 8376-8382 (2020).
- 15 Chen, H. *et al.* Selective Functionalization of Hydrocarbons Using a ppm Bioinspired Molecular Tweezer via Proton-Coupled Electron Transfer. *ACS Catal.* **11**, 6810-6815 (2021).
- 16 Tavallaei, H. *et al.* A Cooperative Effect in a Novel Bimetallic Mo–V Nanocomplex Catalyzed Selective Aerobic C-H Oxidation. *ACS Omega* **4**, 3601-3610 (2019).
- 17 Saha, R. & Sekar, G. Selective oxidation of alkylarenes to aromatic acids/ketone in water by using reusable binaphthyl stabilized Pt nanoparticles (Pt-BNP) as catalyst. *Appl. Catal. B* **250**, 325-336 (2019).
- 18 Wu, H. *et al.* Preparation of Copper Phosphate from Naturally Occurring Phytic Acid as an Advanced Catalyst for Oxidation of Aromatic Benzyl Compounds. *ACS Sustainable Chem. Eng.* 6, 13670-13675 (2018).
- 19 Aguadero, A. *et al.* An Oxygen-Deficient Perovskite as Selective Catalyst in the Oxidation of Alkyl Benzenes. *Angew. Chem. Int. Ed.* **50**, 6557-6561 (2011).

- 20 Gao, Y. *et al.* Nitrogen-Doped sp²-Hybridized Carbon as a Superior Catalyst for Selective Oxidation. *Angew. Chem. Int. Ed.* **52**, 2109-2113 (2013).
- 21 Kimberley, L. *et al.* The Origin of Catalytic Benzylic C-H Oxidation over a Redox-Active Metal-Organic Framework. *Angew. Chem. Int. Ed.* **60**, 15243-15247 (2021).
- 22 Zhou, J. *et al.* Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. *Angew. Chem. Int. Ed.* **61**, e202205983 (2022).
- 23 Sun, Y. *et al.* Nitrogen, Sulfur Co-doped Carbon Materials Derived from the Leaf, Stem and Root of Amaranth as Metal-free Catalysts for Selective Oxidation of Aromatic Hydrocarbons. *ChemCatChem* 11, 1010-1016 (2019).
- 24 Yang, G., Ma, Y. & Xu, J. Biomimetic Catalytic System Driven by Electron Transfer for Selective Oxygenation of Hydrocarbon. *J. Am. Chem. Soc.* **126**, 10542-10543 (2004).
- 25 Liu, W. et al. Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C-H Bond. J. Am. Chem. Soc. 139, 10790-10798 (2017).
- 26 Liu, P. *et al.* ChemInform Abstract: Iron Oligopyridine Complexes as Efficient Catalysts for Practical Oxidation of Arenes, Alkanes, Tertiary Amines and N-Acyl Cyclic Amines with Oxone. *Chem. Sci.* 2, 2187-2195 (2011).
- 27 Zhang, P. *et al.* Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. *Nat. Commun.* **4**, 1593 (2013).
- 28 Yi, C. S., Kwon, K.-H. & Lee, D. W. Aqueous Phase C-H Bond Oxidation Reaction of Arylalkanes Catalyzed by a Water-Soluble Cationic Ru(III) Complex [(pymox-Me₂)₂RuCl₂]⁺BF⁴⁻. Org. Lett. 11, 1567-1569 (2009).