
Supplementary Information 

Haplotype-aware modeling of cis-regulatory effects highlights the gaps remaining in 

eQTL data 

Nava Ehsan1, Bence M. Kotis1, Stephane E. Castel2,3, Eric J. Song1, Nicholas Mancuso4, 

Pejman Mohammadi1,5-7 * 

 

1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 

La Jolla, CA, USA 

2Department of Systems Biology, Columbia University, New York, NY, USA 

3New York Genome Center, New York, NY, USA 

4Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck 

School of Medicine, University of Southern California, CA, USA 

5Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, 

USA 

6Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA 

7Department of Genome Sciences, University of Washington, Seattle, WA, USA 

* Corresponding author: Pejman Mohammadi (pejmanm@uw.edu) 

  



 
Supplementary Figures 
 

 

Supplementary Fig.1: Plenty of genes are associated with multiple independent regulatory 
variants. We compared the quantity of genes as a function of the number of associated eQTLs 

per gene, across tissues for GTEx v6 (185,147 genes in 43 tissues) and GTEx v8 (475,826 genes 

in 49 tissues) data. About 70 percent of genes have more than one eQTL in at least one tissue in 

GTEx v8 data. About 9.4 percent of genes in each tissue have multiple eQTLs in GTEx v6 and 

this increased to 25.9 percent in GTEx v8 data. There are up to 7 and 16 independent eQTLs per 

gene for GTEx v6 and v8, respectively. Boxplots represent first quartile, median, and third 

quartiles. Whiskers represent Q1-1.5* interquartile range (IQR) and, Q3 + 1.5*IQR. Outliers are 

hidden for ease of viewing. 



 

 

Supplementary Fig.2: Estimated effect sizes using the simulated expression data.  A) 

Distribution of the number of associated eQTLs per gene for 15,167 genes. B-C) Our method 

provides highly accurate and similar estimates to simulated aFCs when all eQTL variants are 

included in the model.  The distribution of estimated aFCs (norm[-0.01,𝜎=1.01]) is similar to the 

distribution of simulated aFCs (norm[0,𝜎=1]) (B). Pearson and Spearman correlation coefficients 

are both 0.99, and the Deming regression line shown in green is (y= 0.99x+0.00015) and the red 

line is (y=x) (C). D) Described variance of predicting simulated allelic imbalance with the estimated 

and simulated effect sizes. Error bars represent bootstrap 95% confidence intervals. 



 

Supplementary Fig.3: Distribution of absolute aFC across tissues, sorted from smallest 
sample size (kidney-cortex, n = 73) to the largest (muscle-skeletal, n = 706). The distribution 

of aFCs for cis-eQTLs detected in GTEx tissues are dependent on the sample size. There is not 

sufficient power to detect weak eQTLs for tissues with lower sample sizes. Boxplots represent 

first quartile, median, and third quartiles. Whiskers represent Q1-1.5* interquartile range (IQR) 

and, Q3 + 1.5*IQR. Outliers are removed for ease of viewing. 

 



 

Supplementary Fig.4: The gene expression prediction accuracy gap between aFC-n and 
aFC-1 was widened progressively in multi-eQTL genes for 49 GTEx tissues. The genes are 

capped at either 6 counts or where there were more than 20 genes. The p-values represent the 

two-sided ranksum test for genes with more than 1 eQTL for each tissue. Error bars represent 

bootstrap 95% confidence intervals. 

 



 

Supplementary Fig.5: We did not observe correlation between cell type heterogeneity and 
the median 𝑹𝟐 for each tissue. The x-axis is the sum of standard deviation for cell enrichment 

scores for 7 cell types (adipocytes, epithelial cells, hepatocytes, keratinocytes, myocytes, 

neurons, neutrophils) across tissue samples (17,382 samples from 49 different tissues), and the 

y-axis represents the median 𝑅" obtained from the aFC-n model (See Fig.4 for the legend of 

tissue colors). The dashed line represents the linear regression, 𝜌	is the spearman correlation 

and, p indicates the p-value of the correlation.  



 

Supplementary Fig.6: The aFC-n model showed stable performance in effect size 
estimation and prediction accuracy on simulated data compared to aFC-1 at different 
levels of LD, for independent eQTL variants. A-B) The effect size estimation and prediction 

accuracy on simulated data. The x-axis represents different levels of LD between the eQTL 

variants for 2000 genes (200 genes at each level) associated with two eQTLs. The y-axis is the 

absolute difference between the simulated and predicted effect sizes (A) and prediction accuracy 

(B). Error bars represent bootstrap 95% confidence intervals. C) The distribution of LD values 

among the eQTL variants of 2-eQTL genes (n=98,039) in 49 GTEx tissues.  

  



 

Supplementary Fig.7: Empirical properties of estimated aFCs in GTEx v8 adipose 
subcutaneous tissue. A) Distribution of estimated aFCs for 25,682 identified eQTLs. B) Minor 

allele frequency has a decreasing pattern for secondary eQTLs (41.3% of eQTLs are secondary 

eQTLs). The effect size distribution is affected by the power of eQTL mapping (Fig.2A-B). Error 

bars represent 95% bootstrap confidence intervals of the median.  



 
Supplementary Fig.8: Performance of aFC-n, elastic net and SuSiE applied on adjusted gene 

expression. We fit the models to the log-transformed and normalized gene expression data, 

adjusting for the top 5 genotyping PCs, sequencing protocol (PCR-based or -free), sequencing 

platform (Illumina HiSeq 2000 or HiSeq X) and sex. The performance is evaluated by computing 

the out-of-sample 𝑅" using newly added individuals in GTEx v8. A-B) All genetic variants in the 

1Mb window around each gene are included in SuSiE and elastic net. Here we show the prediction 

accuracy for Adipose subcutaneous tissue (A) and the 𝑅" across tissues relative to the median 

of the aFC-n model for each tissue (B), Comparing aFC-n and SuSiE prediction models, 

Wilcoxon signed-rank test is significant (FDR < 0.05) for 45/47 tissues. C-D) Only conditionally 

independent eQTL SNPs for a gene are included in SuSiE and elastic net. (Identical set of variants 

used for all three methods). SuSiE and enet cannot be run with only a single SNP. Thus, we 

imputed the gene expression for 1-eQTL genes with ordinary least squares (OLS) method. 

Here we showed the prediction accuracy for 10 most sampled tissues (C) and the 𝑅" across 

tissues relative to the median of the aFC-n model for each tissue (D), Comparing aFC-n and 

SuSiE prediction models, Wilcoxon signed-rank test is significant (FDR < 0.05) for all tissues. 

The p-value annotation: ****: p ≤ 10-4. Error bars in A and C represent bootstrap 95% confidence 

intervals. Boxplots in B and D represent first quartile, median, and third quartiles. Whiskers 

represent Q1-1.5* interquartile range (IQR) and, Q3 + 1.5*IQR. 



  
Supplementary Fig.9: The expression prediction accuracy is lower among African 
American (AA) compared to European American (EA) individuals. The aFCs for independent 

eQTLs in GTEx v6p data were derived using normalized expressions of adipose subcutaneous 

samples and tested on unseen GTEx v8 samples. A) Comparison of predicted gene expression 

with aFC-n, elastic net (enet) and SuSiE for 4,719 genes in common among all models, stratified 

by self-reported ancestry for the GTEx donors. B) The ancestry-specific aFC-n estimation did not 

improve the accuracy of the standard aFC-n model on AA expression prediction accuracy.  This 

could be explained as the result of overfitting to the limited training data for the AA population 

(n=44) and also failing to reflect admixed haplotype structure in African American donors. Error 

bars represent bootstrap 95% confidence intervals. 



 

Supplementary Fig.10: Power analysis to estimate the fraction of the cases that the current 
eQTL data does not fully describe ASE signal. A) Power estimation based on simulation for a 

set of read counts and reference ratios for the specific fold changes (𝛥𝑎𝐹𝐶)  0.5 and 1.  In low 

count cases there is not enough power to confirm the difference between the observed and 

predicted values, and improvement in power is observed by increase in the expression read 

counts. B) The absolute fold change between the log2(aFC)s is illustrated as a difference between 

the reference ratios. The reference ratio is defined as the logistic function of the log(aFC) using 

Eq.5. C) The percentage of genes in samples (n=581) at different levels of power for adipose 

subcutaneous tissue. This indicates that for 6.9 and 23.5 percent (median) of genes in an 

individual, there is 80 percent power to detect 0.5- and 1-fold changes, respectively. The 

percentage of genes with an excess allelic imbalance is presented in Fig.4A. D) The 𝑆𝐷# is 

calculated for 13,965 genes in adipose subcutaneous tissue, the figure shows the median of 𝑆𝐷# 

estimates across samples as a function of power. Highly expressed genes with high statistical 

power tend to be also less tolerant to variation. E) Median of pLI (Probability of loss of function 

intolerance) across samples as a function of power for a total of 19,339 genes. Highly expressed 

genes with high statistical power are less tolerant to protein truncating variation. Boxplots 



represent first quartile, median, and third quartiles. Whiskers represent Q1-1.5* interquartile range 

(IQR) and, Q3 + 1.5*IQR. Outliers are removed for ease of viewing.  



 

 

Supplementary Fig.11: The number of eGenes grows with the sample size. Amount of all 

protein-coding genes with median TPM >1 (shown with light bar) and the number of autosomal 

eGenes (shown with dark bar) per tissue (Spearman corr. = 0.92).  



 

Supplementary Fig.12: SDG estimates across African American and European American 
populations in top 10 sampled tissues. A-B) The genetic dosage variation is more variable in 

the AA population. The median of SDGs across samples (A). The expression variations of the 

common genes in AA and EA populations present in at least one sample analyzed in (Fig.5C).  

The number of genes for each tissue is specified in the x-axis. The SDGs are calculated over 60 

random samples of each population (B). Two-sided Wilcoxon signed-rank test with Bonferroni 

correction p-value annotation: ns: 0.05 < p ≤ 1.00; *: 10-2 < p ≤ 0.05; **: 10-3 < p ≤ 10-2; ***: 10-4 

< p ≤ 10-3; ****: p ≤ 10-4. C) Proportion of tested genes as a function of SDG bins. The x-axis is the 

ancestry agnostic SDG capped at 0.1 for ease of viewing. African Americans have a larger 

proportion of genes with higher variation. Error bars in A and B represent bootstrap 95% 



confidence intervals. Boxplots C represent first quartile, median, and third quartiles. Whiskers 

represent Q1-1.5* interquartile range (IQR) and, Q3 + 1.5*IQR. 

  



 

Supplementary Fig.13: Described variance and amount of ASE data available at the 
minimum read coverages of 100 and 50. A-B) Described variance of predicting allelic imbalance 

(A), and the number of individuals with ASE data (B) as a function of eQTL counts per gene 

subject to minimum read coverage of 100 and 50 from adipose subcutaneous tissue. Increasing 

minimum read coverage from 50 (11,361 genes) to 100 (9926 genes), increased the 𝑅" while 

missing 1,435 (12.6%) genes. Error bars represent 95% bootstrap confidence intervals of the 

median. Boxplots in B represent first quartile, median, and third quartiles. Whiskers represent Q1-

1.5* interquartile range (IQR) and, Q3 + 1.5*IQR. 

 


