Supplementary Methods

Cause of Death:	Control (n=36)	MDD (n=44)	χ ² =7.465	p=0.280
Accidental	1	2		
Cardiac arrest	7	6		
Other cardiac	10	6		
Suicide	0	12		
Cancer	5	1		
Natural	1	2		
Other	4	10		
Unknown	8	5		

Supplementary Table 1: Summary of cause of death.

Note: Chi-square analysis excluded suicide as a cause of death.

Human ACC RNA Extraction:

Tissue was homogenised in 800µl of cold TRIzol using a disposable tissue pestle (Axygen, Mount Martha, VIC, Australia) and incubated at room temperature for 5 minutes. 160µL of chloroform was added to the sample and then centrifuged at 12,000g for 15 minutes at 4°C. The aqueous phase was transferred to a new tube and 400µl of isopropanol was added, incubated for 10 minutes, followed by centrifugation at 12,000g for 10 minutes at 4°C. After removing the isopropanol, the remaining pellet was washed in 800µL of 70% ethanol and then centrifuged at 7500g for 5 minutes at 4°C. Ethanol was removed and samples were air-dried. The RNA was resuspended in 30µl RNAse-free water (Sigma-Aldrich, Castle Hill, NSW, AUS).

Gene	Alias	Corresponding protein	Accession number
AIF1		Allograft inflammatory factor 1	Hs_00741549_g1
AQP4		Aquaporin 4	Hs_00242342_m1
CX3CR1		C-X3-C motif chemokine receptor 1	Hs_01598433_m1
GAPDH		Glyceraldehyde-3-phosphate dehydrogenase	Hs_99999905_m1
GFAP		Glial fibrillary acidic protein	Hs_00909236_m1
GUSB		Glucuronidase beta	Hs_99999908_m1
HAAO	3-HAO	3-hydroxyanthranilate 3,4-dioxygenase	Hs_00201915_m1
IL6		Interleukin 6	Hs_00174131_m1
IL1B		Interleukin 1 beta	Hs_01555410_m1
КМО		Kynurenine 3-monooxygenase	Hs_00175738_m1
KYAT1		Kynurenine aminotransferase 1	Hs_00187858_m1
KYAT2	AADAT	Kynurenine aminotransferase 2	Hs_00212039_m1
KYNU		Kynurinase	Hs_011114099_m1
QPRT		Quinolinate phosphoribosyltransferase	Hs_00204757_m1
TBP		TATA-box binding protein	Hs_00427620_m1

Supplementary Table 2: TaqMan gene expression codes

Supplementary Figure 1: Combined Total Ion Chromatogram (TIC) with all metabolites inclusive of their respective optimised MRMs at 10uM mixed Standard. X-axis represents time (sec), Y-axis represents raw intensity. Order of metabolites and their RT (sec): CRE 0.64, 3-HK 1.05, QUIN 0.56, PIC 0.88, KYN 1.49, 5HIAA 1.49, dKYN 1.48, 3HAA 2.77, TRP 3.21, dTRP 3.20, AA 4.50, dAA, 4.43, KYNA 5.18, XA 5.38.

Supplementary Figure 2: Mass spectrum of all metabolites (including MRMs) from the combined method using 10uM mixed Standard. Relative abundance vs detected mass. Order of metabolites and their detected TIC mass (g/mol): CRE 113.60, 3-HK 224.70, QUIN 167.00, PIC 123.60, KYN 208.70, 5HIAA 191.70, dKYN 212.75, 3HAA 153.65, TRP 204.90, dTRP 207.75, AA 137.65, dAA, 141.65, KYNA 189.65, XA 205.65.

Impact of chronic antidepressant treatment in female Sprague-Dawley rats:

Adult female Sprague-Dawley rats (12 weeks of age) were obtained from the Animal Resource Centre (Perth, Australia) and allowed to acclimate for one week. Food and water were provided ad libitum. Rats were randomly assigned to a treatment group (n=10/group): fluoxetine (10mg/kg), imipramine (10mg/kg) or vehicle (saline injection 0.9% NaCl). Treatments were administered once daily via intraperitoneal injections between 0800 and 0900 for 5 weeks. Rats were euthanatized via carbon dioxide asphyxiation 24 hours after the last treatment to allow a drug washout period. The brains were immediately removed, snap frozen in liquid nitrogen, and stored at -80°C. Approval for animal experimental procedures was granted by UOW Animal Ethics (ethics number: AE14/01).

Total RNA was isolated from approximately 20 mg of frozen frontal cortex tissue using Purelink RNA Mini Kits (ThermoFisher, 12183025). Quality of the extraction was measured via Nanodrop. Complementary DNA was synthesized from 2µg total RNA using Superscript IV First-Strand Synthesis Kit and random hexamers (Life Technologies, 18091200). The mRNA expression of *Kmo* and *Kyat2*, in the rat frontal cortex was measured by reverse transcriptase–qPCR (Quant Studio 5). Quantitative real-time PCR was performed in a 20-µL final reaction volume using SensiFAST SYBR No-ROX Kit (Bioline, BIO-98020). Amplification was carried out with 40 cycles of 95 °C for 5 seconds, 60 °C for 10 seconds, and 72 °C for 10 seconds. Transcript quantities were normalized to the geometric mean of three housekeeper genes: *Ubc, Gusb* and *B2m*, which did not differ across the treatment groups. The 'no template control' and reverse transcriptase control did not produce a signal in any assay. All amplifications from each subject were performed in triplicate and relative quantities of expression for each gene was calculated using the comparative threshold cycle value (Ct) method, using the formula $2-\Delta\Delta$ Ct (where $\Delta\Delta$ Ct = Δ Ct sample– Δ Ct reference).

Supplementary Results

Supplementary Figure 3: (**A**) 3-hydroxykynurenine (3-HK) was significantly lower in males overall compared to females (p=0.046). (**B**) Xanthurenic acid (XA) was significantly lower in males overall compared to females (p=0.045). Ln=natural log; MDD=major depressive disorder. *p<0.05.

		Control				MDD						
Metabolites	ites Female			Male			Female			Male		
metabolites		Mean			Mean			Mean			Mean	
	n	(nM/mg)	SD	n	(nM/mg)	SD	n	(nM/mg)	SD	n	(nM/mg)	SD
TRP	15	384.42	177.38	20	301.43	128.44	22	313.88	132.86	22	313.21	144.78
LnKYN	15	1.71	0.91	20	0.87	1.27	21	1.03	0.92	21	1.02	1.14
LnKYNA	15	1.48	0.81	20	0.49	1.23	22	0.68	1.39	21	0.76	0.81
LnQUIN	15	5.04	0.34	20	5.03	0.31	22	5.00	0.27	22	4.94	0.32
Ln3HK	15	-0.09	0.82	20	-0.76	0.92	21	-0.67	0.64	21	-0.68	0.88
Ln3HAA	14	-2.14	0.89	19	-2.62	0.77	18	-2.57	0.63	18	-2.61	0.71
LnXA	15	-0.83	0.90	19	-1.46	0.57	22	-0.96	1.16	21	-1.15	0.74
LnKYN/TRP x10 ³	15	2.81	0.85	20	2.27	0.90	21	2.22	0.93	22	2.28	0.91
LnKYNA/QUIN x10 ³	15	3.34	0.88	20	2.37	1.24	22	2.59	1.48	21	2.75	0.83
LnKYNA/KYN	15	6.67	0.39	20	6.53	0.39	21	6.78	0.47	21	6.54	0.36
Ln3HK/KYN	15	5.12	0.79	20	5.28	1.10	21	5.21	0.87	21	5.26	0.88
LnQUIN/KYN	15	3.33	0.97	20	4.16	1.30	21	3.95	0.89	21	3.90	1.12

Supplementary Table 3: Sex-diagnosis interaction group means for kynurenine metabolites.

metabolites nom sex a							
Metabolites	Covariate	Comparison					
TRP		F(1,75)=0.797, p=0.375					
LnKYN	PMI	F(1,72)=0.428, p=0.515					
LnKYNA		F(1,74)=1.065, p=0.306					
LnQUIN	Age	F(1,74)=0.481, p=0.490					
Ln3HK	PMI	F(1,72)=0.783, p=0.379					
Ln3HAA		F(1,65)=1.296, p=0.259					
LnXA		F(1,73)=0.221, p=0.639					
LnKYN/TRP x10 ³		F(1,74)=1.974, p=0.164					
LnKYNA/QUIN x10 ³		F(1,74)=0.503, p=0.481					
LnKYNA/KYN		F(1,73)=0.375, p=0.542					
Ln3HK/KYN		F(1,73)=0.035, p=0.851					
LnQUIN/KYN		F(1,73)=0.512, p=0.477					

Supplementary Table 4: Main diagnosis output for kynurenine metabolites from sex*diagnosis two-way ANCOVAs.

Supplementary Table 5: P-values for factors included in the linear mixed effects models for the metabolite levels across sex and diagnosis with age and PMI included as covariates.

Measures	Age	ΡΜΙ	Sex	Diagnosis	Sex by Diagnosis
LnKYNA	0.239	0.156	0.060	0.603	0.049
LnKYNA/QUIN	0.552	0.337	0.117	0.693	0.044
3-HK	0.450	0.005	0.050	0.325	0.117
ХА	0.104	0.514	0.046	0.810	0.314
TRP	0.635	0.574	0.232	0.297	0.206
LnKYN	0.070	0.028	0.048	0.741	0.113
Ln3HAA	0.248	0.869	0.151	0.362	0.240
LnKYN/TRP	0.004	<0.001	0.101	0.728	0.158
LnKYNA/KYN	0.037	0.414	0.061	0.935	0.647
Ln3-HK/KYN	0.075	0.603	0.497	0.818	0.804
QUIN	0.026	0.167	0.458	0.786	0.631

Abbreviations: KYNA: kynurenic acid; KYNA/QUIN: ratio of kynurenic acid to quinolinic acid; 3-HK: 3hydroxykynurenine; XA: xanuthernic acid; TRP: tryptophan; KYN: kynurenine; QUIN: quinolinic acid.

Supplementary Figure 4: After controlling for age and PMI, a significant main effect of sex was observed for kynurenine (p=0.048). *p<0.05.

Supplementary Table 6: Main diagnosis output for
kynurenine enzyme mRNA from sex*diagnosis two-way
ANCOVAs.

mRNA	Covariate	Comparison
KYAT2	RIN	F(1,63)=5.283, p=0.025
LnKYAT1	Age/PMI	F(1,62)=0.008, p=0.928
KYAT3	Age/RIN	F(1,63)=0.046, p=0.831
KYAT4	RIN	F(1,64)=1.729, p=0.193
КМО	RIN	F(1,64)=0.206, p=0.652
LnKYNU	Age	F(1,62)=3.167, p=0.08
LnHAAO	Age/RIN	F(1,63)=0.020, p=0.887
LnQPRT	Age/RIN	F(1,63)=0.265, p=0.609

Supplementary Figure 5: There were no changes in (A) *Kyat2* or (B) *Kmo* mRNAs in the frontal cortex after 5 weeks of treatment with fluoxetine (FLX) or Imipramine (IMIP) in female Sprague-Dawley rats.

gene expression across sex and diagnosis with age, PMI and RIN included as covariates.								
Measures	age	PMI	RIN	Sex	Diagnosis	Sex by Diagnosis		
KYAT2	0.262	0.047	<0.001	0.448	0.016	0.835		
КМО	0.042	0.824	0.020	0.019	0.911	0.027		
InIL6	0.108	0.201	0.637	0.206	0.010	0.711		
LnIL1B	0.027	0.430	0.117	0.501	0.007	0.693		
LnKYAT1	<0.001	0.009	0.132	0.103	0.973	0.880		
LnKYNU	0.003	0.214	0.604	0.646	0.051	0.752		
LnHAAO	0.669	0.317	<0.001	0.054	0.882	0.669		
LnQPRT	0.002	0.893	0.087	0.092	0.539	0.147		
LnAIF1	0.011	0.010	0.111	0.128	0.049	0.693		
LnGFAP	<0.001	0.615	0.002	0.567	0.673	0.707		
LnAQP4	0.072	0.023	0.152	0.905	0.690	0.556		
LnCX3CR1	0.313	0.089	0.474	0.109	0.492	0.330		

Supplementary Table 7: P-values for factors included in the linear mixed effects models for the gene expression across sex and diagnosis with age, PMI and RIN included as covariates.

Supplementary Figure 6: After controlling for age, PMI and RIN, a significant main effect of diagnosis was observed for *AIF1* mRNA (p=0.049). *p<0.05.

Supplementary Table 8: Summary of postmortem subject demographics in suicide subgroups.

Variable	Control (n=36)	MDD-NS (n=27)	MDD-S (n=11)	Test statistic	p-value
Age at death (years)	62.67±2.51	57.63±17.87	49.18±12.87	H=5.631	0.052
Postmortem interval (hours)	17.03±0.99	17.55±7.47	23.59±9.82	H=5.838	0.045
RNA Integrity Number	6.15±0.26	6.11±1.71	6.56±1.03	F=0.371	0.691
Sex	20M, 16F	11M, 16F	7M, 5F	χ ² =1.691	0.429

Values are represented as mean ± SD, unless otherwise specified. L: left; R: right; M: males; F: females

Supplementary Table 9: P-values for factors included in the linear mixed effects models for the metabolite levels across suicide subgroups with age and PMI included as covariates

with age and twi included as covariates							
Measures	Age	PMI	Suicide				
KYNA	0.353	0.229	0.105				
KYNA/QUIN	0.688	0.451	0.412				
3-НК	0.709	0.051	0.157				
XA	0.143	0.928	0.547				
TRP	0.299	0.558	0.297				
KYN	0.452	0.091	0.623				
Ln3HAA	0.299	0.948	0.506				
LnKYN/TRP	0.015	0.005	0.673				
LnKYNA/KYN	0.034	0.276	0.355				
Ln3-HK/KYN	0.032	0.684	0.518				
QUIN	0.027	0.198	0.921				

Abbreviations: KYNA: kynurenic acid; KYNA/QUIN: ratio of kynurenic acid to quinolinic acid; 3-HK: 3-hydroxykynurenine; XA: xanthurenic acid; TRP: tryptophan; KYN: kynurenine; QUIN: quinolinic acid.

as covariates.				
Measures	Age	ΡΜΙ	RIN	Suicide
KYAT2	0.560	0.148	<0.001	0.021
КМО	0.133	0.814	0.037	0.970
LnIL6	0.769	0.160	0.563	0.191
LnIL1B	0.133	0.297	0.740	0.061
KYAT1	<0.001	0.030	0.134	0.931
LnKYNU	0.008	0.144	0.699	0.212
LnHAAO	0.702	0.817	<0.001	0.945
LnQPRT	0.012	0.855	0.101	0.634
LnAIF1	0.027	0.089	0.165	0.191
LnGFAP	< 0.001	0.447	<0.001	0.331
LnAQP4	0.069	0.029	0.108	0.762
LnCX3CR1	0.350	0.311	0.668	0.863

Supplementary Table 10: P-values for factors included in the linear mixed effects models for the gene expression across suicide subgroups with age, PMI and RIN included as covariates

Supplementary Figure 7: (A) There was no significant correlation between *KYAT1* and *GFAP* mRNAs in controls (p=0.091). (B) In major depressive disorder (MDD) there was a strong positive correlation between *KYAT1* and *GFAP* mRNAs ($r_s=0.537$ p<0.001). Males are represented by the outlined shapes.

Contro		KYNA	TRP	QUIN	KYN	3HK	3HAA	XA	IL1B
TRP	rs	0.422*							
	Sig.	0.011							
QUIN	rs	0.085	0.230						
	Sig.	0.628	0.184						
KYN	rs	0.926**	0.398*	0.045					
	Sig.	<0.001	0.018	0.797					
ЗНК	rs	0.596**	0.672**	0.320	0.544**				
	Sig.	<0.001	<0.001	0.061	<0.001				
3HAA	rs	0.564**	0.366*	0.131	0.599**	0.552**			
	Sig.	<0.001	0.036	0.469	<0.001	<0.001			
ХА	rs	0.594**	0.683**	-0.017	0.496**	0.806**	0.483**		
	Sig.	<0.001	<0.001	0.925	0.002	<0.001	0.004		
IL1B	rs	0.002	-0.175	-0.017	0.235	-0.075	0.282	-0.174	
	Sig.	0.992	0.356	0.930	0.212	0.695	0.146	0.358	
IL6	rs	0.576**	-0.032	0.118	0.757**	0.210	0.358	0.027	0.538**
	Sig.	0.001	0.871	0.543	<0.001	0.275	0.067	0.889	0.003

Supplementary Table 11a: Metabolite-metabolite correlations and correlations between metabolites and pro-inflammatory cytokines in control subjects.

Abbreviations: KYNA: kynurenic acid; TRP: tryptophan; QUIN: quinolinic acid; KYN: kynurenine; 3HK: 3hydroxykynurenine; 3HAA: 3-hydroxyanthranilic acid; XA: xanthurenic acid; IL1B: interleukin 1 beta; IL6: interleukin 6. *p<0.05, **p<0.01.

MDD		KYNA	TRP	QUIN	KYN	ЗНК	3HAA	ХА	IL1B
TRP	rs	0.365*							
	Sig.	0.015							
QUIN	rs	0.024	-0.206						
	Sig.	0.879	0.179						
KYN	rs	0.827**	0.178	0.259					
	Sig.	<0.001	0.252	0.093					
ЗНК	rs	0.689**	0.208	0.176	0.530**				
	Sig.	<0.001	0.187	0.266	<0.001				
3HAA	rs	0.345*	0.032	0.139	0.534**	0.117			
	Sig.	0.040	0.853	0.420	<0.001	0.503			
XA	rs	0.537**	0.348*	0.001	0.261	0.567**	-0.134		
	Sig.	<0.001	0.022	0.997	0.095	<0.001	0.435		
IL1B	rs	0.086	-0.285	0.096	0.382*	0.055	0.388*	-0.006	
	Sig.	0.603	0.079	0.56	0.018	0.748	0.028	0.972	
IL6	rs	0.001	-0.202	0.173	0.209	-0.005	0.33	0.154	0.699**
	Sig.	0.993	0.225	0.300	0.215	0.977	0.07	0.363	<0.001

Supplementary Table 11b: Metabolite-metabolite correlations and correlations between metabolites and pro-inflammatory cytokines in major depressive disorder.

Abbreviations: KYNA: kynurenic acid; TRP: tryptophan; QUIN: quinolinic acid; KYN: kynurenine; 3HK: 3hydroxykynurenine; 3HAA: 3-hydroxyanthranilic acid; XA: xanthurenic acid; IL1B: interleukin 1 beta; IL6: interleukin 6. *p<0.05, **p<0.01.

ratio and the gene expression of KAT enzymes.					
Diagnosis	Gene		KYNA/KYN		
	VVAT1	rs	-0.081		
Control	KIAII	р	0.670		
Control	KYAT2	rs	0.382*		
		р	0.037		
	VV A T 1	rs	-0.393*		
МОО	KIAII	р	0.016		
טטואו	KYAT2	rs	0.041		
		р	0.807		

Supplementary Table 12a: Correlations between the KYNA/KYN ratio and the gene expression of KAT enzymes.

*Correlation is significant at the 0.05 level.

Supplementary Table 12b: Correlations between the 3HK/KYN ratio and gene expression of the KMO enzyme.

· · · · · · · · · · · · · · · · · · ·					
Diagnosis	Gene		3HK/KYN		
Control	KMO	r _s	0.274		
Control	KIVIO	р	0.142		
	KMO	rs	0.180		
NUDD	KIVIO	р	0.285		

Supplementary Table 12c: Correlations between the KYNA/KYN ratio and gene expression of the KAT enzymes across the suicide subgroups.

Suicide			
subgroup	Gene		KYNA/KYN
	KVAT1	rs	-0.1091
Control	NIAII		0.600
Control	KVATO	rs	0.390*
	KIAIZ	р	0.037
	KVAT1	rs	-0.509*
	KIAII	р	0.016
NIDD-N3	VVATO	rs	-0.281
	KIAIZ	р	0.206
	VVAT1	rs	-0.067
	KIATI	р	0.865
NDD-3	KVATO	rs	0.800**
	KIAIZ	р	0.010

* Correlation is significant at the 0.05 level;

**Correlation is significant at the 0.01 level.

Supplementary Table 12d: Correlations between the 3HK/KYN ratio and gene expression of the KMO enzyme.

Suicide			
subgroup	Gene		3HK/KYN
Control	KMO	r _s	0.273
control	KIVIO	р	0.144
	KMO	rs	0.261
	KWIO	р	0.218
	KMO	r _s	-0.119
	RIVIO	р	0.779

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.

Measure		A	Age		
		Control	MDD		
KYNA	rs	0.262	0.222		
	Sig.	0.140	0.152		
TRP	rs	-0.135	-0.070		
	Sig.	0.439	0.652		
QUIN	rs	-0.078	0.575**		
	Sig.	0.664	<0.001		
KYN	rs	0.208	0.313 [*]		
	Sig.	0.246	0.044		
ЗНК	rs	-0.186	0.134		
	Sig.	0.284	0.398		
3-HAA	r _s	-0.135	0.320		
	Sig.	0.478	0.065		
ХА	rs	-0.279	-0.142		
	Sig.	0.122	0.362		
KYAT1	r _s	0.452*	0.424**		
	Sig.	0.012	0.008		
KYAT2	rs	0.041	-0.086		
	Sig.	0.828	0.604		
КМО	rs	-0.224	-0.308		
	Sig.	0.234	0.056		
KYNU	rs	0.371*	0.389*		
	Sig.	0.047	0.016		
HAAO	r _s	0.367*	-0.077		
	Sig.	0.046	0.646		
QPRT	rs	0.482**	0.210		
	Sig.	0.007	0.200		
AIF1	rs	0.313	0.198		
	Sig.	0.093	0.228		
GFAP	rs	0.542**	0.525**		
	Sig.	0.002	<0.001		
IL1B	rs	0.348	0.284		
	Sig.	0.06	0.084		
IL6	rs	0.385*	0.140		
	Sig.	0.048	0.417		
CX3CR1	rs	0.087	0.063		
	Sig.	0.647	0.704		
AQP4	rs	0.305	0.188		
	Sig.	0.101	0.251		

Supplementary Table 13: Spearman's correlations between age and kynurenine pathway metabolites, genes and relevant glial/inflammatory markers.

Supplementary Figure 8: (**A**) There was a significant positive correlation between *KYAT1* mRNA and age in controls (r_s =0.424, p=0.008) (**B**) and in MDD (r_s =0.452, p=0.012). (**C**) There was a significant positive correlation between *GFAP* mRNA and age in controls (r_s =0.525, p<0.001) (**D**) and in MDD (r_s =0.542, p=0.002). Males are represented by the outlined shapes.