Supplementary Information for

Amyloid beta 42 alters cardiac metabolism and impairs cardiac function in obese male mice

Liam G Hall^{1,2,10}, Juliane K. Czeczor^{1,3,10}, Timothy Connor¹, Javier Botella¹, Kirstie A. De Jong^{1,4}, Mark C. Renton⁵, Amanda J. Genders^{1,6}, Kylie Venardos¹, Sheree D. Martin¹, Simon T. Bond^{1,7}, Kathryn Aston-Mourney¹, Kirsten F. Howlett⁵, James A Campbell⁸, Greg R. Collier⁸, Ken R. Walder¹, Matthew McKenzie⁹, Mark Ziemann⁹, Sean L. McGee^{1,8}

¹Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia. ²Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.

³Becton Dickinson GmbH, Medical Affairs, 69126 Heidelberg, Germany.

⁴Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.

⁵Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.

⁶Department of Nutrition, Dietetics and Food, School of Clinical Sciences and Victorian Heart Institute, Monash University, Melbourne, Australia

⁷Baker Heart and Diabetes Institute, Melbourne, Australia.

⁸Ambetex Pty Ltd, Geelong, Australia.

⁹School of Life and Environmental Science, Deakin University, Geelong, Australia.

¹⁰These authors contributed equally.

This document contains 5 data tables and 7 data figures.

Corresponding author:

Professor Sean L. McGee Metabolic Remodelling Laboratory Metabolic Research Unit School of Medicine Deakin University, Waurn Ponds, Australia, 3216 Ph: +61 3 5227 2519 Fax: +61 3 5227 2945 Email: sean.mcgee@deakin.edu.au

Parameter	ScrAβ ₄₂	Αβ42	P value
Peak aortic flow (cm/sec)	61.9 ± 3.8	58.7 ± 1.1	0.481
Ejection time (msec)	52.5 ± 1.6	50.3 ± 2.0	0.411
Heart rate (bpm)	386 ± 24	397 ± 18	0.736
Peak E wave (cm/sec)	58.9 ± 4.9	60.6 ± 2.7	0.770
Peak A wave (cm/sec)	27.4 ± 2.4	$\textbf{32.0}\pm\textbf{0.6}$	0.123
IVSd (cm)	0.126 ± 0.007	0.121 ± 0.006	0.604
LVIDd (cm)	0.346 ± 0.006	0.346 ± 0.016	0.974
LVPWd (cm)	0.108 ± 0.005	0.116 ± 0.004	0.155
IVSs (cm)	0.148 ± 0.007	0.149 ± 0.006	0.949
LVIDs (cm)	0.230 ± 0.003	0.251 ± 0.013	0.151
LVPWs (cm)	0.132 ± 0.006	0.148 ± 0.007	0.100
Estimated LV mass (mg)	163 ± 13	168 ± 14	0.822
Heart weight/tibia length (mg/mm)	7.11 ± 0.09	7.19 ± 0.17	0.751

Supplementary Table 1: Cardiac function and morphology in mice administered ScrA β_{42} or A β_{42} . IVSd, intraventricular septum thickness at diastole; LVIDd, left ventricular internal diameter at diastole; LVPWd, left ventricular posterior wall thickness at diastole; IVSs, intraventricular septum thickness at systole; LVIDs, left ventricular internal diameter at systole; LVPWs, left ventricular posterior wall thickness at systole. Data are mean \pm SEM, n =10 mice/group. Groups compared by unpaired t-test, two-tailed. Source data are provided in the Source Data file.

Parameter	ScrAβ ₄₀	Αβ40	P value
Peak aortic flow (cm/sec)	60.4 ± 4.2	66.2 ± 5.1	0.391
Ejection time (msec)	59.3 ± 1.4	61.5 ± 1.2	0.233
Heart rate (bpm)	416 ± 12	384 ± 10	0.060
Peak E wave (cm/sec)	57.1 ± 3.6	58.1 ± 4.4	0.862
Peak A wave (cm/sec)	35.9 ± 1.8	32.4 ± 1.8	0.193
E:A ratio	1.54 ± 0.08	1.73 ± 0.10	0.153
Deceleration time (sesse)c)	0.032 ± 0.001	0.032 ± 0.001	0.939
IVSd (cm)	0.125 ± 0.005	0.120 ± 0.006	0.498
LVIDd (cm)	0.340 ± 0.010	0.350 ± 0.012	0.528
LVPWd (cm)	0.125 ± 0.004	0.128 ± 0.003	0.533
IVSs (cm)	0.178 ± 0.007	0.174 ± 0.007	0.697
LVIDs (cm)	0.225 ± 0.012	0.226 ± 0.013	0.981
LVPWs (cm)	0.141 ± 0.004	0.152 ± 0.005	0.094
Ejection fraction (%)	71.5 ± 2.6	73.2 ± 2.1	0.602
Fractional shortening (%)	35.9 ± 2.2	36.2 ± 1.7	0.905
Estimated LV mass (mg)	217 ± 15	204 ± 11	0.502
Heart weight/tibia length (mg/mm)	9.60 ± 0.42	8.78 ± 0.24	0.112

Supplementary Table 2: Cardiac function and morphology in mice administered ScrA β_{40} or A β_{40} . IVSd, intraventricular septum thickness at diastole; LVIDd, left ventricular internal diameter at diastole; LVPWd, left ventricular posterior wall thickness at diastole; IVSs, intraventricular septum thickness at systole; LVIDs, left ventricular internal diameter at systole; LVPWs, left ventricular posterior wall thickness at systole. Data are mean \pm SEM, n =12 mice/group. Groups compared by unpaired t-test, two-tailed. Source data are provided in the Source Data file.

	Co	ntrol	31	2-way RM ANOVA P value				
Parameter	Parameter Pre Post		Pre	Post	Tx	Time	Int.	
Peak aortic flow (cm/sec)	72.2 ± 6.9	67.9 ± 4.7	67.0 ± 6.0	65.3 ± 4.7	0.5022	0.5975	0.8217	
Ejection time (msec)	48.5 ± 2.3	54.0 ± 2.2	49.4 ± 3.2	52.5 ± 2.4	0.9121	0.0969	0.6365	
Heart rate (bpm)	455 ± 22	453 ± 19	437 ± 17	475 ± 22	0.9328	0.3786	0.3177	
Peak E wave (cm/sec)	48.3 ± 2.7	51.0 ± 3.8	51.1 ± 4.6	51.1 ± 4.6 49.4 ± 3.3		0.7936	0.3434	
Peak A wave (cm/sec)	28.7 ± 1.6	37.4 ± 3.5	32.7 ± 3.1	35.0 ± 2.8	0.9631	0.1365	0.1724	
E:A ratio	1.69 ± 0.08	1.41 ± 0.04	$1.60 \pm 0.09 \qquad 1.32 \pm 0.04$		0.1654	0.0056	0.8433	
IVSd (cm)	0.116 ± 0.003	0.128 ± 0.006	0.130 ± 0.006	0.129 ± 0.006	0.2207	0.1432	0.0829	
LVIDd (cm)	0.272 ± 0.012	0.307 ± 0.009	0.272 ± 0.010	0.293 ± 0.013	0.3505	0.0072	0.7772	
LVPWd (cm)	0.120 ± 0.006	0.135 ± 0.008	0.130 ± 0.007	0.131 ± 0.005	0.9798	0.0013	0.2343	
IVSs (cm)	0.165 ± 0.002	0.174 ± 0.006	0.168 ± 0.007	0.166 ± 0.006	0.6910	0.5835	0.3740	
LVIDs (cm)	0.175 ± 0.012	0.189 ± 0.010	0.177 ± 0.011	0.195 ± 0.012	0.7513	0.1800	0.8458	
LVPWs (cm)	0.137 ± 0.006	0.158 ± 0.009	0.146 ± 0.005	0.148 ± 0.010	0.9417	0.1486	0.2658	
Ejection fraction (%)	75.3 ± 1.5	75.0 ± 1.8	76.1 ± 1.8	69.5 ± 2.8	0.1797	0.3923	0.5001	
Fractional shortening (%)	37.7 ± 1.3	37.6 ± 1.6	37.3 ± 1.9	34.6 ± 2.4	0.7223	0.1921	0.1953	

Supplementary Table 3: Cardiac function and morphology in mice fed a high fat diet and administered control or 3D6 antibodies. IVSd, intraventricular septum thickness at diastole; LVIDd, left ventricular internal diameter at diastole; LVPWd, left ventricular posterior wall thickness at diastole; IVSs, intraventricular septum thickness at systole; LVIDs, left ventricular internal diameter at systole; LVPWs, left ventricular posterior wall thickness at systole; LVPWs, left ventricular posterior wall thickness at systole. Data are mean \pm SEM, n =12 mice/group. Groups compared by two-way repeated measures ANOVA. Tx, treatment; Int, interaction. Source data are provided in the Source Data file.

	Chow		HFD		HFD			Mixed effects model P				
		control		control		3D6			value		-	
	Base- line	Pre- treat	Post- treat	Base- line	Pre- treat	Post- treat	Base- line	Pre- treat	Post- treat	Тх	Time	Int.
PAF	57.8 +	59 1 +	61.3 +	60 1 +	59.3 +	677+	587+	64 1 +	71.8 +	0.0955	0.0067	0.5443
(cm/sec)	2.7	4.2	2.6	6.3	3.2	5.1	4.0	3.0	2.5			
ĒT	42.3 +	42.3 +	46.8 +	41.2 +	49.2 +	43.8 +	44.5 +	46.2 +	45.3 +	0.6138	0.0318	0.5453
(msec)	1.9	2.2	2.0	1.2	2.4	3.2	1.5	1.5	2.6			
ĤR	468 ±	491 ±	510 ±	441 ±	501 ±	556 ±	462 ±	503 ±	572 ±	0.3321	<	0.3321
(bpm)	18	17	23	4	9	23	10	12	12		0.0001	
Peak E	42.3 ±	51.1 ±	50.0 ±	45.2 ±	58.3 ±	53.0 ±	41.6 ±	52.3 ±	63.8 ±	0.2964	0.0003	0.2945
(cm/sec)	3.5	3.8	4.1	4.2	4.1	2.6	1.4	2.8	3.5			
Peak A	27.3 ±	33.5 ±	35.0 ±	$24.4 \pm$	34.4 ±	36.2 ±	28.7 ±	32.3 ±	46.7 ±	0.0852	<	0.0592
(cm/sec)	2.2	2.7	1.9	1.2	2.4	2.8	1.7	2.2	3.8		0.0001	
E:A ratio	$1.62 \pm$	1.59 ±	1.57 ±	$1.65 \pm$	1.67 ±	$1.45 \pm$	$1.52 \pm$	1.56 ±	1.41 ±	0.2417	0.1167	0.8675
	0.08	0.03	0.03	0.05	0.06	0.09	0.05	0.07	0.06			
IVSd	0.147	0.109	0.118	0.135	0.114	0.129	0.137	0.125	0.122	0.7234	<	0.0335
(cm)	±	±	±	±	±	±	±	±	±		0.0001	
	0.002	0.005	0.004	0.006	0.003	0.005	0.008	0.005	0.003			
LVIDd	0.248	0.314	0.293	0.268	0.311	0.308	0.263	0.303	0.281	0.4968	0.0001	0.6252
(cm)	±	±	±	±	±	±	±	±	±			
	0.011	0.014	0.014	0.005	0.015	0.015	0.014	0.014	0.009			
LVPWd	0.156	0.136	0.125	0.142	0.152	0.137	0.134	0.147	0.144	0.6857	0.0577	0.0241
(cm)	±	±	±	±	±	±	±	±	±			
	0.008	0.008	0.008	0.005	0.007	0.009	0.007	0.008	0.007			
IVSs	0.189	0.158	0.162	0.175	0.169	0.178	0.167	0.169	0.173	0.9053	0.0876	0.0313
(cm)	±	±	±	±	±	±	±	±	±			
1)//D	0.008	0.006	0.006	0.008	0.005	0.006	0.009	0.003	0.004	0.4400	0.0050	0.0405
LVIDS	0.160	0.193	0.185	0.192	0.192	0.185	0.186	0.188	0.172	0.4420	0.6350	0.6135
(cm)	±	±	±	±	±	± 0.015	±	±	±			
	0.007	0.013	0.015	0.010	0.010	0.015	0.012	0.014	0.010	0.2567	0.2100	0.0270
	0.171	0.150	0.141	0.100	0.174	0.100	0.149	0.107	0.157	0.2307	0.2109	0.0370
(cm)	⊥ 0.005		T 0.008	1 006	⊥ 0.010	⊥ 0.011		T 0.008	T 0.008			
FF (%)	71.0 +	76.1 +	74 1 +	67.3 +	74.0 +	78.2 ±	66.2 +	74.3 +	76.7 +	0.8585	0.004	0 5063
	1 Q	21	74.1⊥ 20	26	74.9⊥ 30	70.2⊥ 22	1 6	74.3⊥ 31	22	0.0000	0.004	0.0000
ES (%)	34.0+	39.0 +	37.5 +	2.0	39.5 +	40.9.+	30.0.+	383+	39.4 +	0.9689	0.0005	0.6390
	14	21	26	18	30	23	0.9	2.9	20	5.0000	5.0000	5.0000
IV mass	152 +	153 +	136 +	161 +	164 +	161 +	145 +	166 +	153 +	0.0925	0 1080	0 1357
(mg)	7	9	3	10	5	8	14	6	5	5.0020	5.1000	5.1007

Supplementary Table 4: Cardiac function and morphology in mice fed chow or high fat diet and administered control or 3D6 antibodies. PAF, peak aortic flow; ET, ejection time; HR, heart rate; IVSd, intraventricular septum thickness at diastole; LVIDd, left ventricular internal diameter at diastole; LVPWd, left ventricular posterior wall thickness at diastole; IVSs, intraventricular septum thickness at systole; LVIDs, left ventricular internal diameter at systole; LVPWs, left ventricular posterior wall thickness at systole; FS, ejection fraction; FS, fractional shortening. Data are mean \pm SEM, n =12 mice/group. Groups compared by mixed effects model. Tx, treatment; Int, interaction. Source data are provided in the Source Data file.

Pathway	setSize	р MANOVA	p.adjust MANOVA	s.dist	s.Aβ ₄₂	s.3D6	p.Aβ ₄₂	p.3D6
TCA cycle	22	<0.0001	0.0004	0.608	-0.350	0.498	0.0045	< 0.0001
Pyruvate metabolism and TCA cycle	50	<0.0001	<0.0001	0.567	-0.305	0.478	0.0002	< 0.0001
Pyruvate metabolism	26	0.0002	0.0030	0.484	-0.246	0.417	0.0301	0.0002
Mitochondrial biogenesis	71	0.0009	0.0014	0.268	-0.184	0.196	0.0076	0.0044
Protein localisation	141	0.0001	0.0004	0.215	-0.146	0.158	0.0028	0.0012
Neddylation	201	<0.0001	<0.0001	0.199	-0.109	0.166	0.0079	< 0.0001
Antigen processing	262	<0.0001	<0.0001	0.197	-0.075	0.182	0.0380	< 0.0001
Autophagy	117	0.0037	0.0050	0.188	-0.127	0.139	0.0178	0.0097
Chromatin modifying enzymes	188	0.0006	0.0011	0.171	-0.111	0.130	0.0002	0.0022
Chromatin organisation	188	0.0006	0.0011	0.171	-0.111	0.130	0.0002	0.0022
Hemostasis	373	<0.0001	<0.0001	0.184	0.094	-0.157	0.0019	< 0.0001
Platelet activation	187	<0.0001	<0.0001	0.214	0.098	-0.190	0.0208	< 0.0001
Elevated platelet cytosolic-Ca2+	97	0.0002	0.0005	0.252	0.148	-0.203	0.0117	0.0005
Platelet degranulation	93	0.0001	0.0003	0.269	0.158	-0.218	0.0084	0.0003
Chondroitin sulfate metabolism	40	0.0040	0.0050	0.319	0.205	-0.244	0.0076	0.0044
Kainate receptor activation	20	0.0052	0.0060	0.439	0.339	-0.278	0.0086	0.0314
Basigin interactions	18	0.0042	0.0291	0.473	0.343	-0.326	0.0118	0.0168
Thrombin signalling through PARs	21	0.0013	0.0116	0.480	0.336	-0.343	0.0076	0.0065
Gβχ signalling through BTK	11	0.0029	0.0021	0.508	0.371	-0.346	0.00331	0.0468

Supplementary Table 5: Reactome pathways reciprocally regulated in mice administered $A\beta_{42}$ or 3D6 relative to their respective control groups, as determined by mitch. MANOVA p-values (both unadjusted and adjusted for multiple comparison testing) are for pathways in two dimensions. s.dist is the enrichment score across two dimensions. s.A β_{42} and s.3D6 are the enrichment scores for the A β_{42} and 3D6 datasets respectively. p.A β_{42} and p.3D6 indicate the significance of the pathway in the A β_{42} and 3D6 datasets respectively and have been adjusted for multiple comparisons using the FDR method. Source data are provided in the Source Data file.

Supplementary Figure 1: $A\beta_{42}$ release by adipose tissue and body composition correlations with plasma $A\beta_{42}$. a, lean and fat mass in control and obese mice (n=12/group). b, fat pad mass in control and obese mice (n=12/group). c, relative release of $A\beta_{42}$ from adipose tissue exposed to vehicle or Brefeldin A (BFA; Mann-Whitney test, U=73; n=16/group). d, correlation between fat mass and plasma $A\beta_{42}$ (Pearsons correlation coefficient test; n= 20 data points). e, Correlation between lean mass and plasma $A\beta_{42}$ (Pearsons correlation coefficient test; n= 20 data points). All data are mean ± SEM. Statistical tests are two-tailed. Source data are provided in the Source Data file.

Supplementary Figure 2: Characterisation of mice administered ScrA β_{42} or A β_{42} . a, immunoblotting of increasing amounts of recombinant A β_{42} preparations. b, lean mass (n=10/group); c, fat mass (n=10/group); d, plasma insulin during a glucose tolerance test (n=9 and 10/group respectively); e glucose clearance by the quadriceps skeletal muscle (n=9 and 8/group respectively) and epididymal fat pad (n=10/group); f, ¹⁴C-glucose incorporation into cardiac lipids (n=8/group); g, plasma non-esterified fatty acids (NEFA; n=8/group); h, plasma glycerol (n=10/group); i, plasma triglycerides (TG; n=5 and 4/group respectively), and; j, plasma high-density lipoprotein cholesterol (HDL-C; n=10 and 9/group respectively) in mice administered ScrA β_{42} or A β_{42} . All data are mean ± SEM. Statistical tests are two-tailed. Source data are provided in the Source Data file.

Supplementary Figure 3: Characterisation of mice administered ScrA β_{42} or A β_{42} and ScrA β_{40} or A β_{40} . **a**, representative echocardiography images of mice administered ScrA β_{42} or A β_{42} . **b**, plasma A β_{40} 60 min after A β_{40} administration (n=12/group). **c**, body weight (n=12/group); **d**, lean mass (n=12/group); **e**, fat mass (n=12/group), and; **f**, representative echocardiography images in mice administered ScrA β_{40} or A β_{40} . All data are mean ± SEM. Statistical tests are two-tailed. Source data are provided in the Source Data file.

Supplementary Figure 4: Characterisation of mice fed a high fat diet and administered control or 3D6 antibodies. a, representative echocardiography images; b, lean mass (n=12/group); c, fat mass (n=12/group), d, blood glucose during the insulin tolerance test (n=12/group); e, blood glucose during the glucose tolerance test (n=11 and 12/group respectively); f, plasma insulin during the glucose tolerance test (n=9 and 10/group respectively), and; g, cardiac deceleration time expressed as a percentage of the cardiac cycle (mixed effects model (time P = 0.0140, F(1,18) = 7.407) with Sidak's repeated measures test *P*.adjusted; n=12 and 8/group respectively) pre- and post-treatment in mice fed a high fat diet and administered control and 3D6 antibodies. All data are mean ± SEM. Statistical tests are two-tailed. Source data are provided in the Source Data file.

Supplementary Figure 5: Characterisation of mice fed a high fat diet and administered control or 3D6 antibodies. a, representative echocardiography images; b, fat mass (one-way ANOVA (P < 0.0001; F(2,33) = 177.6) with Sidak's repeated measures test *P*.adjusted; n=12/group); c, lean mass (n=12/group), d, fasting blood glucose (n=12/group); e, fasting plasma insulin (Kruskal-Wallis test (P = 0.0011; $X^2 = 13.66$) with Dunn's repeated measures test *P*.adjusted; n=12, 12 and 11/group respectively). f, cardiac deceleration time expressed as a percentage of the cardiac cycle (mixed effects model (time P < 0.0001, F(2,56) = 56.37; treatment P = 0.0044, F(2,32) = 6.445; interaction P = 0.0145, F(4,56) = 3.410) with Sidak's repeated measures test *P*.adjusted; n=12/group); g, plasma ³H concentration in mice fed regular chow and administered control antibody, or mice fed a high fat diet (HFD) and administered control or 3D6 antibodies (n=7, 8 and 8/group respectively). All data are mean ± SEM. Statistical tests are two-tailed. Source data are provided in the Source Data file.

Supplementary Figure 6: Mechanisms by which $A\beta_{42}$ has its effects on the heart. a, input profile defined as differential expression score defined as the sign of the fold change multiplied by the -log10(p-value); b, gene ranks from bulk RNA-seq analysis of gene expression in the hearts of mice administered $A\beta_{42}$ compared with mice administered Scr $A\beta_{42}$ (x-axis) and hearts of mice administered 3D6 antibody compared with mice administered control antibody (yaxis). c, $A\beta_{42}$ in mitochondrial fractions isolated from adipose tissue, skeletal muscle and liver of chow or HFD-fed mice (unpaired t-test; n=6 and 7/group respectively). All data are mean ± SEM. Statistical tests are two-tailed. Source data are provided in the Source Data file.

Supplementary Figure 7: Effect of $A\beta_{42}$ on cardiomyocytes. a, extracellular lactate dehydrogenase (LDH) in primary neonatal ventricular cardiomyocytes (NVCM) exposed to ScrAb₄₂ or Ab₄₂ for 48 hr (n=12 biological replicates/group). b, basal oxygen consumption rate (OCR) in FAO hepatocytes exposed to ScrA β_{42} or A β_{42} (ScrA β_{42} at 300, 100 and 0pM and co-incubated with A β_{42} at 0, 200 and 300pM) for 48 hrs with glucose and pyruvate as exogenous substrates (n=10 biological replicates/group). c, inhibition of respiration in response to increasing concentrations of oligomycin in primary NVCM exposed to ScrA β_{42} or A β_{42} for 48 hrs (n=5 biological replicates/group). All data are mean ± SEM. Source data are provided in the Source Data file.