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Sample Python Code Snippet to Access Neo4COVID19 Database 
via API 
 

 

Details on how to install the “py2neo” Python library [1], [2] are provided at 

https://py2neo.org/v4/. 

  

Sample Python code snippet to connect to the Neo4j database and retrieve the result of the 

CYPHER query [3]. 

 

from py2neo import * 

graph = Graph(host="neo4covid19.ncats.io", bolt_port=7687, user='', password = '', secure = True) 

graph.run("MATCH (t:Target) RETURN t LIMIT 5").data() 

 

Furthermore, a script distributed as part of the https://github.com/ncats/neo4covid19 source code 

repository [4] provides specific examples to query the Neo4COVID19 database. The file is 

located under neo4covid19/code/generate_stats.py  where the “neo4covid19/” part of the 

path is the root of the repository.  

  



Pseudo-Code of the Data Integration Workflow 
 

Here we provide the pseudo-code of the data integration workflow conceptualized by Fig 1. The 

name of the variables associated with input data sources is identical to the label of the respective 

data track.  

 

Algorithm 

 
 
Variable: DataFrame allHostProtein 
Variable: DataFrame allPathogenProtein 
Variable: DataFrame allDrug 
Variable: DataFrame allHPI 
Variable: DataFrame allPPI 
Variable: DataFrame allDTI 
 
 
function aggregate_df (DataFrame df, String[] agg_cols, String method) begin 
 
 df = df.aggregate (agg_cols, method) 
 
 return (df) 
 
end function 
 
 
 
 
function aggregate_individual_dataset (DataFrame df, String data_type) begin 
  
 Variable: Dictionary agg_cols{} = { 
  "hpi":["pathogen_protein", "host_protein", "interaction", "mechanism"], 
  "ppi":["host_protein_a", "host_protein_b", "interaction", "mechanism", "metadata"], 
  "dti":["drug_name", "host_protein", "action_type"], 
  "host_protein":["host_protein", "activation", "activation_type"], 
  "pathogen_protein":["pathogen_protein"], 
  "drug":["drug_name"] 
 } 
 
  
 agg_cols = agg_cols[data_type] 



   
 df = aggregate_df (df, agg_cols, “first”) 
  
 return (df) 
 
end function 
 
 
 
function aggregate_datasets (DataFrame df, String data_type) begin 
  
 Variable: agg_cols{} = { 
  "hpi":["pathogen_protein", "host_protein"], 
  "ppi":["host_protein_a", "host_protein_b"], 
  "dti":["drug_name"], 
  "host_protein":["host_protein"], 
  "pathogen_protein":["pathogen_protein"], 
  "drug":["drug_name"] 
 } 
 
  
 agg_cols = agg_cols[data_type] 
   
 df = aggregate_df (df, agg_cols, “concatenate”) 
  
 return (df) 
 
end function 
 
 
 
extract_host_proteins (DataFrame df, String data_type) begin 
 
 Variable: DataFrame proteins [] 
 Variable: String agg_cols[] 
 
 agg_cols = ["host_protein", "data_source"] 
 
 
 if data_type == "hpi" then 
 begin 
  proteins = hpi ["host_protein", "data_source", "prioritized_for_pathway_analysis", 
"do_ppi_expansion"] 
  proteins = aggregate_df (df, agg_cols, “first”) 
    
 else if data_type == "ppi" then 
  proteins = ppi ["host_protein_a", "data_source", "prioritized_for_pathway_analysis", 
"do_ppi_expansion"] 
  proteins = proteins.appendByRow (ppi ["host_protein_b", "data_source"]) 



  proteins = aggregate_df (df, agg_cols, “first”) 
  
 else if data_type == "dti" then 
  proteins = ppi ["host_protein", "data_source", "prioritized_for_pathway_analysis", 
"do_ppi_expansion"] 
  proteins = aggregate_df (df, agg_cols, “first”) 
 end if 
 
 return (proteins) 
 
end function 
 
 
 
extract_pathogen_proteins (DataFrame df) begin 
 
 Variable: DataFrame proteins [] 
 Variable: String agg_cols[] 
 
 agg_cols = ["host_protein", "data_source"] 
 
 
 proteins = hpi ["host_protein", "data_source", "prioritized_for_pathway_analysis", 
"do_ppi_expansion"] 
 proteins = aggregate_df (df, agg_cols, “first”) 
 
 return (proteins) 
 
end function 
 
 
 
extract_drugs (DataFrame df) begin 
 
 Variable: DataFrame drugs [] 
 Variable: String agg_cols[] 
  
 agg_cols = ["host_protein", "data_source"] 
 drugs = df["drug_name"] 
 proteins = aggregate_df (df, agg_cols, “first”) 
 
 return (drugs) 
 
end function 
 
 
 
 
 



function neo4covid19 (DataFrame data_registry) 
begin 
 
 Variable: String VIHPs[] 
 Variable: String proteins_for_sg[] 
 Variable: String proteins_for_string[] 
 
  
 Variable: DataFrame PPI_SG 
 Variable: DataFrame PPI_STRING 
 Variable: DataFrame DTI_DC 
  
 for each row in data_registry begin 
  df = read(row["filename"]) 
 

// function that performs resource specific data harmonization implemented by the 
investigator 

  df = standardize (df, row["harmonization_schema"])  
 
  df = aggregate_individual_dataset (df, row["data_type"]) 
   
  if row["data_type"] == "host_protein": 
   allHostProtein = allHostProtein.appendByRow (df) 
 
  else if row["data_type"] == "hpi": 
   allHPI = allHPI.appendByRow (df) 
   allHostProtein = allHostProtein.appendByRow (extract_host_proteins(df, 
"hpi")) 
   allPathogenProtein = allPathogenProtein.appendByRow 
(extract_pathogen_proteins(df)) 
 
  else if row["data_type"] == "dti": 
   allDTI = allDTI.appendByRow (df) 
   allHostProtein = allHostProtein.appendByRow (extract_host_proteins(df, "dti")) 
   allDrug = allDrug.appendByRow (extract_drugs(df)) 
    
 end for 
 
 proteins_for_sg = unique(allHostProtein[prioritized_for_ppi_analysis == True]["host_protein"]) 
  
 
 PPI_SG = do_smartgraph_analysis (proteins_for_sg, VIHPs) 
  PPI_SG = standardize (PPI_SG, "smart_graph") 
 PPI_SG = aggregate_individual_dataset (PPI_SG, "ppi") 
 
 allPPI = PPI_SG 
  
 
 proteins_for_string = unique(allHostProtein[do_ppi_expansion == True]["host_protein"] 



 VIHPs = unique(allHostProtein["host_protein"] - proteins_for_string)  
  

// function to do assemble a PPI subnetwork from STRING induced byhost proteins 
PPI_STRING = do_string_expansion (proteins_for_string)  

  
 PPI_STRING = standardize (PPI_SG, "string") 
 PPI_STRING = aggregate_individual_dataset (PPI_STRING, "ppi") 
    
 allPPI = allPPI.appendByRow (PPI_STRING) 
    
 allHostProtein = allHostProtein.appendByRow (extract_host_proteins(PPI_SG, "ppi")) 
 allHostProtein = allHostProtein.appendByRow (extract_host_proteins(PPI_STRING, "ppi")) 
  
  
 allHostProtein = aggregate_datasets (allHostProtein, "host_protein") 
 allPathogenProtein = aggregate_datasets (allPathogenProtein, "pathogen_protein") 
 
 allPPI = aggregate_datasets (allPPI, "ppi") 
 allHPI = aggregate_datasets (allHPI, "hpi") 
  
 
 
 // function to extract DTIs from DrugCentral based on the implicated host proteins 

DTI_DC = getDTIsFromDrugCentral (allHostProtein)  
 
 allDTI = allDTI.appendByRow (DTI_DC) 
  
 allDTI = aggregate_datasets (allDTI, "dti") 
  
  
 allDrug = extract_drugs (allDTI) 
  

 
// function that assigns TDL category for host proteins 

 allHostProtein = annotateTDL (allHostProtein)  
  
 

// function that cross references PPIs to a reference PPI database, such as Reactome 
 allPPI = crossReferencePPIs (allPPI)  
 
 

// function that builds the Neo4j database from the provided arguments 
 buildNeo4jDatabase(allHostProtein, allPathogenProtein, allDrug, allPPI, allHPI, allDTI)  
     
 
end function  



Reproducing the Integration Workflow 
 
A detailed description regarding the compilation of the Neo4COVID19 database is provided at 

https://github.com/ncats/neo4covid19/blob/master/README.md [1]. Besides the compilation 

process, the description includes instructions for setting up the necessary environment. 

 

In order to reproduce the workflow, provided the required Python [1] environment has been set 

up, a local copy of the neo4covid19 repository needs to be created as follows. 

git clone https://github.com/ncats/neo4covid19 

 

Note, that paths referring to files in this manuscript start with “neo4covid19”. In this context, 

neo4covid19 points to the root directory of the local copy of the cloned repository.  

 

The first stage of the workflow is executed as: 

python harmonize.py 

 

This is followed by assembling the SmartGraph subnetwork. For details, please refer to section 

“Assembly of the SmartGraph Subnetwork”. 

 

Once a subnetwork was assembled with the help of SmartGraph, process the results as: 

 

python process_sg.py 

 

The last stage of the workflow is executed as: 

python compile.py 



Assembly of the SmartGraph Subnetwork 
 
 
In order to reveal potential connection between histone acetyltransferases (HATs) and SARS-

CoV-2 virus implicated host proteins (VIHPs), we performed network analysis with the help of 

the SmartGraph platform [5]. Since a set of VIHPs is compiled in the integration workflow, it 

was necessary to implement a breakpoint in the workflow. Upon completion of the first part of 

the workflow, SmartGraph analysis is performed, and the results are subsequently fed to the 

second stage of the workflow to finish the integration. While this scenario is not ideal, at the time 

of the workflow creation, the SmartGraph platform did not provide API access. 

 

The gene names of VIHPs and of HATs were mapped to UniProt IDs [6]–[8] to comply with the 

SmartGraph input requirements.  

 

Below are listed the detailed steps to assemble the SmartGraph subnetwork. Assuming you have 

created a local copy of the neo4covid19 repository (see above), perform the following steps: 

 

1. Go to SmartGraph (https://smartgraph.ncats.io). 

2. Clear the fields "Start Nodes" and "End Nodes" then click on "clear graph". 

3. Copy the IDs in column ‘uniprot_id’ of file neo4covid19/data/output/sg_proteins_a.tsv (note that 

the “neo4covid19” points to the root of the neo4covid19 repository). Insert this set of UniProt IDs as 

"Start Nodes" in SmartGraph (https://smartgraph.ncats.io). 

 
4. Copy the UniProt IDs from the output of Step 1 located 

at neo4covid19/data/output/sg_proteins_b.tsv . Copy the UniProt IDs and insert them as "End 

Nodes" in SmartGraph. 



5. Set the "Max Distance" parameter to 3. 

6. Leave the "PPI Confidence Level" to its default value, i.e. 0.00. 

7. Click on "find shortest path". 

8. Once the network is assembled in SmartGraph, click on "Download graph", select "Cytoscape 

JSON", then rename the downloaded file to SG_HATs_dist_3_conf_0.00.json and place the file 

into neo4covid19/data/input/. 

9. Repeat steps 2-7 but this time use the HATs as “End Nodes” and the UniProt IDs in 

neo4covid19/data/output/unique_host_proteins_prestring.txt as “Start Nodes”. 

10. Save the resultant network in "Cytoscape JSON" format and save it 

as SG_HATs_reverse_dist_3_conf_0.00.json and place the file into neo4covid19/data/input/. 

 
  



Expansion of PPIs via StringApp API 
 
 

Expanding the PPIs present in a preliminary Neo4COVID-19 network was performed in a two-

step procedure employing the STRING [9] and stringApp APIs [10]. 

 

In the first step, the gene symbols of human proteins in pre-expanded Neo4COVID-19 network 

were translated into the STRING database identifiers with the STRING API. We utilized the 

following URL for this API call: https://string-db.org/api/tsv-no-header/get_string_ids . Gene 

symbols were passed to parameter identifiers as a newline “\n” separated string (without 

quotation marks). Mapping of gene identifiers was forced to a one-to-one mapping by selecting 

the “best” STRING ID for a given gene symbol by setting limit to 1. In addition, we limited the 

mapping to human genes only by setting species to 9606; we included the original IDs in the 

results by setting echo_query to 1; and we provided a string to our liking for caller_identity. 

 

Next, with the returned STRING database IDs we made a second API call to URL 

https://api.jensenlab.org/network . The STRING database IDs were passed to the 

entities parameter as a newline “\n” separated string. The additional parameter was set to 

100, which defines the maximal number of proteins the original network can be extended with. 

Parameter alpha was set to its default value of 0.5.  

 

The basis of the expansion is the computation of a connectivity score for proteins not in the 

query network. The connectivity score is a ratio of the total connectivity score of a given protein 

to the query proteins versus its total connectivity score to all proteins in STRING database [Ref]. 



For more details, please refer to the section “Network Expansion” in the study of Doncheva et al. 

[10]. 

 

Of note, the following genes present in the pre-extension network were excluded from the 

STRING extension process as they produced errors when included into the API call: ELOC, 

EP300, SLC25A5, TUBA1A, STAT1, ELOB, RBX1, CREBBP, SKP1. 

 

Applying Custom Visual Style to the Imported Network in 
Cytoscape 

 
 
Instructions below are provided for Cytoscape v3.8.2 [11]. The file containing the custom 

Cytoscape visual style (style_Neo4COVID19.xml) is distributed as part of the Neo4COVID19 

code repository (neo4covid19/code/style_Neo4COVID19.xml) [4]. The process of importing 

and applying the custom style is shown on Fig S2.  

 
 

Mapping of Viral Gene Names 

 

We have established a mapping between the viral gene names predicted by P-HIPSTer [12], [13] 

and those reported in the interactome study by [14], [15] The mapping is provided on sheets  

“ID_Mapping” and “Sheet1_MappedIDs” in the file data/output/Merged.xlsx in the neo4covid19 

repository [4]. 

  



Reproducing the Use Cases 
 

Instructions below are provided for Cytoscape v3.8.2 [11] with Cytoscape Neo4j Plugin v0.4 

[16]. 

1. Network assembly 

• Establish network connection: 

Apps > Cypher Queries > Connect to Neo4j Instance 

Provide aspire.covid19.ncats.io:7687 as Hostname, leave rest of the form empty, then click on 

Connect. 

• Import bipartite HPI network 

Apps > Cypher Queries > Import Cypher Query 

Enter this Cypher Query: 

match (n)-[r:HPI]->(m) return n,r,m 

Click on Execute Query. 

 

2. Apply visual style 

• Please refer to “Applying Custom Visual Style to the Imported Network in Cytoscape” section in SI.  

3. Topology analysis 

• Tools -> Analyze Network ... 

Check in the checkbox next to “Analyze as Directed Graph?”, 

click on OK  

4. Adjust node size as a function of “EdgeCount” 

• Click on Style on the left panel and select Neo4COVID19 in the drop-down box. 

• Click on Node on the bottom of the visualization panel. 

• Select Size, set Column to EdgeCount, then set Mapping to Continuous Mapping. 



• Adjust the gradient as shown on the small panel until there is a good separation between low and high 

degree nodes.  

 
  



Figures 

Figure S1. Importing Neo4COVID19 graph database into Cytoscape – part 1. A) Installing 

the “Cytoscape Neo4j Plugin” [16] by navigating to “Apps -> App Manager…”, typing “Cytoscape 

Neo4j Plugin” in the search bar, selecting the plugin from the results and finally clicking 

“Install”. B) Establishing Neo4j Bolt connection (“Apps > Cypher Queries > Connect to Neo4j 

Instance”). Note, that neither username nor password is required. Host: 

aspire.covid19.ncats.io:7687 . Screenshots were made from the Cytoscape application.  



 

Figure S2. Importing Neo4COVID19 graph database into Cytoscape – part 2. A) Cypher 

query to import the entire Neo4COVID19 network into Cytoscape (“Apps > Cypher Queries > 

Import Cypher Query”, query: match (n)-[r]->(m) return n,r,m ) . B) Resultant network (after 

applying the custom visual settings). Nodes representing host and viral proteins, and drugs are 

denoted by circle, “V”, and diamond shaped nodes, respectively. Where applicable, the target 

development category (TDL) [17], [18] of proteins are color-coded according to legend. 

Screenshots were made from the Cytoscape application.  



 

 
 
 
Figure S3. Customizing network visualization. A) Importing the “style_Neo4COVID19.xml” 

file that contains the custom visual style definition. B) Applying the custom visual style 

“Neo4COVID19”. Screenshots taken from Cytoscape 3.8.2. 



Tables 
 

 

Table S1. Node and edge attributes of the Neo4COVID19 graph database. Fields highlighted 
by gray color were derived from the integrated data sources automatically. 

Drug Host Protein Pathogen Protein DTI HPI PPI
abbreviated_data_source X X X X X X
acquisition_method X X X X X X
activation X X
activation_type X X
CAS_RN X
data_source X X X X X
directed X X X
drug_name X
edge_label X X X
edge_type X X X
gene_symbol X
inchi X
inchi_key X
interaction X X
is_activity_known X
is_experimental X X X X X X
mechanism X X
metadata X X X X X X
name X X X
node_type X X X
ns_inchi_key X
p_chembl X
ref_annotation X
ref_direction X
ref_interaction X
ref_score X
smiles X
source_node X X X
source_node_uuid X X X
source_specific_score X X X X X
source_specific_score_type X X X X X
target_node X X X
target_node_uuid X X X
tdl X X
uniprot X
uuid X X X X X X
is_in_dti_dc X X
is_in_ppi_sg X X
is_in_ppi_string X X
is_in_dti_jm_cam X X X
is_in_dti_jm_hcq X X X
is_in_dti_jm_nhc X X X
is_in_hostprot_crispr X
is_in_hostprot_hats X
is_in_hostprot_nat X
is_in_hostprot_taiml X
is_in_hpi_krogan X X X
is_in_hpi_phipster X X X

Nodes EdgesField name Field Code Changed



 

Integration of Additional Datasets via Data Registry Mechanism 
 

 

The workflow of this study provides a mechanism that facilitates the extension of the 

Neo4COVID19 by additional datasets. The mechanism is comprised of maintaining a “registry” 

file of datasets and an internal standard structure of various type of data, i.e. PPIs, HPIs, DTIs, 

host and pathogen proteins, and drugs. Of note, addition of PPIs (from STRING [9]), and DTIs 

and drug information (DrugCentral [19]) is already integrated into the workflow. Furthermore, 

data sources focused on pathogen proteins can be added as HPI, where the host protein might be 

defined as an unknown host protein. 

The mechanism currently supports the semi-automated extension of the Neo4COVID19 database  

by three types of data Namely, HPIs, host protein targets and drug-target interactions which 

datatypes, be it experimental or predicted, are expected to emerge rapidly in the case of a 

pandemic. Accordingly, additional datasets need to be included into the file that is distributed 

with the repository (please refer to section “Reproducing the Integration Workflow” in order to 

interpret this file location correctly): 

 

neo4covid19/input/data_source_registry.txt . 

 

The file contains several fields that need to be specified by the investigator in connection with 

each dataset to be integrated, see Table S2 for details. Once a new dataset was registered in the 

file, a new if statement needs to be added in the standardize_data() function of the 

neo4covid19/code/harmonize.py  source code file. Subsequently, a new function needs to be created 



in neo4covid19/code/standardize.py that converts the respective input to the standard internal 

format of the corresponding datatype. Note, that the “abbreviated_data_source” information will be 

automatically converted to Boolean database fields in Neo4j. In this process, each unique value 

of this field in the context of a specific data type will become a Boolean field. These fields allow 

for the facile filtering of data sources based on data provenance. 

 

Additional data sources beyond the currently supported host protein, HPI, and DTI data types 

might be integrated into the workflow via bypassing the data registry mechanism. However, this 

will require substantial modification of the source the discussion of which is outside of the scope 

of this study. Nonetheless, in Table S3 we provide the specifications for the standardized internal 

data formats of all data basic types used to build the Neo4COVID19 database, namely HPI, PPI, 

DTI, host protein, pathogen protein and drug types. This information can provide guidance for 

the implementation of new code logic that integrates potentially any arbitrary data sets as long as 

they can be converted to the specified format [20]. 

 

 

  



Field Name Field Value Syntax 

input filename if input is TAB-separated file, or 
filename;sheet_name if input is an Excel (.xlsx) file 

data_type hpi / host_protein / dti 

is_experimental TRUE / FALSE 

data_source free text: short descritption of datasource 

abbreviated_data_source 
free text: abbreviation of datasource, suggestion: indicate 
dataype in abrevviation, e.g. hpi_mydata, 
hostprot_mydata2, dti_mylab 

original_score 
na/column_name (column_name: name of column in input 
file containing the score/confidence value associated with 
the data type) 

original_score_type na/score_type (score_type, free text, indicating the type of 
original_score, e.g. P-value, confidence, p_chembl, etc.) 

prioritized_for_pathway_analysis 

TRUE/FALSE  (host proteins flagged as TRUE in this field will 
be treated as starting nodes in SmartGraph pathway 
analysis, and all other host proteins upstream of the STRING 
expansion in the workflow will be treated as destination 
targets in SmartGraph, and vice versa) 

do_ppi_expansion TRUE / FALSE 

harmonization_schema 

string: you will need to add this harmonization scheme into 
the harmonize.py and implement the logic accordingly in 
standardize.py, example values: dh_dti_mylab, dh_targets, 
etc. 

acquisition_method free text: describing how the data was acquired 

metadata_columns semicolon separated list of column names in input file which 
should be converted into metadata 

is_directed TRUE / FALSE / na   (use “na” for host protein target data 
type) 

 

Table S2. Structure of data registry file. Field names, data types and indicated TRUE/FALSE 

and “na” values are case-sensitive. 

  



 

Table S3. Definition of mandatory and optional fields of internal data structure. 

Abbreviations: “m”: mandatory, “o / na”: optional, or fill with literal string “na” if not 

applicable/available. Empty fields should not be included in a given type of data structure. Data 

types shaded by gray are not yet supported via the data registry mechanism, but such types of 

data can be added to the workflow via the source code, provided that the indicated data structure 

is observed. However, PPI and drug information are automatically pulled in from pre-defined 

sources in the workflow, and pathogen proteins can be added as HPIs via the data registry 

mechanism. Field names are case-sensitive. 

  

Host Protein HPI DTI PPI Pathogen Protein Drug

host_protein   (string, gene symbol) m m m

pathogen_protein     (string, name) m m

host_protein_a   (string, gene_symbol) m

host_protein_b   (string, gene_symbol) m

drug_name   (string) m m

interaction   (string) m m

mechanism   (string) m m

action_type   (string) m

p_chembl   (string) m

directed   (bool) m m m

metadata                                             
(string, format: key1:value1;key2:value2)

o / na o / na o / na o / na o / na o / na

abbreviated_data_source   (string) m m m m m m

is_experimental   (bool) m m m m m m

data_source   (string) m m m m m m

acquisition_method   (string) m m m m m m

prioritized_for_pathway_analysis    (bool) m m m m m

do_ppi_expansion    (bool) m m m m m

source_specific_score   (string) o / na o / na o / na o / na o / na

source_specific_score_type   (string) o / na o / na o / na o / na o / na

activation   (string) o / na o / na

activation_type   (string) o / na o / na

smiles   (string) o / na

inchi   (string) o / na

inchi_key   (string) o / na

ns_inchi_key   (string) o / na

CAS_RN   (string) o / na

Field Code Changed



References 
 
 
 
 
[1] “Python Core Team. Python: A Dynamic, Open Source Programming Language. Python 

Software Foundation.” https://www.python.org/. 

[2] “Python Library ‘py2neo’ v4.” . 

[3] “Neo4j Graph Database.” https://neo4j.com/. 

[4] “Code Repository ‘neo4covid19.’” https://github.com/ncats/neo4covid19.git. 

[5] G. Zahoránszky-Kőhalmi, T. Sheils, and T. I. Oprea, “SmartGraph: A Network 

Pharmacology Investigation Platform,” J. Cheminform., vol. 12, no. 1, p. 5, Dec. 2020, 

doi: 10.1186/s13321-020-0409-9. 

[6] “UniProt: A Worldwide Hub of Protein Knowledge,” Nucleic Acids Res., vol. 47, no. D1, 

pp. D506–D515, Jan. 2019, doi: 10.1093/nar/gky1049. 

[7] T. U. Consortium, “UniProt: The Universal Protein Knowledgebase,” Nucleic Acids Res., 

vol. 45, no. D1, pp. D158–D169, 2016, doi: 10.1093/nar/gkw1099. 

[8] “UniProt Proggrammatic Service for ID Mapping.” 

https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by

_organism/HUMAN_9606_idmapping.dat.gz. 

[9] D. Szklarczyk et al., “STRING v11: Protein–Protein Association Networks With 

Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental 

Datasets,” Nucleic Acids Res., vol. 47, no. D1, pp. D607–D613, Jan. 2019, doi: 

10.1093/nar/gky1131. 

[10] N. T. Doncheva, J. H. Morris, J. Gorodkin, and L. J. Jensen, “Cytoscape StringApp: 



Network Analysis and Visualization of Proteomics Data,” J. Proteome Res., vol. 18, no. 2, 

pp. 623–632, Feb. 2019, doi: 10.1021/acs.jproteome.8b00702. 

[11] P. Shannon, “Cytoscape: A Software Environment for Integrated Models of Biomolecular 

Interaction Networks,” Genome Res., vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi: 

10.1101/gr.1239303. 

[12] G. Lasso et al., “A Structure-Informed Atlas of Human-Virus Interactions,” Cell, vol. 178, 

no. 6, pp. 1526-1541.e16, Sep. 2019, doi: 10.1016/j.cell.2019.08.005. 

[13] “P-HIPSTer.” http://phipster.org/. 

[14] D. E. Gordon et al., “A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug 

Repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, Jul. 2020, doi: 10.1038/s41586-

020-2286-9. 

[15] Krogan, “A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug 

Repurposing,” [Online]. Available: 

https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3. 

[16] S. Warris, S. Dijkxhoorn, T. van Sloten, and B. van de Vossenberg, “Mining Functional 

Annotations Across Species,” bioRxiv, 2018, doi: 10.1101/369785. 

[17] D.-T. Nguyen et al., “Pharos: Collating Protein Information to Shed Light on the 

Druggable Genome,” Nucleic Acids Res., vol. 45, no. D1, pp. D995–D1002, Nov. 2016, 

doi: 10.1093/nar/gkw1072. 

[18] T. I. Oprea et al., “Unexplored Therapeutic Opportunities in the Human Genome,” Nat. 

Rev. Drug Discov., vol. 17, p. 317, Mar. 2018, [Online]. Available: 

https://doi.org/10.1038/nrd.2018.14. 

[19] O. Ursu et al., “DrugCentral 2018: An Update,” Nucleic Acids Res., vol. 47, no. D1, pp. 



D963–D970, Jan. 2019, doi: 10.1093/nar/gky963. 

[20] The Authors are thankful for the suggestions of Reviewer 2 regarding improving the 

workflow by the addition of data source “plug-in” mechanism and more robust data 

standardization. 


