
Supporting Information

A Workflow of Integrated Resources to Catalyze Network-

Pharmacology Driven COVID-19 Research

Gergely Zahoránszky-Kőhalmi *,1, Vishal B. Siramshetty1, Praveen Kumar2,3, Manideep Gurumurthy1,

Busola Grillo1, Biju Mathew1, Dimitrios Metaxatos1, Mark Backus1, Tim Mierzwa1, Reid Simon1,

Ivan Grishagin1,4, Laura Brovold4, Ewy A. Mathé1, Matthew D. Hall1, Samuel G. Michael1,

Alexander G. Godfrey1, Jordi Mestres5, Lars J. Jensen6, Tudor I. Oprea*,2, 6, 7, 8

1National Center for Advancing Translational Sciences, Rockville, 9800 Medical Center Dr., MD 20850, USA

2Department of Internal Medicine, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque,

NM 87131, USA

3Department of Computer Science, University of New Mexico, 1 University of New Mexico Albuquerque, NM 87131, USA

4Rancho BioSciences LLC., 16955 Via Del Campo Suite 200, San Diego, CA 92127, USA

5Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar

Medical Research Institute and University Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain.

6Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen,

Blegdamsvej 3B, 2200 Copenhagen N, Denmark

7UNM Comprehensive Cancer Center, 1201 Camino de Salud NE, Albuquerque, NM 87102, USA

8Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of

Gothenburg, Box 480, 40530 Gothenburg, Sweden

*Corresponding authors:

Tudor I. Oprea, MD, PhD: toprea@salud.unm.edu

Gergely Zahoranszky-Kohalmi, PhD: gergely.zahoranszky-kohalmi@nih.gov

Sample Python Code Snippet to Access Neo4COVID19 Database
via API

Details on how to install the “py2neo” Python library [1], [2] are provided at

https://py2neo.org/v4/.

Sample Python code snippet to connect to the Neo4j database and retrieve the result of the

CYPHER query [3].

from py2neo import *

graph = Graph(host="neo4covid19.ncats.io", bolt_port=7687, user='', password = '', secure = True)

graph.run("MATCH (t:Target) RETURN t LIMIT 5").data()

Furthermore, a script distributed as part of the https://github.com/ncats/neo4covid19 source code

repository [4] provides specific examples to query the Neo4COVID19 database. The file is

located under neo4covid19/code/generate_stats.py where the “neo4covid19/” part of the

path is the root of the repository.

Pseudo-Code of the Data Integration Workflow

Here we provide the pseudo-code of the data integration workflow conceptualized by Fig 1. The

name of the variables associated with input data sources is identical to the label of the respective

data track.

Algorithm

Variable: DataFrame allHostProtein
Variable: DataFrame allPathogenProtein
Variable: DataFrame allDrug
Variable: DataFrame allHPI
Variable: DataFrame allPPI
Variable: DataFrame allDTI

function aggregate_df (DataFrame df, String[] agg_cols, String method) begin

 df = df.aggregate (agg_cols, method)

 return (df)

end function

function aggregate_individual_dataset (DataFrame df, String data_type) begin

 Variable: Dictionary agg_cols{} = {
 "hpi":["pathogen_protein", "host_protein", "interaction", "mechanism"],
 "ppi":["host_protein_a", "host_protein_b", "interaction", "mechanism", "metadata"],
 "dti":["drug_name", "host_protein", "action_type"],
 "host_protein":["host_protein", "activation", "activation_type"],
 "pathogen_protein":["pathogen_protein"],
 "drug":["drug_name"]
 }

 agg_cols = agg_cols[data_type]

 df = aggregate_df (df, agg_cols, “first”)

 return (df)

end function

function aggregate_datasets (DataFrame df, String data_type) begin

 Variable: agg_cols{} = {
 "hpi":["pathogen_protein", "host_protein"],
 "ppi":["host_protein_a", "host_protein_b"],
 "dti":["drug_name"],
 "host_protein":["host_protein"],
 "pathogen_protein":["pathogen_protein"],
 "drug":["drug_name"]
 }

 agg_cols = agg_cols[data_type]

 df = aggregate_df (df, agg_cols, “concatenate”)

 return (df)

end function

extract_host_proteins (DataFrame df, String data_type) begin

 Variable: DataFrame proteins []
 Variable: String agg_cols[]

 agg_cols = ["host_protein", "data_source"]

 if data_type == "hpi" then
 begin
 proteins = hpi ["host_protein", "data_source", "prioritized_for_pathway_analysis",
"do_ppi_expansion"]
 proteins = aggregate_df (df, agg_cols, “first”)

 else if data_type == "ppi" then
 proteins = ppi ["host_protein_a", "data_source", "prioritized_for_pathway_analysis",
"do_ppi_expansion"]
 proteins = proteins.appendByRow (ppi ["host_protein_b", "data_source"])

 proteins = aggregate_df (df, agg_cols, “first”)

 else if data_type == "dti" then
 proteins = ppi ["host_protein", "data_source", "prioritized_for_pathway_analysis",
"do_ppi_expansion"]
 proteins = aggregate_df (df, agg_cols, “first”)
 end if

 return (proteins)

end function

extract_pathogen_proteins (DataFrame df) begin

 Variable: DataFrame proteins []
 Variable: String agg_cols[]

 agg_cols = ["host_protein", "data_source"]

 proteins = hpi ["host_protein", "data_source", "prioritized_for_pathway_analysis",
"do_ppi_expansion"]
 proteins = aggregate_df (df, agg_cols, “first”)

 return (proteins)

end function

extract_drugs (DataFrame df) begin

 Variable: DataFrame drugs []
 Variable: String agg_cols[]

 agg_cols = ["host_protein", "data_source"]
 drugs = df["drug_name"]
 proteins = aggregate_df (df, agg_cols, “first”)

 return (drugs)

end function

function neo4covid19 (DataFrame data_registry)
begin

 Variable: String VIHPs[]
 Variable: String proteins_for_sg[]
 Variable: String proteins_for_string[]

 Variable: DataFrame PPI_SG
 Variable: DataFrame PPI_STRING
 Variable: DataFrame DTI_DC

 for each row in data_registry begin
 df = read(row["filename"])

// function that performs resource specific data harmonization implemented by the
investigator

 df = standardize (df, row["harmonization_schema"])

 df = aggregate_individual_dataset (df, row["data_type"])

 if row["data_type"] == "host_protein":
 allHostProtein = allHostProtein.appendByRow (df)

 else if row["data_type"] == "hpi":
 allHPI = allHPI.appendByRow (df)
 allHostProtein = allHostProtein.appendByRow (extract_host_proteins(df,
"hpi"))
 allPathogenProtein = allPathogenProtein.appendByRow
(extract_pathogen_proteins(df))

 else if row["data_type"] == "dti":
 allDTI = allDTI.appendByRow (df)
 allHostProtein = allHostProtein.appendByRow (extract_host_proteins(df, "dti"))
 allDrug = allDrug.appendByRow (extract_drugs(df))

 end for

 proteins_for_sg = unique(allHostProtein[prioritized_for_ppi_analysis == True]["host_protein"])

 PPI_SG = do_smartgraph_analysis (proteins_for_sg, VIHPs)
 PPI_SG = standardize (PPI_SG, "smart_graph")
 PPI_SG = aggregate_individual_dataset (PPI_SG, "ppi")

 allPPI = PPI_SG

 proteins_for_string = unique(allHostProtein[do_ppi_expansion == True]["host_protein"]

 VIHPs = unique(allHostProtein["host_protein"] - proteins_for_string)

// function to do assemble a PPI subnetwork from STRING induced byhost proteins
PPI_STRING = do_string_expansion (proteins_for_string)

 PPI_STRING = standardize (PPI_SG, "string")
 PPI_STRING = aggregate_individual_dataset (PPI_STRING, "ppi")

 allPPI = allPPI.appendByRow (PPI_STRING)

 allHostProtein = allHostProtein.appendByRow (extract_host_proteins(PPI_SG, "ppi"))
 allHostProtein = allHostProtein.appendByRow (extract_host_proteins(PPI_STRING, "ppi"))

 allHostProtein = aggregate_datasets (allHostProtein, "host_protein")
 allPathogenProtein = aggregate_datasets (allPathogenProtein, "pathogen_protein")

 allPPI = aggregate_datasets (allPPI, "ppi")
 allHPI = aggregate_datasets (allHPI, "hpi")

 // function to extract DTIs from DrugCentral based on the implicated host proteins

DTI_DC = getDTIsFromDrugCentral (allHostProtein)

 allDTI = allDTI.appendByRow (DTI_DC)

 allDTI = aggregate_datasets (allDTI, "dti")

 allDrug = extract_drugs (allDTI)

// function that assigns TDL category for host proteins

 allHostProtein = annotateTDL (allHostProtein)

// function that cross references PPIs to a reference PPI database, such as Reactome
 allPPI = crossReferencePPIs (allPPI)

// function that builds the Neo4j database from the provided arguments
 buildNeo4jDatabase(allHostProtein, allPathogenProtein, allDrug, allPPI, allHPI, allDTI)

end function

Reproducing the Integration Workflow

A detailed description regarding the compilation of the Neo4COVID19 database is provided at

https://github.com/ncats/neo4covid19/blob/master/README.md [1]. Besides the compilation

process, the description includes instructions for setting up the necessary environment.

In order to reproduce the workflow, provided the required Python [1] environment has been set

up, a local copy of the neo4covid19 repository needs to be created as follows.

git clone https://github.com/ncats/neo4covid19

Note, that paths referring to files in this manuscript start with “neo4covid19”. In this context,

neo4covid19 points to the root directory of the local copy of the cloned repository.

The first stage of the workflow is executed as:

python harmonize.py

This is followed by assembling the SmartGraph subnetwork. For details, please refer to section

“Assembly of the SmartGraph Subnetwork”.

Once a subnetwork was assembled with the help of SmartGraph, process the results as:

python process_sg.py

The last stage of the workflow is executed as:

python compile.py

Assembly of the SmartGraph Subnetwork

In order to reveal potential connection between histone acetyltransferases (HATs) and SARS-

CoV-2 virus implicated host proteins (VIHPs), we performed network analysis with the help of

the SmartGraph platform [5]. Since a set of VIHPs is compiled in the integration workflow, it

was necessary to implement a breakpoint in the workflow. Upon completion of the first part of

the workflow, SmartGraph analysis is performed, and the results are subsequently fed to the

second stage of the workflow to finish the integration. While this scenario is not ideal, at the time

of the workflow creation, the SmartGraph platform did not provide API access.

The gene names of VIHPs and of HATs were mapped to UniProt IDs [6]–[8] to comply with the

SmartGraph input requirements.

Below are listed the detailed steps to assemble the SmartGraph subnetwork. Assuming you have

created a local copy of the neo4covid19 repository (see above), perform the following steps:

1. Go to SmartGraph (https://smartgraph.ncats.io).

2. Clear the fields "Start Nodes" and "End Nodes" then click on "clear graph".

3. Copy the IDs in column ‘uniprot_id’ of file neo4covid19/data/output/sg_proteins_a.tsv (note that

the “neo4covid19” points to the root of the neo4covid19 repository). Insert this set of UniProt IDs as

"Start Nodes" in SmartGraph (https://smartgraph.ncats.io).

4. Copy the UniProt IDs from the output of Step 1 located

at neo4covid19/data/output/sg_proteins_b.tsv . Copy the UniProt IDs and insert them as "End

Nodes" in SmartGraph.

5. Set the "Max Distance" parameter to 3.

6. Leave the "PPI Confidence Level" to its default value, i.e. 0.00.

7. Click on "find shortest path".

8. Once the network is assembled in SmartGraph, click on "Download graph", select "Cytoscape

JSON", then rename the downloaded file to SG_HATs_dist_3_conf_0.00.json and place the file

into neo4covid19/data/input/.

9. Repeat steps 2-7 but this time use the HATs as “End Nodes” and the UniProt IDs in

neo4covid19/data/output/unique_host_proteins_prestring.txt as “Start Nodes”.

10. Save the resultant network in "Cytoscape JSON" format and save it

as SG_HATs_reverse_dist_3_conf_0.00.json and place the file into neo4covid19/data/input/.

Expansion of PPIs via StringApp API

Expanding the PPIs present in a preliminary Neo4COVID-19 network was performed in a two-

step procedure employing the STRING [9] and stringApp APIs [10].

In the first step, the gene symbols of human proteins in pre-expanded Neo4COVID-19 network

were translated into the STRING database identifiers with the STRING API. We utilized the

following URL for this API call: https://string-db.org/api/tsv-no-header/get_string_ids . Gene

symbols were passed to parameter identifiers as a newline “\n” separated string (without

quotation marks). Mapping of gene identifiers was forced to a one-to-one mapping by selecting

the “best” STRING ID for a given gene symbol by setting limit to 1. In addition, we limited the

mapping to human genes only by setting species to 9606; we included the original IDs in the

results by setting echo_query to 1; and we provided a string to our liking for caller_identity.

Next, with the returned STRING database IDs we made a second API call to URL

https://api.jensenlab.org/network . The STRING database IDs were passed to the

entities parameter as a newline “\n” separated string. The additional parameter was set to

100, which defines the maximal number of proteins the original network can be extended with.

Parameter alpha was set to its default value of 0.5.

The basis of the expansion is the computation of a connectivity score for proteins not in the

query network. The connectivity score is a ratio of the total connectivity score of a given protein

to the query proteins versus its total connectivity score to all proteins in STRING database [Ref].

For more details, please refer to the section “Network Expansion” in the study of Doncheva et al.

[10].

Of note, the following genes present in the pre-extension network were excluded from the

STRING extension process as they produced errors when included into the API call: ELOC,

EP300, SLC25A5, TUBA1A, STAT1, ELOB, RBX1, CREBBP, SKP1.

Applying Custom Visual Style to the Imported Network in
Cytoscape

Instructions below are provided for Cytoscape v3.8.2 [11]. The file containing the custom

Cytoscape visual style (style_Neo4COVID19.xml) is distributed as part of the Neo4COVID19

code repository (neo4covid19/code/style_Neo4COVID19.xml) [4]. The process of importing

and applying the custom style is shown on Fig S2.

Mapping of Viral Gene Names

We have established a mapping between the viral gene names predicted by P-HIPSTer [12], [13]

and those reported in the interactome study by [14], [15] The mapping is provided on sheets

“ID_Mapping” and “Sheet1_MappedIDs” in the file data/output/Merged.xlsx in the neo4covid19

repository [4].

Reproducing the Use Cases

Instructions below are provided for Cytoscape v3.8.2 [11] with Cytoscape Neo4j Plugin v0.4

[16].

1. Network assembly

• Establish network connection:

Apps > Cypher Queries > Connect to Neo4j Instance

Provide aspire.covid19.ncats.io:7687 as Hostname, leave rest of the form empty, then click on

Connect.

• Import bipartite HPI network

Apps > Cypher Queries > Import Cypher Query

Enter this Cypher Query:

match (n)-[r:HPI]->(m) return n,r,m

Click on Execute Query.

2. Apply visual style

• Please refer to “Applying Custom Visual Style to the Imported Network in Cytoscape” section in SI.

3. Topology analysis

• Tools -> Analyze Network ...

Check in the checkbox next to “Analyze as Directed Graph?”,

click on OK

4. Adjust node size as a function of “EdgeCount”

• Click on Style on the left panel and select Neo4COVID19 in the drop-down box.

• Click on Node on the bottom of the visualization panel.

• Select Size, set Column to EdgeCount, then set Mapping to Continuous Mapping.

• Adjust the gradient as shown on the small panel until there is a good separation between low and high

degree nodes.

Figures

Figure S1. Importing Neo4COVID19 graph database into Cytoscape – part 1. A) Installing

the “Cytoscape Neo4j Plugin” [16] by navigating to “Apps -> App Manager…”, typing “Cytoscape

Neo4j Plugin” in the search bar, selecting the plugin from the results and finally clicking

“Install”. B) Establishing Neo4j Bolt connection (“Apps > Cypher Queries > Connect to Neo4j

Instance”). Note, that neither username nor password is required. Host:

aspire.covid19.ncats.io:7687 . Screenshots were made from the Cytoscape application.

Figure S2. Importing Neo4COVID19 graph database into Cytoscape – part 2. A) Cypher

query to import the entire Neo4COVID19 network into Cytoscape (“Apps > Cypher Queries >

Import Cypher Query”, query: match (n)-[r]->(m) return n,r,m) . B) Resultant network (after

applying the custom visual settings). Nodes representing host and viral proteins, and drugs are

denoted by circle, “V”, and diamond shaped nodes, respectively. Where applicable, the target

development category (TDL) [17], [18] of proteins are color-coded according to legend.

Screenshots were made from the Cytoscape application.

Figure S3. Customizing network visualization. A) Importing the “style_Neo4COVID19.xml”

file that contains the custom visual style definition. B) Applying the custom visual style

“Neo4COVID19”. Screenshots taken from Cytoscape 3.8.2.

Tables

Table S1. Node and edge attributes of the Neo4COVID19 graph database. Fields highlighted
by gray color were derived from the integrated data sources automatically.

Drug Host Protein Pathogen Protein DTI HPI PPI
abbreviated_data_source X X X X X X
acquisition_method X X X X X X
activation X X
activation_type X X
CAS_RN X
data_source X X X X X
directed X X X
drug_name X
edge_label X X X
edge_type X X X
gene_symbol X
inchi X
inchi_key X
interaction X X
is_activity_known X
is_experimental X X X X X X
mechanism X X
metadata X X X X X X
name X X X
node_type X X X
ns_inchi_key X
p_chembl X
ref_annotation X
ref_direction X
ref_interaction X
ref_score X
smiles X
source_node X X X
source_node_uuid X X X
source_specific_score X X X X X
source_specific_score_type X X X X X
target_node X X X
target_node_uuid X X X
tdl X X
uniprot X
uuid X X X X X X
is_in_dti_dc X X
is_in_ppi_sg X X
is_in_ppi_string X X
is_in_dti_jm_cam X X X
is_in_dti_jm_hcq X X X
is_in_dti_jm_nhc X X X
is_in_hostprot_crispr X
is_in_hostprot_hats X
is_in_hostprot_nat X
is_in_hostprot_taiml X
is_in_hpi_krogan X X X
is_in_hpi_phipster X X X

Nodes EdgesField name Field Code Changed

Integration of Additional Datasets via Data Registry Mechanism

The workflow of this study provides a mechanism that facilitates the extension of the

Neo4COVID19 by additional datasets. The mechanism is comprised of maintaining a “registry”

file of datasets and an internal standard structure of various type of data, i.e. PPIs, HPIs, DTIs,

host and pathogen proteins, and drugs. Of note, addition of PPIs (from STRING [9]), and DTIs

and drug information (DrugCentral [19]) is already integrated into the workflow. Furthermore,

data sources focused on pathogen proteins can be added as HPI, where the host protein might be

defined as an unknown host protein.

The mechanism currently supports the semi-automated extension of the Neo4COVID19 database

by three types of data Namely, HPIs, host protein targets and drug-target interactions which

datatypes, be it experimental or predicted, are expected to emerge rapidly in the case of a

pandemic. Accordingly, additional datasets need to be included into the file that is distributed

with the repository (please refer to section “Reproducing the Integration Workflow” in order to

interpret this file location correctly):

neo4covid19/input/data_source_registry.txt .

The file contains several fields that need to be specified by the investigator in connection with

each dataset to be integrated, see Table S2 for details. Once a new dataset was registered in the

file, a new if statement needs to be added in the standardize_data() function of the

neo4covid19/code/harmonize.py source code file. Subsequently, a new function needs to be created

in neo4covid19/code/standardize.py that converts the respective input to the standard internal

format of the corresponding datatype. Note, that the “abbreviated_data_source” information will be

automatically converted to Boolean database fields in Neo4j. In this process, each unique value

of this field in the context of a specific data type will become a Boolean field. These fields allow

for the facile filtering of data sources based on data provenance.

Additional data sources beyond the currently supported host protein, HPI, and DTI data types

might be integrated into the workflow via bypassing the data registry mechanism. However, this

will require substantial modification of the source the discussion of which is outside of the scope

of this study. Nonetheless, in Table S3 we provide the specifications for the standardized internal

data formats of all data basic types used to build the Neo4COVID19 database, namely HPI, PPI,

DTI, host protein, pathogen protein and drug types. This information can provide guidance for

the implementation of new code logic that integrates potentially any arbitrary data sets as long as

they can be converted to the specified format [20].

Field Name Field Value Syntax

input filename if input is TAB-separated file, or
filename;sheet_name if input is an Excel (.xlsx) file

data_type hpi / host_protein / dti

is_experimental TRUE / FALSE

data_source free text: short descritption of datasource

abbreviated_data_source
free text: abbreviation of datasource, suggestion: indicate
dataype in abrevviation, e.g. hpi_mydata,
hostprot_mydata2, dti_mylab

original_score
na/column_name (column_name: name of column in input
file containing the score/confidence value associated with
the data type)

original_score_type na/score_type (score_type, free text, indicating the type of
original_score, e.g. P-value, confidence, p_chembl, etc.)

prioritized_for_pathway_analysis

TRUE/FALSE (host proteins flagged as TRUE in this field will
be treated as starting nodes in SmartGraph pathway
analysis, and all other host proteins upstream of the STRING
expansion in the workflow will be treated as destination
targets in SmartGraph, and vice versa)

do_ppi_expansion TRUE / FALSE

harmonization_schema

string: you will need to add this harmonization scheme into
the harmonize.py and implement the logic accordingly in
standardize.py, example values: dh_dti_mylab, dh_targets,
etc.

acquisition_method free text: describing how the data was acquired

metadata_columns semicolon separated list of column names in input file which
should be converted into metadata

is_directed TRUE / FALSE / na (use “na” for host protein target data
type)

Table S2. Structure of data registry file. Field names, data types and indicated TRUE/FALSE

and “na” values are case-sensitive.

Table S3. Definition of mandatory and optional fields of internal data structure.

Abbreviations: “m”: mandatory, “o / na”: optional, or fill with literal string “na” if not

applicable/available. Empty fields should not be included in a given type of data structure. Data

types shaded by gray are not yet supported via the data registry mechanism, but such types of

data can be added to the workflow via the source code, provided that the indicated data structure

is observed. However, PPI and drug information are automatically pulled in from pre-defined

sources in the workflow, and pathogen proteins can be added as HPIs via the data registry

mechanism. Field names are case-sensitive.

Host Protein HPI DTI PPI Pathogen Protein Drug

host_protein (string, gene symbol) m m m

pathogen_protein (string, name) m m

host_protein_a (string, gene_symbol) m

host_protein_b (string, gene_symbol) m

drug_name (string) m m

interaction (string) m m

mechanism (string) m m

action_type (string) m

p_chembl (string) m

directed (bool) m m m

metadata
(string, format: key1:value1;key2:value2)

o / na o / na o / na o / na o / na o / na

abbreviated_data_source (string) m m m m m m

is_experimental (bool) m m m m m m

data_source (string) m m m m m m

acquisition_method (string) m m m m m m

prioritized_for_pathway_analysis (bool) m m m m m

do_ppi_expansion (bool) m m m m m

source_specific_score (string) o / na o / na o / na o / na o / na

source_specific_score_type (string) o / na o / na o / na o / na o / na

activation (string) o / na o / na

activation_type (string) o / na o / na

smiles (string) o / na

inchi (string) o / na

inchi_key (string) o / na

ns_inchi_key (string) o / na

CAS_RN (string) o / na

Field Code Changed

References

[1] “Python Core Team. Python: A Dynamic, Open Source Programming Language. Python

Software Foundation.” https://www.python.org/.

[2] “Python Library ‘py2neo’ v4.” .

[3] “Neo4j Graph Database.” https://neo4j.com/.

[4] “Code Repository ‘neo4covid19.’” https://github.com/ncats/neo4covid19.git.

[5] G. Zahoránszky-Kőhalmi, T. Sheils, and T. I. Oprea, “SmartGraph: A Network

Pharmacology Investigation Platform,” J. Cheminform., vol. 12, no. 1, p. 5, Dec. 2020,

doi: 10.1186/s13321-020-0409-9.

[6] “UniProt: A Worldwide Hub of Protein Knowledge,” Nucleic Acids Res., vol. 47, no. D1,

pp. D506–D515, Jan. 2019, doi: 10.1093/nar/gky1049.

[7] T. U. Consortium, “UniProt: The Universal Protein Knowledgebase,” Nucleic Acids Res.,

vol. 45, no. D1, pp. D158–D169, 2016, doi: 10.1093/nar/gkw1099.

[8] “UniProt Proggrammatic Service for ID Mapping.”

https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by

_organism/HUMAN_9606_idmapping.dat.gz.

[9] D. Szklarczyk et al., “STRING v11: Protein–Protein Association Networks With

Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental

Datasets,” Nucleic Acids Res., vol. 47, no. D1, pp. D607–D613, Jan. 2019, doi:

10.1093/nar/gky1131.

[10] N. T. Doncheva, J. H. Morris, J. Gorodkin, and L. J. Jensen, “Cytoscape StringApp:

Network Analysis and Visualization of Proteomics Data,” J. Proteome Res., vol. 18, no. 2,

pp. 623–632, Feb. 2019, doi: 10.1021/acs.jproteome.8b00702.

[11] P. Shannon, “Cytoscape: A Software Environment for Integrated Models of Biomolecular

Interaction Networks,” Genome Res., vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi:

10.1101/gr.1239303.

[12] G. Lasso et al., “A Structure-Informed Atlas of Human-Virus Interactions,” Cell, vol. 178,

no. 6, pp. 1526-1541.e16, Sep. 2019, doi: 10.1016/j.cell.2019.08.005.

[13] “P-HIPSTer.” http://phipster.org/.

[14] D. E. Gordon et al., “A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug

Repurposing,” Nature, vol. 583, no. 7816, pp. 459–468, Jul. 2020, doi: 10.1038/s41586-

020-2286-9.

[15] Krogan, “A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug

Repurposing,” [Online]. Available:

https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3.

[16] S. Warris, S. Dijkxhoorn, T. van Sloten, and B. van de Vossenberg, “Mining Functional

Annotations Across Species,” bioRxiv, 2018, doi: 10.1101/369785.

[17] D.-T. Nguyen et al., “Pharos: Collating Protein Information to Shed Light on the

Druggable Genome,” Nucleic Acids Res., vol. 45, no. D1, pp. D995–D1002, Nov. 2016,

doi: 10.1093/nar/gkw1072.

[18] T. I. Oprea et al., “Unexplored Therapeutic Opportunities in the Human Genome,” Nat.

Rev. Drug Discov., vol. 17, p. 317, Mar. 2018, [Online]. Available:

https://doi.org/10.1038/nrd.2018.14.

[19] O. Ursu et al., “DrugCentral 2018: An Update,” Nucleic Acids Res., vol. 47, no. D1, pp.

D963–D970, Jan. 2019, doi: 10.1093/nar/gky963.

[20] The Authors are thankful for the suggestions of Reviewer 2 regarding improving the

workflow by the addition of data source “plug-in” mechanism and more robust data

standardization.

