Supplementary Table 1. Detailed Costs, Proportions of HCC Treatments, Transition Probabilities, and Recurrence Rates after HCC Treatments

Parameter	Thailand	USA	Reference
Monitoring and maintenance costs			
Laboratory investigations (per visit)	20		КСМН
Surveillance esophagogastroduodenoscopy	120		КСМН
Extra post-procedure surveillance MRI screening (per yr)	465		
Admission due to complications of cirrhosis (per admission)	519		Ref ¹
Post-transplantation	3,025	49,906	Ref ^{2,3}
Annual direct non-medical costs, \$			
Compensated cirrhosis	127		Ref ⁴
Decompensated cirrhosis	176		Ref ⁴
Hospital visit, outpatient service (per visit)	20		Ref ⁴
Proportion of initial treatments			
Transplantation in early HCC	0.13	0.14	KCMH, Ref ⁵⁻⁸
Resection in early HCC	0.38	0.24	KCMH, Ref ⁵⁻⁸
RFA in early HCC	0.23	0.20	KCMH, Ref ⁵⁻⁸
TACE in early HCC	0.22	0.33	KCMH, Ref ⁵⁻⁸
Best supportive care in early HCC	0.04	0.09	KCMH, Ref ⁵⁻⁸
Resection in advanced HCC	0.24	0.09	KCMH, Ref ⁵⁻⁹
RFA in advanced HCC	0.03	0.08	KCMH, Ref ⁵⁻⁹
TACE in advanced HCC	0.50	0.45	KCMH, Ref ⁵⁻⁹
Sorafenib in advanced HCC	0.04	0.01	KCMH, Ref ⁵⁻⁹
Atezolizumab/bevacizumab in advanced HCC	0.01	0.13	KCMH, Ref ⁵⁻⁹
Best supportive care in advanced HCC	0.18	0.24	KCMH, Ref ⁵⁻⁹
Proportion of alternative treatment options for sensitivity analysis			
Transplantation in early HCC	0.12	0.11	KCMH, Ref ^{5,6,8}
Resection in early HCC	0.34	0.21	KCMH, Ref ^{5,6,8}
RFA in early HCC	0.21	0.21	KCMH, Ref ^{5,6,8}
TACE in early HCC	0.20	0.30	KCMH, Ref ^{5,6,8}
Radioembolization in early HCC	-	0.06	KCMH, Ref ^{5,6,8}
External radiation in early HCC	0.01	0.02	KCMH, Ref ^{5,6,8}
Best supportive care in early HCC	0.03	0.09	KCMH, Ref ^{5,6,8}
Resection in advanced HCC	0.28	0.09	KCMH, Ref ^{5,6,8-10}
RFA in advanced HCC	0.04	0.10	KCMH, Ref ^{5,6,8-10}
TACE in advanced HCC	0.43	0.36	KCMH, Ref ^{5,6,8-10}
Radioembolization in advanced HCC	0.09	0.12	KCMH, Ref ^{5,6,8-10}
External radiation in advanced HCC	0.05	0.03	KCMH, Ref 5,6,8-10
Sorafenib in advanced HCC	0.03	0.01	KCMH, Ref 5,6,8-10
Lenvatinib in advanced HCC	0.01	0.01	KCMH, Ref 5,6,8-10
Atezolizumab/bevacizumab in advanced HCC	0.01	0.11	KCMH, Ref 5,6,8-10
Best supportive care in advanced HCC	0.14	0.18	KCMH, Ref ^{5,6,8-11}
Annual progression			10.10
HCC in early cirrhosis	0.0	13	Ref 12,13
HCC in late cirrhosis	0.0	19	Ref 12,13
Progression to the next ALBI stage	0.0	16	Ref '"
Annual mortality			D (15
Age-related mortality rate	WHO Mortali	ty Database	Ref ¹³
Early cirrhosis	0.0	113	Ref ¹⁶
Late cirrhosis	0.0	175	Ref ¹⁷
Early HUC	0.0	15	Ref ¹⁷
Advanced HUC	0.9	6	Ref ¹⁸
Post-transplantation in early cirrhosis	0.0	116	Ret 18
Post-transplantation in late cirrhosis	0.0	184	Ref ¹⁹
Post-resection in early cirrnosis	0.0		Ker Def ¹⁹
Post-resection in late cirrhosis	0.0	130	Ref 20
Post-KFA IN early cirrhosis	0.0		Ref
POST-KFA IN LATE CIFFNOSIS	0.0	NO NO	Ref
Post-IAUE IN early cirrhosis	0.2	2	Ref ²¹
Post-rade in late cirrnosis	0.4	0	Ker Def ²²
Post-radioempolization in early cirrhosis	0.1	2	Ker

Supplementary Table 1. Continued

Parameter	Thailand US	SA Reference
Post-radioembolization in late cirrhosis	0.35	Ref ²²
Post-external radiation in early cirrhosis	0.10	Ref ²³
Post-external radiation in late cirrhosis	0.39	Ref ²³
Post-sorafenib in early cirrhosis	0.42	Ref ²⁴
Post-sorafenib in late cirrhosis	0.71	Ref ²⁴
Post-lenvatinib treatment	0.36	Ref ²⁵
Post-atezolizumab/bevacizumab treatment	0.27	Ref ^{26,27}
Recurrence rates after HCC treatments		
Recurrence after transplantation in early cirrhosis	0.02	Ref 18
Recurrence after transplantation in late cirrhosis	0.082	Ref 18
Recurrence after resection in early cirrhosis	0.08	Ref ¹⁹
Recurrence after resection in late cirrhosis	0.09	Ref ¹⁹
Recurrence after RFA in early cirrhosis	0.22	Ref ²⁸
Recurrence after RFA in late cirrhosis	0.26	Ref ²⁸
Recurrence after TACE in early cirrhosis	0.38	Ref ²⁹
Recurrence after TACE in late cirrhosis	0.38	Ref ²⁹
Recurrence after radioembolization treatment	0.30	Ref ³⁰
Recurrence after external radiation treatment	0.29	Ref ³¹
Proportion of treatment after recurrence		
Resection	0.16	Ref 32
RFA	0.30	Ref 32
TACE	0.26	Ref 32
Palliative	0.28	Ref 32

HCC, hepatocellular carcinoma; KCMH, King Chulalongkorn Memorial Hospital; MRI, magnetic resonance imaging; RFA, radiofrequency ablation; TACE, transarterial chemoembolization; ALBI, albumin-bilirubin score; WHO, World Health Organization.

Supplementary Table	2. Include	ed Studies in the Sys	tematic Review an	d Meta-Analysis	of the Performance of Ultras	onography with AFP in the Dia	gnosis of Early and Overall HCC
Study	Year	Country	Study type	Population, n	Sensitivity (95% CI)	Specificity (95% CI)	Reference standard
Mok <i>et al.</i> ³³	2005	Hong Kong	Prospective	940	Overall: 0.72 (0.53-0.86)	Overall: 0.92 (0.90–0.94)	Pathology, CT
Singal <i>et al.</i> ³⁴	2012	NSA	Prospective	442	Early: 0.63 (0.44–0.80) Overall: 0.90 (0.77–0.97)	Early: 0.83 (0.79–0.87) Overall: 0.83 (0.79–0.87)	Pathology, imaging
Van Thiel <i>et al.</i> ³⁵	2004	USA	Retrospective	100	Overall: 0.70 (0.46–0.88)	Overall: 0.94 (0.86–0.98)	Pathology
Trinchet <i>et al.</i> ³⁶	2011	France	Prospective	638	Early: 0.75 (0.65–0.83)	Early: 0.83 (0.81–0.85)	Pathology, CT, MRI, arteriography
Chang <i>et al.</i> ³⁷	2015	Taiwan	Retrospective	1,597	Overall: 0.99	Overall: 0.60	Pathology, CT, MRI
Kim <i>et al.</i> ³⁸	2016	Korea	Prospective	407	Early: 0.33 (0.20-0.50)	Early: 0.88 (0.84–0.91)	Pathology, CT
					Overall: 0.40 (0.25–0.56)	Overall: 0.90 (0.87–0.93)	
Atiq <i>et al.</i> ³⁹	2017	USA	Retrospective	680	Early: 0.78 Overall: 0.62	Overall: 0.69	ICD-9 with adjudication according to AASLD guidelines
The inclusion criteria	were: [1] (conducted exclusive	ly on cirrhotic pati	ents; (2) providec	l data on imaging performanc	e; (3) enough data to generate	: a 2 by 2 contingency table.

AFP, alpha-fetoprotein; HCC, hepatocellular carcinoma; CI, confidence interval; CT, computed tomography; MRI, magnetic resonance imaging; ICD-9, International Classification of Diseases, Ninth Revision; ASLD, American Association for the Study of Liver Diseases.

addition of the second second								
Study	Year	Country	Study type	Population, n	Sensitivity (95% CI)	Specificity (95% CI)	Reference standard	aMRI protocols
Park <i>et al.</i> 40	2020	Korea	Prospective	382	Early: 0.72 (0.56–0.85) Late: 1.00 (0.63–1.00) Overall: 0.77 (0.64–0.89)	Overall: 0.98 (0.97–0.99)	Pathology, CE-CT	T2-weighted, DWI
Park <i>et al.</i> 41	2020	Korea	Retrospective	45	Early: 0.85 (0.75–0.93)	Early: 0.90 (0.82–0.96)	Pathology, full diagnostic MRI	T2-weighted, DWI, GRE
Vietti Violi et al. ⁴²	2020	USA	Retrospective	237	Overall: 0.62 (0.32-0.86)	Overall: 0.96 [0.92–0.98]	Pathology, full diagnostic MRI	T2-weighted, DWI
Chan <i>et al.</i> ⁴³	2019	Australia	Retrospective	188	Overall: 0.86 [0.75-0.94]	Overall: 0.86 (0.76–0.93)	Full diagnostic MRI	T1-weighted, T2-weighted, DWI
Besa <i>et al.</i> "	2017	USA	Retrospective	174	Overall: 0.82 (0.71-0.90)	Overall: 0.93 (0.86–0.97)	Pathology	DWI
Jalli <i>et al.</i> 45	2015	Iran	Retrospective	96	Overall: 0.83 (0.65-0.94)	Overall: 1.00 (0.95–1.00)	Pathology, full diagnostic MRI	T1-weighted, T2-weighted, DWI
Park <i>et al.</i> 46	2012	Korea	Retrospective	260	Early: 0.79 (0.72–0.85)	Early: 0.97	Pathology	T1-weighted, T2-weighted, DWI
Vandecaveye <i>et al.</i> ⁴⁷	2009	Belgium	Prospective	55	Early: 0.91 (0.76–0.98) Late: 1.00 Overall: 0.95 (0.87–0.99)	Overall: 0.83 (0.70–0.92)	Pathology, full diagnostic MRI	DWI
The inclusion criteria	Mere. [1]	conducted ex	chisivaly on circh	otic nationts. [2]	hrowided data on imaging n	berformance: [3] enoligh data :	to denerate a 2 hv 2 contingency ta	ald

Supplementary Table 3. Included Studies in the Systematic Review and Meta-Analysis of the Performance of aMRI in the Diagnosis of Early and Overall HCC

and incurrent were: (1) contructed exturbined patients; (2) provided data on intraging perior markets (o) generate a 2 by 2 contingency table. aMRI, abbreviated magnetic resonance imaging; HCC, hepatocellular carcinoma; CI, confidence interval; CE-CT, contrast-enhanced computed tomography; DWI, diffusion-weighted imaging; GRE, gradi-

ent echo sequences.

Supplementary Fig. 1. HCC surveillance protocols. AFP, alpha-fetoprotein; MRI, magnetic resonance imaging; HCC, hepatocellular carcinoma.

Supplementary Fig. 2. Sensitivity of ultrasonography with alphafetoprotein for early hepatocellular carcinoma diagnosis (A), overall hepatocellular carcinoma diagnosis (B), and overall specificity (C). CI, confidence interval.

Supplementary Fig. 3. Sensitivity of abbreviated magnetic resonance imaging for early hepatocellular carcinoma diagnosis (A), overall hepatocellular carcinoma diagnosis (B), and overall specificity (C). CI, confidence interval.

Supplementary Fig. 4. Tornado diagram of the sensitivity analysis for treatment-related mortality rates (2% to 3% for resection and transplantation) in the Thailand setting (A) and U.S. setting (B). EV, expected value; ICER, incremental cost-effectiveness ratio; WTP, willingness-topay.

Supplementary Fig. 5. Two-way sensitivity analysis for HCC incidence and aMRI/USG with AFP cost ratio in Thailand setting (A) and the U.S. setting (B). The intersection between dash lines represents base-case results. HCC, hepatocellular carcinoma; aMRI, abbreviated magnetic resonance imaging; USG, ultrasonography; AFP, alpha-fetoprotein.

Supplementary Fig. 6. Scatter plot of probabilistic sensitivity analyses. Scatter plot of probabilistic sensitivity analyses of 1,000 repeated analyses comparing aMRI with combined USG and AFP in Thailand (A) and the United States (B). Blue circles represent iterations in which aMRI is the optimal strategy (superior or cost-effective) and magenta squares represent iterations in which USG with AFP is the optimal strategy. In Thailand, aMRI was the optimal strategy in 773 iterations (superior to USG with AFP in 26 iterations and cost-effective in 747 iterations). USG with AFP was the optimal strategy in 227 iterations (superior to aMRI in 1 iteration and cost-effective in 226 iterations). In the United States. aMRI was the optimal strategy in 979 iterations (superior to USG with AFP in 1 iteration and cost-effective in 978 iterations). USG with AFP was the optimal strategy in 21 iterations (superior to aMRI in 1 iteration and cost-effective in 20 iterations). aMRI, abbreviated magnetic reso-

nance imaging; USG, ultrasonography; AFP, alpha-fetoprotein; WTP, willingness-to-pay.

REFERENCES

- 1. Chirapongsathorn S, Poovorawan K, Soonthornworasiri N, et al. Health care burden and mortality of acute on chronic liver failure in Thailand: a nationwide population-based cohort study. BMC Health Serv Res 2022;22:156.
- Parikh ND, Singal AG, Hutton DW, Tapper EB. Cost-effectiveness of hepatocellular carcinoma surveillance: an assessment of benefits and harms. Am J Gastroenterol 2020;115:1642-1649.
- 3. Thongsawat S, Piratvisuth T, Pramoolsinsap C, Chutaputti A, Tanwandee T, Thongsuk D. Resource utilization and direct medical costs of chronic hepatitis C in Thailand: a heavy but manageable economic burden. Value Health Reg Issues 2014;3:12-18.
- 4. Rattanavipapong W, Anothaisintawee T, Teerawattananon Y. Revisiting policy on chronic HCV treatment under the Thai Universal Health Coverage: an economic evaluation and budget impact analysis. PLoS One 2018;13:e0193112.
- 5. Park JW, Chen M, Colombo M, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int 2015;35:2155-2166.
- 6. Cabrera R, Singal AG, Colombo M, et al. A real-world observational cohort of patients with hepatocellular carcinoma: design and rationale for TARGET-HCC. Hepatol Commun 2020;5:538-547.
- 7. Kanwal F, Befeler A, Chari RS, et al. Potentially curative treatment in patients with hepatocellular cancer: results from the liver cancer research network. Aliment Pharmacol Ther 2012;36:257-265.
- 8. Kuo KL, Stenehjem D, Albright F, Ray S, Brixner D. Treatment patterns and outcomes in patients with hepatocellular carcinoma stratified by stage-guided treatment categories. J Natl Compr Canc Netw 2015;13:987-994.
- 9. Cosgrove D, Tan A, Hernandez S, et al. Atezolizumab plus bevacizumab in patients with hepatocellular carcinoma (HCC): real-world experience from a US community oncology network. Paper presented at: 2022 AASLD The Liver Meeting; 2022 Nov 4; Washington, USA.
- 10. Klink AJ, Marshall LZ, Aly A, Seal B, Healey MJ, Feinberg B. Real-world treatment patterns and reasons for therapy selection in patients with advanced hepatocellular carcinoma in US oncology practices. Oncologist 2022;27:e265-e272.
- 11. Mospan AR, Morris HL, Fried MW. Real-world evidence in hepatocellular carcinoma. Liver Int 2021;41 Suppl 1:61-67.
- 12. D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 2006;44:217-231.
- 13. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 2004;127(5 Suppl 1):S35-S50.
- 14. Sakamaki A, Takamura M, Sakai N, et al. Longitudinal increase in albumin-bilirubin score is associated with non-malignancy-related mortality and quality of life in patients with liver cirrhosis. PLoS One 2022;17:e0263464.
- 15. World Health Organization (WHO). WHO Mortality Database [Internet]. Geneva: WHO; c2022 [cited year mo day]. Available from: https://www.who.int/data/data-collection-tools/who-mortality-database
- 16. Wang J, Zhang Z, Yan X, et al. Albumin-Bilirubin (ALBI) as an accurate and simple prognostic score for chronic hepatitis B-related liver cirrhosis. Dig Liver Dis 2019;51:1172-1178.
- 17. Lin OS, Keeffe EB, Sanders GD, Owens DK. Cost-effectiveness of screening for hepatocellular carcinoma in patients with cirrhosis due to chronic hepatitis C. Aliment Pharmacol Ther 2004;19:1159-1172.
- Kornberg A, Witt U, Schernhammer M, et al. The role of preoperative albumin-bilirubin grade for oncological risk stratification in liver transplant patients with hepatocellular carcinoma. J Surg Oncol 2019;120:1126-1136.
- 19. Cho WR, Hung CH, Chen CH, et al. Ability of the post-operative ALBI grade to predict the outcomes of hepatocellular carcinoma after curative surgery. Sci Rep 2020;10:7290.
- 20. Kao WY, Su CW, Chiou YY, et al. Hepatocellular carcinoma: nomograms based on the albumin-bilirubin grade to assess the outcomes of radiofrequency ablation. Radiology 2017;285:670-680.
- 21. Ho SY, Hsu CY, Liu PH, et al. Albumin-bilirubin (ALBI) grade-based nomogram for patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Dig Dis Sci 2021;66:1730-1738.
- 22. Antkowiak M, Gabr A, Das A, et al. Prognostic role of albumin, bilirubin, and ALBI scores: analysis of 1000 patients with hepatocellular carcinoma undergoing radioembolization. Cancers (Basel) 2019;11:879.
- 23. Su TS, Yang HM, Zhou Y, et al. Albumin bilirubin (ALBI) versus Child-Turcotte-Pugh (CTP) in prognosis of HCC after stereotactic body radiation therapy. Radiat Oncol 2019;14:50.
- 24. Edeline J, Blanc JF, Johnson P, et al. A multicentre comparison between Child Pugh and Albumin-Bilirubin scores in patients treated with sorafenib for hepatocellular carcinoma. Liver Int 2016;36:1821-1828.
- 25. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carci-

noma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163-1173.

- 26. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382:1894-1905.
- 27. Cheng AL, Qin S, Ikeda M, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022;76:862-873.
- 28. Chen PC, Chiu NC, Su CW, et al. Albumin-bilirubin grade may determine the outcomes of patients with very early stage hepatocellular carcinoma after radiofrequency ablation therapy. J Chin Med Assoc 2019;82:2-10.
- 29. Kim JW, Kim JH, Sung KB, et al. Transarterial chemoembolization vs. radiofrequency ablation for the treatment of single hepatocellular carcinoma 2 cm or smaller. Am J Gastroenterol 2014;109:1234-1240.
- 30. Dhondt E, Lambert B, Hermie L, et al. 90Y radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: results from the TRACE Phase II Randomized Controlled Trial. Radiology 2022;303:699-710.
- 31. Baumann BC, Wei J, Plastaras JP, et al. Stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma: high rates of local control with low toxicity. Am J Clin Oncol 2018;41:1118-1124.
- 32. Joliat GR, Allemann P, Labgaa I, Demartines N, Halkic N. Treatment and outcomes of recurrent hepatocellular carcinomas. Langenbecks Arch Surg 2017;402:737-744.
- 33. Mok TS, Yeo W, Yu S, et al. An intensive surveillance program detected a high incidence of hepatocellular carcinoma among hepatitis B virus carriers with abnormal alpha-fetoprotein levels or abdominal ultrasonography results. J Clin Oncol 2005;23:8041-8047.
- 34. Singal AG, Conjeevaram HS, Volk ML, et al. Effectiveness of hepatocellular carcinoma surveillance in patients with cirrhosis. Cancer Epidemiol Biomarkers Prev 2012;21:793-799.
- 35. Van Thiel DH, Yong S, Li SD, Kennedy M, Brems J. The development of de novo hepatocellular carcinoma in patients on a liver transplant list: frequency, size, and assessment of current screening methods. Liver Transpl 2004;10:631-637.
- Trinchet JC, Chaffaut C, Bourcier V, et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. Hepatology 2011;54:1987-1997.
- 37. Chang TS, Wu YC, Tung SY, et al. Alpha-fetoprotein measurement benefits hepatocellular carcinoma surveillance in patients with cirrhosis. Am J Gastroenterol 2015;110:836-844.
- Kim SY, An J, Lim YS, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol 2017;3:456-463.
- 39. Atiq O, Tiro J, Yopp AC, et al. An assessment of benefits and harms of hepatocellular carcinoma surveillance in patients with cirrhosis. Hepatology 2017;65:1196-1205.
- 40. Park HJ, Jang HY, Kim SY, et al. Non-enhanced magnetic resonance imaging as a surveillance tool for hepatocellular carcinoma: comparison with ultrasound. J Hepatol 2020;72:718-724.
- 41. Park SH, Kim B, Kim SY, et al. Characterizing computed tomography-detected arterial hyperenhancing-only lesions in patients at risk of hepatocellular carcinoma: can non-contrast magnetic resonance imaging be used for sequential imaging? Korean J Radiol 2020;21:280-289.
- 42. Vietti Violi N, Lewis S, Liao J, et al. Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening. Eur Radiol 2020;30:6003-6013.
- 43. Chan MV, McDonald SJ, Ong YY, et al. HCC screening: assessment of an abbreviated non-contrast MRI protocol. Eur Radiol Exp 2019;3:49.
- 44. Besa C, Lewis S, Pandharipande PV, et al. Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol (NY) 2017;42:179-190.
- 45. Jalli R, Jafari SH, Sefidbakht S, Kazemi K. Comparison of the accuracy of DWI and ultrasonography in screening hepatocellular carcinoma in patients with chronic liver disease. Iran J Radiol 2015;12:e12708.
- 46. Park MJ, Kim YK, Lee MW, et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 2012;264:761-770.
- 47. Vandecaveye V, De Keyzer F, Verslype C, et al. Diffusion-weighted MRI provides additional value to conventional dynamic contrastenhanced MRI for detection of hepatocellular carcinoma. Eur Radiol 2009;19:2456-2466.