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Supplementary Figures 

 

 

Supplementary Fig. 1. The progress of minimizing the loss function. 

RNA velocities of three example genes (Actn4, Top2a, and Gng12) from the pancreatic 

endocrinogenesis cells are projected on their phase portraits along the training process of the 

DNNs. 
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Supplementary Fig. 2. RNA velocity estimation for branching genes in the hippocampal 

neurogenesis dataset. 

Comparison among the RNA velocities estimated by cellDancer, scVelo (dynamic model), 

velocyto (static model), DeepVelo, and VeloVAE in the hippocampal neurogenesis dataset. 

cellDancer outperforms the other four models for branching genes. 
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Supplementary Fig. 3. α, β, and γ are indicators of cell identity. 

The UMAP embedding generated using the α (left), β (middle), and γ (right) in the pancreatic 

endocrinogenesis dataset shows that cell-dependent kinetic rates predicted by cellDancer can 

distinguish the cell sub-populations. 

 

 

  

!

UMAP1

UM
AP

2

Epsilon
Delta

Pre-endocrine

Ngn3 low EP

Ductal

Beta

Alpha

Ngn3 high EP

"

Ngn3 high EP

Alpha

Beta

Delta
Epsilon

Pre-endocrine

Ngn3 low EP

Ductal

#

Alpha

Beta

Delta
Epsilon

Pre-endocrine

Ngn3 low EP

Ngn3 high EP

Ductal

Fig. S8 Supplementary Fig. 3



 5 

Supplementary Notes 

Supplementary Note 1: Develop a model-based neural network for RNA velocity inference 

To demonstrate the capability of the deep neural network (DNN) in RNA velocity inference, we 

rewrite the dynamic model of scVelo by adding a Heaviside step function (Note Figure 1A) to 

calculate transcription (𝛼) rate as follows: 

𝑑𝑢
𝑑𝑡

= 𝜎(𝛽𝑢 − 𝛾𝑠) ∗ 𝛼 − 𝛽𝑢 

𝑑𝑠
𝑑𝑡
= 𝛽𝑢 − 𝛾𝑠 

where 𝜎(𝑥) ≡ 01, 𝑥 ≥ 0
0, 𝑥 < 0. The sigmoid function is a widely used activation function in DNN. As 

the sigmoid function 𝑠(𝑥) = !
!"#!"###$

 behaves similarly with the step function except for the 

former is differentiable, we can approximate 𝜎(𝑥) with 𝑠(𝑥) in Eqn. (1) and solve Eqn. (1) by 

developing a simple prototype neural network using the sigmoid function. 

 

First, we build a simplified neural network (Note Figure 1B) which has an input layer, a hidden 

layer, and an output layer. We separately train a network for each gene. We assume gene-

specific constant values of 𝛼, 𝛽, and 𝛾. Next, we develop a workflow to solve Eqn. (1) by 

optimizing the network as follows: 

(1) For a given gene, the normalized (across all the cells) abundances of the unspliced and 

spliced mRNA (𝑢$ and 𝑠$) for one cell 𝑖 are input to the network (Note Figure 1B). 

Weights {𝑤} and biases {𝑏} are applied to the input through a hidden layer to get (𝑤%𝑢$ +

𝑏!, 𝑤&𝑠$ + 𝑏'). Specifically in this simplified demonstration neural network, the weights 

are analogs of 𝛽 and 𝛾 ((𝑤%~	𝛽 and 𝑤&~ − 𝛾 ), and the biases are 0.  

(2) Apply an activation function 𝜎 to the hidden layer outputs to obtain the relative reaction 

rates: 𝛼< $ = 	𝜎=𝑤%𝑢$ +𝑤&𝑠$>; 𝛽? and 𝛾< are extracted from the weights 𝛽? = 𝑤%, 𝛾< = −𝑤&. 

Eqn. (1) 
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(3) Predict the abundances at the next time step 𝑢$,)*+, = (𝛼< $ − 𝛽?𝑢$)∆𝑡 + 𝑢$ and 𝑠$,)*+, =

(𝛽?𝑢$ − 𝛾<𝑠$)∆𝑡 + 𝑠$ using the discretized equations from Eqn. (1). Then we compute the 

predicted displacement vector 𝒗$
-.*/ = (𝑢$,)*+, − 𝑢$ , 𝑠$,)*+, − 𝑠$) and estimate the loss 

function for cell 𝑖, ℒ$(𝑢$ , 𝑠$) = 1 − 𝑐𝑜𝑟𝑟 F𝒗$
-.*/, 𝒗$

0)-1,G, where the ground truth 

displacement 𝒗$
0)-1, is obtained by a neighboring cell 𝑖2 in the {𝑢, 𝑠} space which 

maximizes the correlation between the predicted vector and the input vector 𝒗$$%
0)-1, =

(𝑢$% − 𝑢$ , 𝑠$% − 𝑠$) as in the following equation: 𝑖2 = argmax
$%

𝑐𝑜𝑟𝑟(𝒗$
-.*/, 𝒗$$%

0)-1,) =

argmax
$%

𝒗&
'()*∙𝒗

&&%
+,'-.

5𝒗&
'()*55𝒗&&%

+,'-.5
. The total loss for all the 𝑛 cells is calculated as sum of the loss of 

individual cells, ℒ = ∑ ℒ$6
$7! (𝑢$ , 𝑠$). 

(4) Adjust the {𝑤} and {𝑏} and repeat steps (2-3) to reduce the total loss ℒ to yield the best 

estimates of the reaction rates. 

We apply this network model to a simulation dataset for a gene following the dynamics in Eqn. 

(1) (𝛼 = 5.2, 𝛽 = 2.0, 𝛾 = 1.0; see details of the simulation in Methods). The initial guess was set 

to 𝛼 = 1.0, 𝛽 = 1.0, 𝛾 = 0.5. We applied the adaptive gradient optimization algorithm Adam to 

minimize the total loss and the learning rate was 0.001. Results show that after each round 

(epoch) of training, prediction approaches closer to the ground truth (Note Figure 1C). In 1,500 

epochs (within a few seconds), the prediction has converged and matches with the background 

truth, indicating the applicability of neural network to velocity estimation. 

In practice, a more sophisticated deep	neural network is constructed in cellDancer and trained 

to predict the reaction rates for a gene in all 𝑛 cells {𝛼< $ , 𝛽?$ , 𝛾< $}$7!,',…,6	simultaneously. The 

network consists of an input layer with abundances of a gene from all the cells, two hidden 

layers with 100 nodes fully connected to all the input nodes, and an output layer with 3𝑛 using a 

sigmoid activation function (see Methods).  
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Note Figure 1. A model-based neural network for RNA velocity inference. 

A. The transcriptional dynamics of a gene switching between the “on” and the “off” states are 

generalized with a Heaviside step function. B. A prototype neural network model demonstrates its 

suitability to learn the reaction rates. “u” and “s” indicate unspliced and spliced reads. C. cellDancer’s 

network quickly converges to the ground truth in 1,500 epochs of training. 
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Supplementary Tables 

  cellDancer scVelo velocyto DeepVelo VeloVAE  
transcriptional boost 13.25% 46.88% 56.12% 51.62% 46.95% 
multi-forward branching 2.63% 40.57% 67.67% 82.16% 58.82% 
multi-backward branching 9.43% 31.13% 15.30% 44.99% 62.66% 

 

Supplementary Table 1. The means of error rates of simulated transcriptional boost genes, 

multi-forward branching genes, and multi-backward branching genes using cellDancer, scVelo, 

velocyto, DeepVelo, and VeloVAE. 

 


