
Open Access This file is licensed under a Creative Commons Attribution 4.0 
International License, which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 
changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 
anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 
attribution to the source work.  The images or other third party material in this file are included in the 
article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons license and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

A Machine Learning-Driven Virtual Biopsy System For Kidney 
Transplant Patients



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In this manuscript by Yoo et al, the authors describe their work on applying machine learning in the 

kidney transplant biopsy. They analyzed 14,032 kidney biopsies at time zero of transplant, using 11 

donor parameters to build the virtual biopsy system. These parameters are: donor’s age, body mass 

index, sex, history of hypertension, diabetes, donor cause of death, donor type (living vs deceased), 

circulatory status at donation, hepatitis C status, serum creatinine, and proteinuria. The investigators 

aggregated six machine learning models into an ensemble model for predicting arteriosclerosis (cv), 

arteriolar hyalinosis (ah), interstitial fibrosis and tubular atrophy (IFTA), with multi-AUC of 0.833, 0.773, 

and 0.830, respectively. The final model demonstrated accurate prediction of the percentage of 

glomerulosclerosis with a mean absolute error of 5.999. 

The manuscript is very well written, and the findings are very well presented. The design of the research 

is suitable for the goals of the work. The findings are very important and clinically relevant. The study 

population is extensive and diverse, encompassing 17 transplant centers from various countries. 

The promising connection between kidney transplant biopsy findings and easily measured clinical 

parameters holds significant implications for the selection of kidney transplants, especially those from 

deceased donors. This breakthrough could potentially result in a substantial reduction in the discard rate 

of kidneys from deceased donors. 

Minor comments: 

The parameters employed in the virtual biopsy closely resemble the Kidney Donor Profile Index (KDPI), 

which has been in use in the USA since late 2014. Given that the study included a population from the 

USA, could the researchers have utilized the KDPI for the virtual biopsy instead? Furthermore, do the 

investigators anticipate that the KDPI could potentially substitute the selected parameters in their 

model, yielding similar outcomes to those of the virtual biopsy? 

The term "virtual biopsy" suggests a remote examination of biopsies. However, the research indicates 

that a physical biopsy may not be necessary, as clinical parameters alone can effectively correlate with 

biopsy findings. As a result, the name of the model may not accurately describe the nature of the study. 

The question arises as to whether the model would remain effective when one or more parameters are 

missing. The study does not provide explicit clarification on this matter. It is crucial to ascertain the 



robustness of the model and its ability to generate reliable predictions when faced with incomplete 

parameter data. Considering the potential scenarios where certain parameters might be unavailable, 

further investigation is warranted to evaluate the model's performance. Assessing the sensitivity of the 

model to missing parameters would enhance our understanding of its practical applicability in real-world 

settings, where data completeness can vary. Furthermore, addressing the issue of missing parameters 

would contribute to the model's versatility and enable its potential adoption in cases where complete 

parameter sets are not always feasible. 

One notable observation in the discussion section is the absence of citations referencing similar studies 

or previous work in the field. While the discussion provides insightful analysis and interpretations of the 

study's findings, it lacks supporting references to related research. 

Reviewer #2 (Remarks to the Author): 

The article introduces a machine learning based virtual biopsy system to assess the quality of kidney 

allografts, based on routinely collected donor parameter. The goal of the system is to replace day-zero 

biopsies, which are invasive, costly and time consuming. 

This multi-center study is generally of high quality and has the potential to lead to a substantial impact 

in the domain of transplant medicine. Moreover, the availability of an online interface to the virtual 

biopsy system will facilitate the uptake. 

However, I do have a number of concerns regarding the methodology used. 

My first concern is the lack of motivation for the chosen machine learning strategy. The authors 

construct an ensemble method of 6 classifiers (of which several are ensembles themselves). In the end it 

turns out that this ensemble does not improve over random forests (cfr Table 2), one of the 6 included 

classifiers. So the final model seems to be overly complex, and the same performance can be achieved 

with only one component of it. Ideally, the authors would have used their development cohort to 

compare the results of the 6 classifiers, as well as their ensemble, and then would have picked the best 

performing one as final model. I understand that the authors have fixed their ML strategy beforehand, 

but given the no free lunch theorem, it would have been better to optimise the model based on their 

data, just as they optimise the hyperparameter values. In addition, currently it is also not clear if the 

complex model is outperforming logistic regression, which could have been included as a (more 

interpretable, especially given the limited number of features) baseline. 



The text states that "hyperparameters were optimized by robust 3-times repeated 10-folds cross-

validation when tuning the models". Then, to assess model performance, "For the internal validation, 

the performance was assessed in 30 resamples from the 3-times repeated 10-folds cross-validation on 

the derivation cohort". This means that, basically, the same data was used to pick the best 

hyperparameter values and to report model performance, which may result in overly optimistic results 

for the internal validation. Ideally, the authors would have used a nested cross-validation set-up or at 

least a different tuning and test set. Moreover, the authors should specify the hyperparameters that 

were tuned, the specific values that were included in the tuning process, and the measure that was 

optimized. 

I'm not convinced that the current procedure employed for feature ranking is very useful. By averaging 

rankings made by different (5 of the 6) individual components of the ensemble, it is hard to get an 

overall impression of the feature importance. I would advise the authors to run a permutation-based 

feature importance test (which is probably what is used for several of the individual components) using 

the complete ensemble. 

Finally, although I appreciate the conducted pilot study, it seems to break the flow of the paper. It is not 

clear what the goal and conclusion of this study are. The work was motivated as a way to avoid the time 

consuming day-zero biopsies (cold ischemia time). But then in the pilot study, the goal seems to be to 

check how many discarded kidneys would have been accepted if the virtual biopsy system was used. It 

seems that the kidneys were discarded without the use of a day-zero biopsy "discarded for quality 

reasons based on clinical donor parameters and the Kidney Donor Profile Index (KDPI) only". So it is 

unclear what to conclude from this study, or from the finding that 45% of discarded kidneys would have 

been accepted unanimously. Would they also have been accepted with day-zero biopsy information? 

The text is also ambiguous as to whether clinical donor parameters and KDPI were provided to the 

physicians (line 441 vs line 443-444). 

Minor textual comments: 

L255: by resampling random values -> by resampling random kidneys (a value is normally interpreted as 

the value of one predictor) 

L525: weird/incorrect sentence starting at this line 



Authors’ responses to reviewers’ comments regarding the 
manuscript NCOMMS-23-28413 “A Machine Learning-Driven Virtual 

Biopsy System For Kidney Transplant Patients” 
 

Answers to Reviewer #1 

 

In this manuscript by Yoo et al, the authors describe their work on applying machine learning 

in the kidney transplant biopsy. They analyzed 14,032 kidney biopsies at time zero of 

transplant, using 11 donor parameters to build the virtual biopsy system. These parameters 

are: donor’s age, body mass index, sex, history of hypertension, diabetes, donor cause of 

death, donor type (living vs deceased), circulatory status at donation, hepatitis C status, serum 

creatinine, and proteinuria. The investigators aggregated six machine learning models into an 

ensemble model for predicting arteriosclerosis (cv), arteriolar hyalinosis (ah), interstitial 

fibrosis and tubular atrophy (IFTA), with multi-AUC of 0.833, 0.773, and 0.830, respectively. 

The final model demonstrated accurate prediction of the percentage of glomerulosclerosis 

with a mean absolute error of 5.999. 

The manuscript is very well written, and the findings are very well presented. The design of 

the research is suitable for the goals of the work. The findings are very important and clinically 

relevant. The study population is extensive and diverse, encompassing 17 transplant centers 

from various countries. 

The promising connection between kidney transplant biopsy findings and easily measured 

clinical parameters holds significant implications for the selection of kidney transplants, 

especially those from deceased donors. This breakthrough could potentially result in a 

substantial reduction in the discard rate of kidneys from deceased donors. 

 

We thank the reviewer for the feedback and the detailed comments and suggestions. 

We also believe that the Virtual Biopsy System has the potential to fill in the gaps of missing 

day-zero kidney allograft biopsies to avoid potential harmful misinterpretations of the post-

transplant biopsy findings for patients. We appreciate the recognition of the international 

consortium efforts to demonstrate the clinical impact of this companion system in a large 

number of day-zero biopsies from multi-continental cohorts, to allow a granular assessment 

of diverse populations. We provide below additional data and clarifications to answer the 

comments of the reviewer. 

 

 

Minor comments: 



The parameters employed in the virtual biopsy closely resemble the Kidney Donor Profile 

Index (KDPI), which has been in use in the USA since late 2014. Given that the study included 

a population from the USA, could the researchers have utilized the KDPI for the virtual biopsy 

instead? Furthermore, do the investigators anticipate that the KDPI could potentially substitute 

the selected parameters in their model, yielding similar outcomes to those of the virtual 

biopsy? 

 The Kidney Donor Risk Index (KDRI)/Kidney Donor Profile Index (KDPI) and the Virtual 

Biopsy System have two distinct aims.  

 1. The KDRI/KDPI was primarily developed for deceased donors only. It is used to 

assess a kidney offer by predicting relative risk of post-transplant kidney graft failure (with 

relatively low prediction performances (PMID: 19623019)). Although KDRI/KDPI was not 

designed to predict histological lesions, it was thereafter used to predict day-zero biopsy 

findings (it showed poor performances with an AUC of 0.64 (PMID: 29132985). 

 

 2. On the other hand, the Virtual Biopsy System was specifically designed to predict 

the day-zero kidney graft biopsy results and Banff scores (severity and grades of lesions) in 

deceased and living donors, and shows good prediction performances. In the end, the ultimate 

goals of the Virtual Biopsy System were to: 

 i) identify the kidneys that need a biopsy, 

 ii) accelerate the allocation process, 

 iii) decrease cold ischemia time to improve graft outcomes, 

 iv) provide a baseline of the graft histology to which the findings of subsequent biopsies 

of the kidney allograft can be compared. 

 

 Following the reviewer’s remark, we nevertheless investigated whether KDPI could 

predict the day-zero biopsy lesions. 

 To achieve this goal, we developed a new model using solely the KDPI score to predict 

Banff biopsy scores.  We developed four KDPI-based models to predict the four day-zero 

lesions. We used the imputed datasets that were used for the original Virtual Biopsy System. 

Biopsies from living donors and with missing ethnicity, height, or weight were excluded. We 

followed the Organ Procurement and Transplantation Network (OPTN)’s guideline based on 

the database as of April 07, 2023 

(https://optn.transplant.hrsa.gov/media/wnmnxxzu/kdpi_mapping_table.pdf) to calculate 

KDRI and KDPI. We first calculated the KDRI RAO (PMID: 19623019), then converted it to 

scaled KDRI with the 2022 scaling factor, 1.33586831546044. Next, we converted it to the 

KDPI. Up-sampling was performed for the three categorical lesions (Banff cv, ah, and IFTA 

scores). Ensemble models were developed by aggregating random forest (RF), extreme 



gradient boosting tree (XGBoost), linear discriminant analysis (LDA), model averaged neural 

network (avNNet), and multinomial logistic regression (MNOM). For glomerulosclerosis, LDA 

and MNOM were excluded because they are exclusively designed to predict categorical 

variables (classification). Gradient boosting machine was excluded due to the difficulty of 

deriving a univariate model. With the train set, we performed 3-times repeated 10-folds cross-

validation for internal validation. External validation was stratified into Columbia University 

cohort and Sun Yat-sen University cohort.  

 For the derivation cohort, 4,241 biopsies were used, and for the external validation 

cohort, 1,124 biopsies (920 from Columbia University medical center and 204 from Sun Yat-

sen University) were used for this analysis. The mean KDPI was 53.43 (SD 29.49) in the 

derivation cohort; in the external validation cohort, the mean KDPI was 63.24 (SD 26.63).  

 Table 1 demonstrates the performance of the models with KDPI as a parameter. The 

new model using the KDPI parameter showed the multi-AUCs of 0.688 (vs 0.833 in the original 

Virtual Biopsy System), 0.644 (vs 0.773), 0.716 (vs 0.830), for cv, ah, and IFTA lesions during 

the internal validation, respectively. Predicting the glomerulosclerosis also showed lower 

performance than the original Virtual Biopsy System (MAE 6.647 vs 5.999), which used the 

full donor parameters. Most importantly, during the external validations, the simplified KDPI 

model failed to achieve good performance in predicting cv, ah, and IFTA with 0.625, 0.668, 

0.638 for Columbia University cohort, respectively, and 0.659, 0.552, 0.710 for Sun Yat-sen 

University cohort, respectively. In comparison, our original Virtual Biopsy System showed the 

good performances with the multi-AUCs of 0.740, 0.733, 0.723, for cv, ah, and IFTA lesions 

for Columbia University cohort, respectively, and 0.740, 0.736, 0.798 for Sun Yat-sen 

University cohort, respectively. 

 In general, other than predicting the glomerulosclerosis, the models with the KDPI 

model showed poor performance in predicting all three categorical lesion scores reflection 

arteriosclerosis, arterial hyalinosis, and interstitial inflammation and tubular atrophy (Banff cv, 

ah, and IFTA scores). This result aligns with the previously mentioned study (PMID: 

29132985). The likely reason for this lower performances could be attributed to the 

simplification of donor parameters into a single score through the KDPI parameter, which 

might result in a loss of the nuanced information they originally encompassed. 
  



Table 1 | KDPI as a parameter in predicting day-zero kidney biopsy results 

Model Cohort Validation 
Multi-AUC Mean Absolute Error 

cv ah IFTA Glomerulosclerosis 

Virtual Biopsy 
System  

Internal Cross-validation 0.833 0.773 0.830 5.999 

External 
Columbia University 0.740 0.733 0.723 5.200 

Sun Yat-sen University 0.740 0.736 0.798 4.608 

 KDPI 

Internal Cross-validation 0.688 0.644 0.716 6.647 

External 
Columbia University 0.625 0.668 0.638 4.947 

Sun Yat-sen University 0.659 0.552 0.710 4.193 

 
We now added a subsection in Methods and Results to add this sensitivity analysis. The table was 

added as Supplementary Table 13. 

 

 

Methods: 

“Kidney donor profile index (KDPI) 

 We conducted a sensitivity analysis to investigate whether KDPI could predict the day-zero 

biopsy lesions. We developed a model using only the KDPI score. Biopsies from living donors and those 

with missing ethnicity, height, or weight data were excluded from the imputed dataset. OPTN guidelines, 

based on the database as of April 07, 2023, were followed for KDPI calculations. An ensemble of RF, 

XGBoost, LDA, avNNet, and MNOM models was employed. LDA and MNOM were excluded for 

predicting glomerulosclerosis lesion. GBM was excluded due to the difficulty of deriving a univariate 
model.” 

 

Results: 

“Performance of kidney donor profile index (KDPI) score 

 The derivation cohort included 4,241 biopsies, and the external validation cohort comprised 

1,124 biopsies (920 from Columbia University medical center and 204 from Sun Yat-sen University). 

The mean KDPI was 53.43 (SD 29.49) in the derivation cohort and 63.24 (SD 26.63) in the external 

validation cohort. 

 Supplementary Table 13 shows model performance with KDPI as a parameter. The KDPI-

based model achieved multi-AUCs of 0.688, 0.644, and 0.716 for cv, ah, and IFTA lesions during 

internal validation, respectively. Predicting glomerulosclerosis performed with the MAE of 6.647. During 

external validations, the KDPI-based model showed predictive performance for cv, ah, and IFTA, 

achieving multi-AUCs of 0.625, 0.668, and 0.638 for the Columbia University cohort, and 0.659, 0.552, 

and 0.710 for the Sun Yat-sen University cohort, respectively.” 

 



The term "virtual biopsy" suggests a remote examination of biopsies. However, the research 

indicates that a physical biopsy may not be necessary, as clinical parameters alone can 

effectively correlate with biopsy findings. As a result, the name of the model may not accurately 

describe the nature of the study. 

 

 We understand the reviewer’s query. Our consortium chose this term, “Virtual Biopsy 

System”, to express the idea that the virtual biopsy is created by computer technology; it 

therefore exists in the virtual world, and does not exist in the physical world. It is thus our 

understanding that this term adequately reflects reality. If the reviewer agrees, we would like 

to keep this terminology and the following remark. We are now better discussing this notion in 

the revised manuscript. 

 

The following text was added in the introduction. 

 

“The virtual biopsy system, an artificial intelligence (AI) model, provides virtual results that 

would have been obtained if a biopsy would have been performed.” 

 

The question arises as to whether the model would remain effective when one or more 

parameters are missing. The study does not provide explicit clarification on this matter. It is 

crucial to ascertain the robustness of the model and its ability to generate reliable predictions 

when faced with incomplete parameter data. Considering the potential scenarios where 

certain parameters might be unavailable, further investigation is warranted to evaluate the 

model's performance. Assessing the sensitivity of the model to missing parameters would 

enhance our understanding of its practical applicability in real- world settings, where data 

completeness can vary. Furthermore, addressing the issue of missing parameters would 

contribute to the model's versatility and enable its potential adoption in cases where complete 

parameter sets are not always feasible. 

 

 We understand the reviewer’s remark. Data availability is crucial to ascertain the 

usability of a prediction model in clinical practice (PMID: 35013569). 

 However, adapting the Virtual Biopsy System to handle missing parameters is beyond 

the scope of the present study. Indeed, once a machine learning model is developed, it cannot 

compute results when needed parameters are missing. One way to handle this issue is to live-

imputing the missing parameters with the original complete cohort (PMID: 33482294). Another 

way is to remove the missing parameters from the development cohorts to redevelop a model, 

which will learn different patterns from the original full model. 



 However, none of the methods fully fulfill the loss of information caused by missing 

parameters.  

 For these reasons, 11 simple donor parameters were selected as part of the study 

design because they were easily accessible in most transplant centers worldwide, which is 

important for the generalizability of the findings. These parameters are: 1) donor’s age, 2) 

body mass index, 3) sex, 4) history of hypertension, 5) diabetes, 6) donor cause of death, 7) 

donor type (living vs deceased), 8) circulatory status at donation, 9) hepatitis C status as well 

as renal function parameters including 10) serum creatinine, 11) and proteinuria. These are 

routinely collected parameters all over the world. It is therefore unlikely that a transplant center 

lacks these parameters. 

 We have clarified this point in the study limitation. 

 

“Fourth, additional predictors, such as gene expression or new biomarkers, beyond the 11 

donor parameters used to derive the virtual biopsy, may improve its performances. However, 

the parameters used in this study are the most commonly accessible, and including less 

standard ones might not only increase the number of missing data but also reduce 

generalizability by increasing the risk of parameters missing.” 

 

One notable observation in the discussion section is the absence of citations referencing 

similar studies or previous work in the field. While the discussion provides insightful analysis 

and interpretations of the study's findings, it lacks supporting references to related research. 

 

 We are now referring to the literature search we performed in the discussion section. 

 

 Systematic review 
 We searched PubMed and MEDLINE from January 2000 to January 2022, using the 

terms “non-invasive”, “biopsy”, “predict”, and “machine learning” without language restrictions. 

Our search found overall 164 studies from all medical fields. We removed 12 studies predicting 

a single disease diagnosis (e.g. cancer). 124 studies used histological images and 28 were 

related to omics-based diagnoses. Overall, in all medical fields, there was no published study 

on generating a virtual biopsy to assess the presence and severity of biopsy lesions using a 

combination of non-invasive parameters. 

 

 We are now adding a paragraph in the discussion section referencing similar studies. 

 

“Our literature search (Supplementary Method 2) revealed a dearth of studies that address 

the creation of a virtual biopsy for evaluating biopsy lesion presence and severity by utilizing 



non-intrusive factors such as donor parameters. Meanwhile, non-invasive diagnosis using 

machine learning has been studied. Yin et al. demonstrated that the potential of multiple 

machine learning classifiers in distinguishing histological features in bladder tumor images. 

Detecting kidney biopsy results has been explored predominantly with histological images 

using deep learning. In 2018, Marsh et al. developed a convolutional neural networks (CNN) 

model to identify and classify glomerulosclerosis in day-zero kidney biopsies, improving pre-

transplant evaluation. Hara et al. presented a U-Net based segmentation model for classifying 

normal and abnormal tubules in kidney biopsies. However, a need persists to compensate for 

the absence of day-zero biopsy for kidney allografts by virtually assessing the presence and 

severity of biopsy lesions using non-invasive donor parameters.” 

 

Answers to Reviewer #2 

 

The article introduces a machine learning based virtual biopsy system to assess the quality of 

kidney allografts, based on routinely collected donor parameter. The goal of the system is to 

replace day-zero biopsies, which are invasive, costly and time consuming. 

This multi-center study is generally of high quality and has the potential to lead to a substantial 

impact in the domain of transplant medicine. Moreover, the availability of an online interface 

to the virtual biopsy system will facilitate the uptake. 

 

 We would like to thank the reviewer for the comments. We have addressed all remarks 

as will be seen in the details point-by-point response below. 

 

However, I do have a number of concerns regarding the methodology used. 

My first concern is the lack of motivation for the chosen machine learning strategy. The authors 

construct an ensemble method of 6 classifiers (of which several are ensembles themselves). 

In the end it turns out that this ensemble does not improve over random forests (cfr Table 2), 

one of the 6 included classifiers. So the final model seems to be overly complex, and the same 

performance can be achieved with only one component of it. Ideally, the authors would have 

used their development cohort to compare the results of the 6 classifiers, as well as their 

ensemble, and then would have picked the best performing one as final model. I understand 

that the authors have fixed their ML strategy beforehand, but given the no free lunch theorem, 

it would have been better to optimise the model based on their data, just as they optimise the 

hyperparameter values.  

 

 We thank the reviewer for this important remark. 



 Our initial strategy was to aggregate the six popular machine learning algorithms to 

decrease the bias and maximize the generalizability (Wolpert, David H. "Stacked 

generalization." Neural networks 1992). We are now providing all machine learning classifiers’ 

performances in both internal and external validations (Table 2). As demonstrated in this Table 

2, no single machine learning model performs well in all scenario, except for the ensemble 

models. Hence, we chose the aggregated ensemble models for the virtual biopsy system, 

which have shown more stable and robust predictions in both internal and two external 

validation cohorts. 

 

Table 2 | Machine learning classifiers’ and ensemble models’ performances in internal 
and external validation cohorts. 

Cohort Validation Model 
Multi-AUC Mean Absolute Error 

cv ah IFTA Glomerulosclerosis 

Internal Cross-validation 

Random Forest 0.836 0.774 0.830 5.807 

Gradient Boosting Machine 0.807 0.750 0.805 6.486 

Extreme Gradient Boosting Tree 0.830 0.767 0.827 5.768 
Linear Discriminant Analysis 0.761 0.703 0.750 -* 

Model Averaged Neural Network 0.777 0.720 0.757 6.573 

Multinomial Logistic Regression 0.763 0.706 0.753 -* 
Ensemble Model 0.833 0.773 0.830 5.999 

External 

Columbia University 

Random Forest 0.701 0.685 0.683 5.417 

Gradient Boosting Machine 0.723 0.716 0.748 4.989 

Extreme Gradient Boosting Tree 0.687 0.658 0.686 5.095 
Linear Discriminant Analysis 0.754 0.772 0.749 -* 

Model Averaged Neural Network 0.743 0.711 0.62 5.268 

Multinomial Logistic Regression 0.754 0.764 0.731 -* 
Ensemble Model 0.740 0.733 0.723 5.200 

Sun Yat-sen University 

Random Forest 0.718 0.678 0.808 4.600 

Gradient Boosting Machine 0.706 0.745 0.817 4.188 
Extreme Gradient Boosting Tree 0.683 0.650 0.738 4.602 

Linear Discriminant Analysis 0.742 0.744 0.816 -* 

Model Averaged Neural Network 0.726 0.670 0.680 4.336 
Multinomial Logistic Regression 0.729 0.741 0.814 -* 

Ensemble Model 0.740 0.736 0.798 4.608 
* Linear discriminant analysis and multinomial logistic regression are not developed for regression but 
for classification. AUC=area under the curve (higher the better). MAE=mean absolute error (lower the 
better). 
 



 We now clarified a Method subsection, Development of the virtual biopsy system, for 

the reasoning of selecting the ensemble model with “no free lunch” theorem. 

 

“Then, we aggregated the classification models by averaging probabilities provided by each 

model: this generated an ensemble model, or meta-classifier, which is aimed at decreasing 

bias and overfitting to take into account the “no free lunch” theorem.” 

 

In addition, currently it is also not clear if the complex model is outperforming logistic 

regression, which could have been included as a (more interpretable, especially given the 

limited number of features) baseline. 

 

 We described in the above Table 2 the results of all machine learning classifiers and 

ensemble models’ performances in internal and two external validation cohorts. The Table 2 

shows the logistic regression does not outperform other complex models during the internal 

validation. With the ensemble method, which aggregates both the complex and non-complex 

models, the ensemble models overall obtain the benefits of all models (statistical power and 

generalizability).  

 To note, generating models to outperform the logistic regression was neither our aim 

nor our intention. We wanted to take into account the “no free lunch” theorem and avoid using 

one single optimized model in all situations, whether it is logistic regression or a random forest. 

The trade-off of “complexity” or “computing time” of the ensemble model is also expected and 

demonstrated by the “no free lunch” theorem. 

 

The text states that "hyperparameters were optimized by robust 3-times repeated 10-folds 

cross-validation when tuning the models". Then, to assess model performance, "For the 

internal validation, the performance was assessed in 30 resamples from the 3-times repeated 

10-folds cross-validation on the derivation cohort". This means that, basically, the same data 

was used to pick the best hyperparameter values and to report model performance, which 

may result in overly optimistic results for the internal validation. Ideally, the authors would have 

used a nested cross-validation set-up or at least a different tuning and test set. 

 

 We thank the reviewer for this comment, and we are now clarifying this methodological 

point. With the large derivation cohort of 12,402 biopsy samples from heterogeneous and 

various data sources, we are confident in performing 3-times repeated 10-folds cross-

validation for internal validation. Wainer and Cawley showed comparable results between a 

flat-procedure and a nested cross-validation (Wainer, Jacques, and Gavin Cawley. "Nested 

cross-validation when selecting classifiers is overzealous for most practical applications." 



Expert Systems with Applications 2021). The authors also stated that “flat-procedure will, on 

average, perform as well as the one that would be selected by the nested cross-validation 

procedure, for most practical purposes”.  

 Moreover, we provided additional layer of model generalizability by performing the 

validation of the system in various subpopulations and clinical scenarios. Since this 

partitioning is not equivalent to the cross-validation, we further provided the robustness of the 

model.  

 Most importantly, it is our understanding that the only valid way to assess whether the 

internal validation is overly optimistic is to assess the performance in an external validation. 

We confirm that our ensemble models show performance in the external validation that was 

comparable to that of the internal validation.  

 We now added this point in the limitation in the discussion section. 

 

“Last, other sampling methods such as nested cross-validation may help provide more precise 

prediction performances. However, with the large derivation cohort from heterogeneous and 

various data sources, we are confident in performing 3-times repeated 10-folds cross-

validation for internal validation. Moreover, we performed model assessments in 

subpopulations and various clinical scenarios. Finally, we showed the model performances 

are comparable in internal and external validations.” 

 

 Nonetheless, we performed a new model derivation using the split train and test set 

from the derivation cohort as the reviewer suggested. The split was done with 8:2 stratified 

random sampling. Hyperparameter optimization was processed during the 3-times repeated 

10-folds cross-validation in the train set. Internal validation was performed in both on the cross-

validation and on the split test set. After the internal validation, the Virtual Biopsy System was 

rederived with the full derivation cohort with the optimized hyperparameter. The rederived 

Virtual Biopsy System was used to perform the external validation in Columbia University and 

Sun Yat-sen University cohorts. We provide the Table 3 below to demonstrate the overall 

performance of the newly developed Virtual Biopsy System as the reviewer suggested. The 

newly developed Virtual Biopsy System shows comparable performance in both internal and 

external validations compared to the original Virtual Biopsy System. This indicates that the 

original 3-times repeated 10-folds cross-validation methodology for internal validation 

provided precise predictive performance and did not yield overly optimistic results. 

 

Table 3 | Machine learning classifiers’ and ensemble models’ performances in internal (cross-
validation and test set) and external validation cohorts. 



Cohort Validation Model 
Multi-AUC Mean Absolute Error 

cv ah IFTA Glomerulosclerosis 

Internal 

Cross-validation 

Random Forest 0.814 0.753 0.809 6.000 

Gradient Boosting Machine 0.800 0.730 0.791 6.360 

Extreme Gradient Boosting Tree 0.809 0.749 0.805 5.872 

Linear Discriminant Analysis 0.764 0.699 0.751 -* 

Model Averaged Neural Network 0.771 0.708 0.766 6.557 

Multinomial Logistic Regression 0.766 0.701 0.752 -* 

Ensemble Model 0.820 0.757 0.814 5.927 

Test set 

Random Forest 0.832 0.770 0.824 6.025 

Gradient Boosting Machine 0.802 0.751 0.801 6.442 
Extreme Gradient Boosting Tree 0.823 0.757 0.834 5.890 

Linear Discriminant Analysis 0.752 0.718 0.730 -* 

Model Averaged Neural Network 0.758 0.720 0.764 6.752 
Multinomial Logistic Regression 0.754 0.723 0.736 -* 

Ensemble Model 0.825 0.783 0.821 5.855 

External 

Columbia University 

Random Forest 0.701 0.685 0.711 5.369 
Gradient Boosting Machine 0.718 0.678 0.717 5.955 

Extreme Gradient Boosting Tree 0.701 0.680 0.674 4.963 

Linear Discriminant Analysis 0.754 0.772 0.749 -* 
Model Averaged Neural Network 0.753 0.746 0.719 5.144 

Multinomial Logistic Regression 0.754 0.764 0.731 -* 

Ensemble Model 0.742 0.734 0.738 5.076 

Sun Yat-sen University 

Random Forest 0.718 0.678 0.833 4.582 
Gradient Boosting Machine 0.698 0.663 0.766 4.708 

Extreme Gradient Boosting Tree 0.670 0.708 0.763 4.470 

Linear Discriminant Analysis 0.742 0.744 0.816 -* 
Model Averaged Neural Network 0.741 0.735 0.856 4.342 

Multinomial Logistic Regression 0.729 0.741 0.814 -* 

Ensemble Model 0.736 0.740 0.800 4.497 
* Linear discriminant analysis and multinomial logistic regression are not developed for regression but 
for classification. AUC=area under the curve (higher the better). MAE=mean absolute error (lower the 
better). 
 

 

Moreover, the authors should specify the hyperparameters that were tuned, the specific values 

that were included in the tuning process, and the measure that was optimized. 

 



 As suggested by the reviewer, we now provide the hyperparameters that were tuned, 

the chosen final hyperparameters, and the measure that was optimized (Supplementary Table 

5). The main manuscript and the supplementary appendix have been revised accordingly. 

 
Supplementary Table 5 | Hyperparameters tuning and results 
Hyperparameters of the machine learning models were tuned during 3-times repeated 10-

folds cross-validation. For three ordinal Banff lesion scores (arteriosclerosis [Banff cv score], 

arteriolar hyalinosis [Banff ah score], interstitial fibrosis and tubular atrophy [Banff IFTA 

score]), the Hand and Till’s multi-AUC (higher the better) was measured to optimize. For the 

continuous Banff lesion, glomerulosclerosis (percentage of sclerotic glomeruli), the mean 

absolute error (MAE, lower the better) was measured to optimize. For cv, ah, and IFTA scores, 

averaging all machine learning models generated an ensemble model. For 

glomerulosclerosis, a linear regression model of regression models to create an ensemble 

model. 
 
Supplementary Table 5.1 | Arteriosclerosis (Banff cv score) 

Machine learning models Hyperparameters 

Random Forest mtry=4 

Gradient Boosting Machine 

n.trees=700 
interaction.depth=13 

shrinkage=0.01 
n.minobsinnode=7 

Extreme Gradient Boosting Tree 

nrounds=54 
max_depth=18 
eta=0.1852479 

gamma=0.02767602 
colsample_bytree=0.6063756 

min_child_weight=0.9 
subsample=0.790576 

Linear Discriminant Analysis - 

Model Averaged Neural Network 
size=25 

decay=0.1 
bag=TRUE 

Multinomial Logistic Regression decay=0.001 



Supplementary Table 5.2 | Arteriolar hyalinosis (Banff ah score) 

Machine learning models Hyperparameters 

Random Forest mtry=4 

Gradient Boosting Machine 

n.trees=700 
interaction.depth=13 

shrinkage=0.01 
n.minobsinnode=5 

Extreme Gradient Boosting Tree 

nrounds=27 
max_depth=18 

eta=0.06210775 
gamma=0.01385926 

colsample_bytree=0.8300242 
min_child_weight=1.1 
subsample=0.8261786 

Linear Discriminant Analysis - 

Model Averaged Neural Network 
size=15 

decay=0.1 
bag=TRUE 

Multinomial Logistic Regression decay=0.001 



Supplementary Table 5.3 | Interstitial fibrosis and tubular atrophy (Banff IFTA score) 

Machine learning models Hyperparameters 

Random Forest mtry=4 

Gradient Boosting Machine 

n.trees=700 
interaction.depth=13 

shrinkage=0.01 
n.minobsinnode=7 

Extreme Gradient Boosting Tree 

nrounds=38 
max_depth=15 
eta=0.1508891 

gamma=0.04430697 
colsample_bytree=0.5812269 

min_child_weight=1.9 
subsample=0.9993576 

Linear Discriminant Analysis - 

Model Averaged Neural Network 
size=10 

decay=0.01 
bag=FALSE 

Multinomial Logistic Regression decay=0.01 



Supplementary Table 5.4 | Glomerulosclerosis (percentage of sclerotic glomeruli) 

Machine learning models Hyperparameters 

Random Forest mtry=8 

Gradient Boosting Machine 

n.trees=700 
interaction.depth=13 

shrinkage=0.01 
n.minobsinnode=5 

Extreme Gradient Boosting Tree 

nrounds=283 
max_depth=18 

eta=0.01032906 
gamma=0.04123139 

colsample_bytree=0.5279746 
min_child_weight=0.7 
subsample=0.6965341 

Model Averaged Neural Network 
size=10 

decay=0.01 
bag=FALSE 

Ensemble model (linear regression) - 



 

I'm not convinced that the current procedure employed for feature ranking is very useful. By 

averaging rankings made by different (5 of the 6) individual components of the ensemble, it is 

hard to get an overall impression of the feature importance. I would advise the authors to run 

a permutation-based feature importance test (which is probably what is used for several of the 

individual components) using the complete ensemble. 

 

 We now enhanced our feature importance analysis as advised by the reviewer by 

including the previously missing algorithm (linear discriminant analysis [LDA]) and 

permutation-based feature importance tests. Moreover, we performed the full spectrum of 

continuous importance rather than only reporting the rankings. Since the ensemble models 

are averaging scores from the six base machine learning models, we averaged the importance 

of the 6 models. We revised the manuscript and the figure accordingly. 

 

“Furthermore, to assess the donor parameters that drive the performance of the models, we 

averaged the feature importance by RF, GBM, XGBoost, LDA (for classification models only), 

avNNet, and MNOM (for classification models only).” 

 

 

Figure 1 | Clinical and biological parameters’ importance 
We performed random forest, gradient boosting machine, extreme gradient boosting tree, 

linear discriminant analysis, model averaged neural network, and multinomial logistic 

regression to measure the parameter importance for predicting the day-zero biopsy 

histological lesion scores during the derivation process. The importance was then averaged 

for the ensemble model. (a) Donor parameter importance for arteriosclerosis (cv Banff score). 

(b) Donor parameter importance for arteriolar hyalinosis (ah Banff score). (c) Donor parameter 

importance for interstitial fibrosis and tubular atrophy (IFTA Banff score). (d) Donor parameter 

importance for the percentage of sclerotic glomeruli (glomerulosclerosis score). 



 
 

Finally, although I appreciate the conducted pilot study, it seems to break the flow of the paper. 

It is not clear what the goal and conclusion of this study are. The work was motivated as a 

way to avoid the time consuming day-zero biopsies (cold ischemia time). But then in the pilot 

study, the goal seems to be to check how many discarded kidneys would have been accepted 

if the virtual biopsy system was used. It seems that the kidneys were discarded without the 

use of a day-zero biopsy "discarded for quality reasons based on clinical donor parameters 

and the Kidney Donor Profile Index (KDPI) only". So it is unclear what to conclude from this 

study, or from the finding that 45% of discarded kidneys would have been accepted 

unanimously. Would they also have been accepted with day-zero biopsy information? The text 

is also ambiguous as to whether clinical donor parameters and KDPI were provided to the 

physicians (line 441 vs line 443-444). 

 

 We thank the reviewer for bringing up this point. We agree with the reviewer’s comment 

and removed the pilot study section. The main manuscript and the supplementary appendix 

have been revised accordingly. 

 

Minor textual comments: 

L255: by resampling random values -> by resampling random kidneys (a value is normally 

interpreted as the value of one predictor) 

 



 We thank the reviewer for finding this typo. We corrected this sentence. 

“by resampling random kidneys from the severe/higher grades.” 

 

L525: weird/incorrect sentence starting at this line 

  

 We corrected this sentence. “Besides, our data collection procedure followed high-

quality structured protocols to ensure compatibility across study centers.” 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

That authors addressed all the comments, concerns and questions that are raises by the reviewers. No 

other comments. 

Reviewer #2 (Remarks to the Author): 

The authors carefully addressed all my comments. 



Authors’ responses to reviewers’ comments regarding the 

manuscript NCOMMS-23-28413 “A Machine Learning-Driven Virtual 

Biopsy System For Kidney Transplant Patients” 

 

Answers to Reviewer #1 

 

That authors addressed all the comments, concerns and questions that are raises by the 

reviewers. No other comments. 

 

We thank the reviewer for the feedback and the detailed comments and suggestions. 

 

Answers to Reviewer #2 

 

The authors carefully addressed all my comments. 

 

We thank the reviewer for the feedback and the detailed comments and suggestions. 
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