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Supplementary Note 1 
Converting 𝒍𝒅𝒕𝒔 to a physical unit  
While it is possible and very common to explore membrane behaviors in terms of relative length scales 
(in the unit of 𝑙𝑑𝑡𝑠) [1, 2] often it is more appealing to convert this length unit (𝑙𝑑𝑡𝑠) to a physical unit in 

particular if we are focusing on a specific real system. Previously we have done this for Shiga toxin, 
Annexin 4 and simple vesicles [3, 4].  However, this conversion scheme is not unique and can be 
adopted according to the phenomenon we are interested in. We briefly discuss this topic below and 
refer interested readers to the original articles [3-6].   
 
For system containing proteins: To convert 𝑙𝑑𝑡𝑠 to a physical unit e.g., nm, we assume that the area 

of a vertex which is √3/2𝑙𝑑𝑡𝑠
2  is equal to the area is equal to the area of the smallest circle wrapping 

the protein (𝜋𝑅2) [3, 6]. Therefore,  

 
𝑙𝑑𝑡𝑠~1.9 𝑅        (11) 

 
For pure bilayer: When two faces of a membrane approach each other, within nm distance, they repel 
each other through hydration and membrane protrusion forces that are below the DTS resolution. We 
account for these forces by treating them as infinite repulsion by restricting different segments of a 
membrane surface from approaching a distance at which these forces are effective (0.7 nm). Thus, 𝑙𝑑𝑡𝑠 

is the bilayer thickness plus a distance in which hydration and membrane protrusion forces are effective 
(~0.7𝑛𝑚), leading to 𝑙𝑑𝑡𝑠~4.5𝑛𝑚. Note, for membranes with small deformations, 𝑙𝑑𝑡𝑠 > 4.5𝑛𝑚 nm can 

also be chosen. However, for highly deformed membranes, this choice implies that some realistic 
configurations of the membrane have been eliminated[4]. 

Supplementary Note 2 
Discrete shape operator, principal directions, and curvatures 
 
Vertex normal and area: On each vertex, a normal (𝒏̂𝜐) and an area associated with the vertex (𝐴𝜐) 
are defined as 
 

𝐴𝜐 =
1

3
∑ 𝐴𝑇

𝑇(𝑅)

                        (1) 

 

 𝒏̂𝜐 =
∑ 𝐴𝑇𝒏̂𝑇𝑇(𝑅)

|∑ 𝐴𝑇𝒏̂𝑇𝑇(𝑅) |
                (2) 

 
Where ∑ …𝑇(𝑅)  indicates that the sum is over faces (triangles) in a ring around the vertex. 𝐴𝑇 and 𝒏̂𝑇 are 

the triangle area and normal.  
 
Edge normal: A normal associated with an edge (𝒏̂𝑒) is obtained using normals of two triangles sharing 

the edge (𝒏̂𝑇1, 𝒏̂𝑇2) as  

𝒏̂𝑒 =
𝒏̂𝑇1 + 𝒏̂𝑇2

|𝒏̂𝑇1 + 𝒏̂𝑇2|
                  (3) 

 
Shape operator on an edge: The shape operator on an edge 𝒆 is be obtained as 

 

𝐒𝒆 = 𝐻𝑒(𝒓⃗ 𝒆 × 𝒏̂𝑒)⨂(𝒓⃗ 𝒆 × 𝒏̂𝑒)     (4) 
 

Where 𝐻𝑒 = 2|𝑟 𝑒| cos
Φ

2
 and Φ is the signed dihedral angle between the two triangles (𝒏̂𝑇1 and 𝒏̂𝑇2) 

sharing the edge 𝑒 and 𝑟 𝑒 is the unit vector along edge 𝒆. 

 
 

Shape operator on a vertex: The shape operator on each vertex (𝐒𝝊) is obtained as  
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𝐒𝝊 =
𝟏

𝐴𝜐
∑(𝒏̂𝜐. 𝒏̂𝑒)𝐏𝝊

†𝐒𝒆𝐏𝝊

𝑒(𝑅)

   (5) 

 

Where ∑ …𝑒(𝑅)  indicates that the sum is over edges in a ring around the vertex and 𝐏𝝊 is a projection 

operator that projects geometrical objects on the tangent plane of the vertex 𝜐 that is given by  

 

𝐏𝝊 = 𝕀 − 𝒏̂𝜐⨂𝒏̂𝑣                       (6) 
 

Principal curvatures and directions: Eigenvector 𝐒𝜐 are vertex normal, and principal directions 

(𝐓̂1 , 𝐓̂2, 𝒏̂𝜐) while eigenvalues are 𝑐1, 𝑐2 and zero (𝑐1, 𝑐2 , 0).  

Supplementary Note 3 
Constant tension algorithm (dynamic box)  
To simulate a membrane with constant frame tension (𝜏), there is an extra move to change the 

membrane frame area. Let’s assume our framed membrane has a projected area 𝐴𝑝.  on 𝑋𝑌 plane in a 

rectangular box (𝐿𝑥   𝐿𝑦   𝐿𝑧) with periodic boundary conditions in all three directions. To each Monte 

Carlo Sweep (MCS) with a probability of 𝑃 =  1/(𝑁𝜐𝑡0) the bilayer frame area is updated and with 

probability of 1 − 𝑃, other trial moves are performed. To update the projected area: first, the box sides 

will be updated to 𝐿𝑥 →  𝐿𝑥 + ∆𝐿𝑥 and 𝐿𝑦 →  𝐿𝑦 + ∆𝐿𝑦 in which ∆𝐿𝑥 is chosen randomly in the interval 

[ 0.04𝑑𝑑𝑡𝑠 , 0.04𝑑𝑑𝑡𝑠] and ∆𝐿𝑦 = ∆𝐿𝑥(𝐿𝑥/𝐿𝑦). The 𝑋, 𝑌 coordinates at each vertex are then updated to 

𝑋 → (1 + ∆𝐿𝑥/𝐿𝑥)𝑋 and 𝑌 →  (1 + ∆𝐿𝑦/𝐿𝑦)𝑌. To accept or reject the move, Metropolis algorithm with 

the acceptance probability (𝑃𝑎𝑐𝑐) at temperature T is performed, where: 

 

𝑃𝑎𝑐𝑐 = min [1, [
𝐴𝑝−𝑛𝑒𝑤

𝐴𝑝−𝑜𝑙𝑑
]

𝑁𝜐

exp(𝜏∆𝐴𝑝 − ∆𝐸)]        (7) 

 
Note: We have set 𝑘𝐵𝑇 = 1, therefore all the energy unit in FreeDTS is in 𝑘𝐵𝑇. 

Supplementary Note 4 
Osmotic pressure  
To model the effect of osmotic pressure, FreeDTS can also apply an algorithm based on the Jacobus 
van 't Hoff equation, Π = 𝑖𝑐𝑅𝑇, where 𝑖 is van 't Hoff index, 𝑐 is the molar concentration of solute, 𝑅 is 

the ideal gas constant, and 𝑇 is the temperature. For a vesicle system, we define, 𝑉𝑖𝑛𝑖 as the initial 

volume of the vesicle and effective compartment concertation of solute as  𝑐𝑗̅ = ∑ 𝑖𝑛𝑐𝑛𝑛 , where 𝑗 is either 

inside (at 𝑉𝑖𝑛𝑖), or outside and the summation run over all the solute types in the 𝑗 compartment.  

Therefore, we have   
 

∆Π = 𝑅𝑇 (
𝑉𝑖𝑛𝑖𝑐𝑖̅𝑛

𝑉
− 𝑐𝑜̅𝑢𝑡)    (8) 

 
Energy associated with changes of the vesicle volume from 𝑉𝑖𝑛𝑖 to 𝑉 will be obtained as 

 

∆𝐸𝑜𝑠𝑚𝑜𝑠(𝑉) = −𝑅𝑇 ∫ ∆Π𝑑𝑉
𝑉

𝑉𝑖𝑛𝑖

= −𝑅𝑇 [𝑐𝑖̅𝑛𝑉𝑖𝑛𝑖ln
𝑉

𝑉𝑖𝑛𝑖

− 𝑐𝑜̅𝑢𝑡(𝑉 − 𝑉𝑖𝑛𝑖)]  (9) 

 
FreeDTS can directly use equation 3 to apply osmotic pressure difference. However, in most cases, 
this will be equivalent to the equation 3 in the main manuscript since 
 

∆𝐸𝑜𝑠𝑚𝑜𝑠(𝑉) =  𝑅𝑇𝑐𝑜̅𝑢𝑡𝑉eq {
1

2
(
𝑉 − 𝑉eq

𝑉eq
)

2

+ [∑(
𝑉eq − 𝑉

𝑖𝑉eq
)

𝑖∞

𝑖=3

]}   (10) 

 
Where 𝑐𝑜̅𝑢𝑡𝑉eq = 𝑐𝑖̅𝑛𝑉𝑖𝑛𝑖 and 𝐾 = 𝑅𝑇𝑐𝑜̅𝑢𝑡𝑉𝑒𝑞. In typical experiments,  𝑐𝑜̅𝑢𝑡 and 𝑐𝑖̅𝑛 are in the order of 

~10𝑚𝑀 and vesicle volume is 𝑉~𝜇𝑚3, making, 𝐾~105 − 106𝑘𝑇 that is much larger than bending energy 
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associated with vesicle deformations at this scale (4𝜋𝜅~102 − 103 𝑘𝑇). Therefore, only the first term of 

equation 4 will be relevant and the vesicles will adopt to 𝑉 = 𝑉eq =
𝑐̅𝑖𝑛𝑉𝑖𝑛𝑖 

𝑐𝑜̅𝑢𝑡
.  

Supplementary Note 5 
System evolution  
System evolution and the equilibrium properties of the membranes are evaluated by standard Monte 
Carlo sampling of Boltzmann’s probability distribution. We have set 𝑘𝐵𝑇 = 1, therefore all the energy 

unit in FreeDTS is in 𝑘𝐵𝑇. Every Monte Carlo move consists of, 

 
1) 𝑁𝜐 vertex positional updates. 

2) 𝑁𝑒 Alexander moves: a trial to flip the mutual link between two neighboring triangles. 
3) 𝑁𝑖 inclusion moves where 𝑁𝑖 is the number of the inclusions in the system. An inclusion move 

can be either rotation or a Kawasaki move.   
 
In FreeDTS there are two options to perform these moves.  
 

1) 𝑁𝜐 + 𝑁𝑒 + 𝑁𝑖 sweep attempts is one step. At each attempt, with probability of  𝑁𝜐/(𝑁𝜐 + 𝑁𝑒 +
𝑁𝑖) the selected move is vertex position update; with probability of  𝑁𝑒/(𝑁𝜐 + 𝑁𝑒 + 𝑁𝑖) the 

selected move is Alexander moves and with probability of  𝑁𝑖/(𝑁𝜐 + 𝑁𝑒 + 𝑁𝑖) the selected move 

is inclusion moves.  
2) In one step 𝑁𝜐 vertex update, 𝑁𝑒 Alexander moves and 𝑁𝑖 inclusion moves will be performed. 

 
 
If a system is coupled to the tension controlling scheme, then there will be also one trial move to change 
the box size with the a given probability (see Supplementary Note 3).  There is also a possibility to 
activate parallel tempering algorithm. This will run multiple replicas at different temperature using 
OpenMP parallelization and after certain steps (defined by the user) it exchange the conformation of 
the replicas/  

Supplementary Note 6 
Benchmark: performance of the code for the Monte Carlo moves  
In order to test the performance of the code, we measured the time elapsed for each move on four 
different systems. These systems are chosen to consist of the most (computationally) simple system 
(system 1, a closed triangulated surface) up to the most complex system (system 4: a periodic flat 
membrane fully decorated with the most complicated inclusions).  The results were collected on a 
ThinkStation P620, model name AMD Ryzen Threadripper PRO 3995WX 64-Cores. Note, while the 
system contains 64 cores, the simulations were performed on a single core with a core frequency of 
"CPU max GHz 4.308 and CPU min GHz 2.200". In Supplementary Table 2, the time elapsed between 
these moves is shown (reported for 1000 moves). As the number of calculations and, therefore, the 
duration of each move is dependent upon the results of the move (accepted or rejected and what is the 
cause of rejection), we monitored the time elapsed for each move in Supplementary Figures 9-12. In 
these figures, only the uppermost lines are the accepted moves. Below zero is a rejected move and the 
simulation results presented in the main manuscript was obtained by simulations of 106 − 107 steps 

which is resulting in 1-10 days of simulations on the described workstation. Please note a set of 𝑁𝜐 +
𝑁𝑒 + 𝑁𝑖 sweep attempts is called one MC step (see Supplementary Note 5).  
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Supplementary Tables 
 

System Area per vertex  

Vesicle (i) 1.545 ± 0.008 

Tensionless flat membrane (ii) 1.548 ± 0.007 

Flat membrane with constant AP (iii) 1.540 ± 0.003 

Tensionless flat membrane with inclusions (iv) 1.547 ± 0.007 

Tensionless flat membrane between two walls (v) 1.546 ± 0.006 

Supplementary Table 1: Area per vertex remains constant for membrane simulations in different 
conditions. Also see Supplementary Figure 6. 

 
 

 Time Per 1000 Moves [millisecond] 

Link flip move (alexander move) 0.45-0.95  

Vertex position update move 24-32 

Inclusion moves  1-1.1  

Box size update move  2.5 (per vertex) 

Supplementary Table 2: The range of expected time elapse for each Monte Carlo move.  

Supplementary Figures  
 

 
Supplementary Figure 1: The membrane tension determined by the undulation spectrum as a 
function of the input frame tension. These results indicate that they are equal. Source data are 
provided as a Source Data file. 
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Supplementary Figure 2: Pulled Tubes of different radii. By changing membrane tension or 
bending rigidity, tubes with different radii will form.  
 

 
Supplementary Figure 3: Transition of a spherical vesicle from prolate-to-oblate and oblate-to-
stomatocyte by volume reduction. 
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Supplementary Figure 4: A vesicle sandwiched between two confining walls in the Z direction for 
different distance between the walls. 
 

 
Supplementary Figure 5: A regular triangulated surface containing 𝑁𝜐 vertices, 𝑁𝑒 edges and  𝑁𝑇 

triangles. Using a set of discrete gematrical operations we obtain, principal curvatures (𝑐1, 𝑐2), and 

principal directions (𝐓̂1 , 𝐓̂2), and a surface normal (𝐍̂) on each vertex. 
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Supplementary Figure 6: Distributions for the systems shown in the Supplementary Table 1. Source 
data are provided as a Source Data file. 
 

 
Supplementary Figure 7: Two different views of a triangulated surface in a periodic box. Note, the 
vertices along each edge are connected with those on the opposite side through the periodic box. 
This connectivity cannot be visualized.  
 
 

 
Supplementary Figure 8: Two different protein types in FreeDTS. (A) Protein type 1, in which its 
interaction with the membrane modifies the membrane in a symmetric (or almost symmetric) way (B) 



 9 

Protein type 1, in which its interaction with the membrane modifies the membrane in a asymmetric 
way.  
 

 
Supplementary Figure 9: A spherical triangulated mesh containing 802 vertices.  Only the 
uppermost line are the accepted moves. (A) Link flip attempts. (B) vertex position update. Source data 
are provided as a Source Data file. 
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Supplementary Figure 10: A spherical triangulated mesh containing 802 vertices and fully 
covered by inclusions. Only the uppermost line are the accepted moves. (A) Link flip attempts. (B) 
vertex position update. (C) inclusion moves. Source data are provided as a Source Data file. 

 
Supplementary Figure 11: A flat period triangulated mesh containing 700 vertices coupled with 
the tension controlling algorithm. Only the uppermost line are the accepted moves. (A) Link flip 
attempts. (B) vertex position update. (C) box size update move. Source data are provided as a 
Source Data file. 
 

 
Supplementary Figure 12: A flat period triangulated mesh containing 700 vertices coupled with 
the tension controlling algorithm. Only the uppermost line are the accepted moves. (A) Link flip 
attempts. (B) vertex position update move. (C) inclusion moves. (D) box size update move. Source 
data are provided as a Source Data file. 
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