¹ H signal	Chemical shift (ppm)
GlcNAc amide	8.35
GlcNAc methyl	2.08
GlcNAc anomeric	4.67
GlcNac ring	3.74, 3.58, 3.48, 3.44
MurNAc amide	8.11
MurNac methyl	2.01
MurNAc ring *	4.43, 4.32
Lac CH	4.28
Lac methyl	1.42
A NH	8.41
Α CαH	4.32
A methyl	1.43
iE NH	7.92
ίΕ CαΗ	4.20
$iE C\beta H_2$	1.90, 2.10
iE CγH ₂	2.26
DAP NaH **	8.11
DAP NbH **	8.04
DAP CaH **	4.43
DAP CbH **	4.26
DAP CaH ₂ **	1.74
DAP CbH ₂ **	1.95
DAP CcH ₂ **	1.69

Table S1. Chemical shift assignments for the dimer peptidoglycan fragment a.

* Note that the muramic acid sugar has been reduced, meaning that there is no anomeric proton for this sugar.

** See structures for the locations of these protons

		∆ldt _{Cd1}			Δldt_{Cd1}	Δldt_{Cd1}		Δldt_{Cd1}
	WT		Δldt_{Cd2}		Δldt_{Cd2}		Δldt_{Cd2}	Δldt_{Cd2}
				Δldt_{Cd3}		Δldt_{Cd3}	Δldt_{Cd3}	Δldt_{Cd3}
Penicillins								
Amoxicillin	4	4	4	4	4	4	2	2
Co-amoxicillin	2	2	1	1	2	2	2	2
Piperacillin	16	16	16	16	16	16	16	16
Piperacillin-tazobactam	16	16	16	16	16	16	16	16
Cephalosporins								
Cephalotin ^a	>256	>256	>256	>256	>256	>256	256	256
Cephalexin ^a	>256	>256	>256	>256	>256	>256	>256	>256
Cefuroxime ^b	>256	>256	>256	>256	>256	>256	>256	>256
Cefoxitin ^b	>256	>256	>256	>256	>256	>256	>256	>256
Ceftriaxone ^c	128	128	128	128	128	128	128	128
Cefotaxime ^c	>256	>256	>256	>256	>256	>256	>256	>256
Carbapenems								
Meropenem	8	8	8	8	8	8	8	8
Imipenem	32	32	16	32	16	16	16	16
Glycopeptides								
Vancomycin	1	1	1	1	1	1	1	2

Table S2. Minimum inhibitory concentration (MIC) of beta lactams against C. difficile R20291 and ldt_{Cd} isogenic mutants.

^a first generation cephalosporins
^b second generation cephalosporins
^c third generation cephalosporins

U		
	3-4 dimer	3-4 dimer + Ldt2
gm-AEJA=gm-AEJA	99.963%	0.093%
gm-AEJ=gm-AEJA - H ₂ O	0	86.014%
gm-AEJ=gm-AEJA	0	13.861%
gm-AEJ	0	0.032% ^b
gm-AEJA	0.037%	0
	100.0%	100.0%

Table S3. Quantification of Ldt_{Cd2} endopeptidase activity against a 3-4 crosslinked dimer ^a

^a Abundance was calculated based on Ion intensity.

^b The low abundance of gm-AEJ corresponds to carboxypeptidase activity on traces of gm-AEJA present in the substrate

Strains/plasmids/	Relevant properties/sequence	Source
oligonucleotides		
Strains		
Clostridioides difficile		
R20291	Clinical isolate, ribotype 027	(1)
R20291∆ <i>ldt1</i>	R20291 derivative with an in-frame deletion in ldt_{Cd1}	This work
R20291∆ <i>ldt</i> 2	R20291 derivative with an in-frame deletion in ldt_{Cd2}	This work
R20291∆ <i>ldt3</i>	R20291 derivative with an in-frame deletion in ldt_{Cd3}	This work
$R20291\Delta ldt 2\Delta ldt 1$	R20291 derivative with an in-frame deletion in ldt_{Cd2} and ldt_{Cd1}	This work
$R20291\Delta ldt3\Delta ldt1$	R20291 derivative with an in-frame deletion in ldt_{Cd3} and ldt_{Cd1}	This work
$R20291\Delta ldt3\Delta ldt2$	R20291 derivative with an in-frame deletion in <i>ldt_{Cd3} and ldt_{Cd2}</i>	This work
$R20291\Delta ldt 2\Delta ldt 1\Delta ldt 3$	R20291 derivative with an in-frame deletion in <i>ldt_{Cd2}, ldt_{Cd1} and ldt_{Cd3}</i>	This work
R20291	R20291 derivative with a deletion in the genes encoding toxins	(2)
Escherichia coli		
NEB5alpha	Cloning strain	NEB
BL21(DE3)	Expression strain	NEB
CA434	HB101 derivative carrying R702	(3)
Plasmids		
pJAK112	Plasmid for gene replacement in C. difficile	(4)
pNG007	pJAK derivative containing homology regions flanking a 1332bp <i>ldt_{Cd1}</i>	This work
pNG008	pJAK derivative containing homology regions flanking a 1695bp <i>ldt_{Cd2}</i>	This work
pNG009	pJAK derivative containing homology regions flanking a 753bp <i>ldt_{Cd3}</i>	This work
pET2818	pET derivative for expression of His-tagged recombinant proteins	(5)
pET-Ldt1	pET2818 derivative expressing Ldt _{Cd1} (residues 3-289; C-terminal His-tag)	This work
pET-Ldt2	pET2818 derivative expressing Ldt _{Cd1} (residues 41-164; N-terminal His-tag)	This work
pET-Ldt3	pET2818 derivative expressing Ldt _{Cd1} (residues 38-469; N-terminal His-tag)	This work
Oligonucleotides		
RF_21 (pJAK112)	GGATTTCACATTTGCCGTTTTGTAAAC	
RF_22 (pJAK112)	GATCTTTTCTACGGGGTCTGAC	
RF1795 (ldt_{Cd1} locus)	GCTTTTACTTTGATACTGTCTGCTG	
RF1796 (ldt_{Cd1} locus)	ATGACAAACTTAAGGAAAGATGGCC	
RF1797 (ldt_{Cd2} locus)	GGATTCAGTTCCTGAATAACTAGGT	
RF1798 (ldt_{Cd2} locus)	GCAGTTGGTGAATCAGTAGAAAAAC	
RF1799 (ldt_{Cd3} locus)	GGAGGAGATATTAGAGACTATGAAG	
RF1800 (ldt_{Cd3} locus)	CGTGTTTATGCACATCCAACTATG	

Table S4. Bacterial strains, plasmids, and oligonucleotides.

- Stabler, R. A., He, M., Dawson, L., Martin, M., Valiente, E., Corton, C., Lawley, T. D., Sebaihia, M., Quail, M. A., Rose, G., Gerding, D. A., Gibert, M., Popoff, M. R., Parkhill, J., Dougan, G. and Wren, B. W. (2009) Comparative genome and phenotypic analysis of *Clostridium difficile* 027 strains provides insight into the evolution of a hypervirulent bacterium. *Genome Biology* **10** R102
- (2) Buddle, J., Wright, R. C. T., Turner, C. E., Chaudhuri, R. R., Brockhurst, M. A. and Fagan, R. P. (2023) Multiple evolutionary pathways lead to vancomycin resistance in *Clostridioides difficile*. *BioRxiv*
- (3) Woods, C., Humphreys, C. M., Mesquita Rodrigues, R., Ingle, P., Rowe, P., Henstra, A. M., Köpke, M., Simpson, S. D., Winzer, K. and Minton, N. P. (2019) A novel conjugal donor strain for improved DNA transfer into *Clostridium* spp. *Anaerobe* **59**:184-191
- (4) Fuchs, M., Lamm-Schmidt, V., Sulzer, J., Ponath, F., Jenniches, L., Kirk, J. A., Fagan, R. P., Barquist, L., Vogel, J. and Faber, F. (2021) An RNA-centric global view of *Clostridioides difficile* reveals broad activity of Hfq in a clinically important gram-positive bacterium. *Proc Natl Acad Sci USA* **118**(25): e2103579118
- (5) Eckert, C., Lecerf, M., Dubost, L., Arthur, M. and Mesnage, S. (2006) Functional analysis of AtlA, the major *N*-acetylglucosaminidase of *Enterococcus faecalis*. *J Bacteriol*. **188**(24):8513-8519