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Methods 

Overview 

We used the Transmission Fitness Polymorphism (TFP) Scanner1,2 (designated in an R package mrc-
ide/tfpscanner) to analyse a set of large severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
phylogenies spanning August 2020 to March 2022. The analysis included the calculation of growth rates for 
clusters, or clades, within each phylogeny. These growth rates were used, along with other statistics computed 
from the phylogeny, as the basis for a variety of potential leading indicator time series. The time series were 
standardised using a ‘robust’ z-score, with the resulting values compared against a range of thresholds on a 
chronological ‘add-one-in’ basis (simulating real-time analysis) to generate early warning signals (EWS). 
Positive EWS were categorised as true or false and the leading indicators were ranked on the basis of both EWS 
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lead time and the number of false positives. A variety of parameter sets were used in the analysis, resulting in a 
set of 1·38 million early warning signal time series. 

SARS-CoV-2 data 

We obtained a set of 288 SARS-CoV-2 phylogenetic trees used in our analysis from the Cloud Infrastructure for 
Microbial Bioinformatics (CLIMB).3 These were generated routinely and periodically between 14 August 2020 
and 29 March 2022 using genomic sequence data from the COVID-19 Genomics UK (COG-UK) Consortium 
by the Phylopipe pipeline (https://github.com/virus-evolution/phylopipe). Trees were generated using maximum 
likelihood (ML) methods until March 2021, with later trees generated from a single ML tree by updating it using 
maximum parsimony methods. Contemporary trees were used in order to simulate real-time analysis and, in 
particular, to avoid including data that were subsequently revised. Genomic sequences in the trees were linked 
to patient case metadata, sourced from COG-UK via CLIMB on 3 May 2022. This enabled positive filtering for 
the genomic sequences collected in the UK under Pillar 2 (P2) community samples4 between April 2020 and the 
end of March 2022. Only P2 samples were selected to eliminate sampling bias present in Pillar 1 (P1) hospital 
samples, as well as to garner a more representative sample of transmission in the general population. Genomic 
sequences without associated dates or with erroneous dates were removed. 

Transmission Fitness Polymorphism (TFP) Scanner 

The TFP Scanner1,2 was used to calculate logistic growth rates (LGRs) for clusters (or clades) within each 
SARS-CoV-2 phylogenetic tree. Clusters are defined as including all the descendants from a given node in the 
tree. Comparison samples for statistical analyses are selected as ancestral nodes including all their descendants, 
which exclude the present cluster. The growth rates are estimated relative to a comparator set of geographically- 
(by country) and temporally-matched lineages weighted by prevalence. This controls for bias that accrues from 
many unmeasured confounders that may amplify transmission in a certain time or place. For evolutionary 
statistics, a comparator is selected based on shared ancestry. 

The TFP Scanner incorporates multiple statistical methods into one function for identifying emerging variants or 
clusters of interest or concern, as well as to conduct real-time monitoring of outbreak growth over time. It is 
designated in an R package, mrc-ide/tfpscanner, which includes an online html tree viewer for the whole tree 
output (example of a section of such a tree output is shown in Figure 1a in the main article). The TFP Scanner 
also outputs a data frame in which each row represents a cluster with associated cluster metadata including: 
most recent sample date; least recent sample date; cluster size; LGR (computed as either the simple LGR or the 
generalised additive model (GAM) LGR depending on the level of model support determined using the Akaike 
Information Criterion (AIC) and the ‘relative likelihood’); simple LGR; GAM LGR; simple logistic model 
support; clock outlier statistic; lineages; co-circulating lineages; region summary; defining mutations; and all 
mutations within cluster. 

Three statistical methods for monitoring growth are used by the TFP Scanner: 

1. A generalised linear model (GLM) is used to calculate the logistic odds of a sample being from a 
cluster of interest compared to a matched sample over time. The logistic odds of being a cluster of 
interest is multiplied by the estimated mean generation time (6·5 days assumed for SARS-CoV-25-8) to 
calculate the relative growth rate per generation time period for each cluster of interest. The associated 
p-value is also recorded. 

2. A generalised additive model (GAM) combined with a Gaussian process model to identify changes in 
growth over time.  

3. A GAM combined with a model of spatial correlation between neighbouring lower-tier local authorities 
(LTLAs) (or other specified administration level), using a Gaussian Markov random model, to smooth 
estimates over sparse observations. Note that this third method was not used in the investigation 
presented in this article. 

The TFP Scanner also computes a ‘molecular clock outlier’ (MCO) statistic that measures the degree to which 
evolutionary rates differed in the lineage leading to a clade (an example is shown in Figure 1b in the main 
article). This statistic uses root-to-tip regression to predict the divergence of tips in a cluster based on an 
ancestral clade. This predicted divergence is then compared to the true divergence of the cluster. If the predicted 
values, based on the ancestral clade, are very different from the observed values (p < 0·05) the cluster of interest 
is considered a ‘clock outlier’. 
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The majority of inputs to the TFP Scanner function were kept constant, but some parameters were varied as part 
of our search for the best leading indicators derived from the TFP Scanner outputs: 

 The minimum threshold size for the number of descendants in clusters was varied ∈ {20, 50, 100, 
percentage of genomic sequences within the maximum sample date period, such that the minimum 
number of descendants across the time series is 20 (0·32% for 56-day period and 0·24% for 84-day 
period)} while the maximum was held constant at 20,000.  

 Minimum cluster age ∈ {7, 14, 28 days} 
 Maximum cluster age ∈ {56, 84 days} 

Table S1 shows the full set of parameters used in the TFP Scanner runs. 

The time taken for genomic sequences from samples to be processed and incorporated into a published 
phylogenetic tree varied over the period that we investigated. After removing 16 samples that had dates later 
than the tree date in which they first appeared, the difference between the most recent UK Pillar 2 sample in a 
tree and the date of publication for the tree was as much as 23 days and as low as 0 days. It seems implausible 
that a sample was sequenced and incorporated into a phylogenetic tree on the same day as the diagnostic test. To 
account for this we identified the earliest set of dates that would include 99·9% of samples for each tree. Any 
samples with dates falling outside of this range were removed from all trees prior to analysis. This may also 
have the effect of reducing sampling bias due to faster sample processing at some laboratories, which would 
otherwise be over-represented. 

There is also the possibility of misdated samples with an erroneous earlier date (such as 
https://github.com/COG-UK/dipi-group/issues/175), which we would not identify or correct with our current 
method. 

In this article, we took a historical record approach, using the date of production of the phylogenetic trees as the 
dates for our leading indicator time series. We also considered a second approach, although the results are not 
reported in this article. This alternative approach would take into account improvements that were made in the 
pipeline from diagnostic test to publication of the phylogenetic tree. The time taken for this was reduced during 
the period under consideration. The second approach would apply a constant, optimised time between sample 
date and tree publication. It would use the date of the most recent sample in each tree, after adjusting for the 
99·9% quantile as described earlier, plus 8 days for sequencing and a further 2 days for the phylogenetics 
pipeline, instead of the tree publication date. 

The TFP Scanner outputs a data frame with each row containing information on a particular cluster. We applied 
a variety of filters to these outputs as we selected subsets of phylogenomic clusters for analysis: 

 Only extant clusters were retained. These were defined as clusters which had their most recent genomic 
sequence within 14 days of the most recent tip amongst the unfiltered set of clusters. This ensured that 
only contemporaneously circulating variants would contribute to the analysis. 

 Non-external clusters were removed - an external cluster includes all the descendants of the cluster’s 
most recent common ancestor (MRCA). However, we wanted to investigate whether incorporating 
larger clusters in our analysis would improve the performance of leading indicators. Therefore, in 
addition to having a set of leading indicators derived from a subset of clusters where the non-external 
clusters had been removed, we also created subsets where external clusters had been replaced by parent 
(non-external) clusters when the LGR of the parent cluster was at least ∈ { 65%, 70%, 75%, 80%, 85%, 
90%, 95%, 100% } of that of the maximum LGR amongst the sub-clusters. The rationale being that the 
size of the cluster included in the analysis would be increased but the LGR, and therefore phenotypic 
characteristics, were comparable. 

 A variable filter was applied to the LGR p-value. Three different filter thresholds were set ∈ {0·01, 
0·05, 10,000 (i.e. no threshold)}. 

 Clusters with overlapping tips were removed so as to maintain independence of cluster growth rates in 
our analysis. 

This resulted in 720 unique sets of parameters for the set of phylogenetic trees that we investigated. In addition, 
we used each of these outputs to produce 19 different phylogeny-derived leading indicator time series 
(summarised in Table S2) and we assessed these against 101 different early warning signal threshold levels 
(0·00 to 5·00 in increments of 0·05). This gave us a total of 1·38 million EWS time series to evaluate. 
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TFP Scanner input parameter Description 
Constant or 
varied 

Value(s) 

Tre ML phylogenetic tree Varied 
Set of 288 trees between 14 August 2020 and 29 March 
2022 

Amd Tree metadata Constant  

min_descendants Clade must have at least this many tips Varied 
{ 20, 50, 100, percentage of samples between min_date 
and max_date* } 

max_descendants Clade can have at most this many tips Constant 20e3 

min_cluster_age_yrs Only include clades that have sample tips that span at least this value Varied { 7/365, 14/365, 28/365 } 

min_date Only include samples after this data Varied max_date - { 56, 84 } 

max_date Only include samples before and including this date Varied 
Date of most recent sample in tree after filtering for UK 
Pillar 2 samples and removing samples with erroneous and 
possibly erroneous dates 

min_blen Only compute statistics for nodes descended from branches of at least this length  Constant 1/30e3/2 (= 1.67e-5) 

Ncpu number cpu for multicore ops  Constant 1 

num_ancestor_comparison  
When finding comparison sample for molecular clock stat, make sure sister clade has at least 
this many tips 

Constant 500 

factor_geo_comparison 
When finding comparison sample based on geography, make sure sample has this factor times 
the number within clade of interest 

Constant 5 

Tg Approximate generation time in years. Growth rate is reported in these units. Constant 6·5/365 

report_freq Print progress for every n'th node Constant 50 

mutation_cluster_frequency_threshold 
If mutation is detected with more than this frequency within a cluster it may be called as a 
defining mutation 

Constant 0·75 

test_cluster_odds  
A character vector of variable names in \code{amd}. The odds of a sample belonging to each 
cluster given this variable will be estimated using conditional logistic regression and adjusting 
for time.  

Constant c() 

test_cluster_odds_value 
Vector of same length as \code{test_cluster_odds}. This variable will be dichotomised by 
testing for equality of the variable with this value (e.g. vaccine_breakthrough == 'yes'). If 
NULL, the variable is assumed to be continuous (e.g. patient_age).  

Constant c() 

root_on_tip If input tree is not rooted, will root on this tip Constant 'Wuhan/WH04/2020' 

root_on_tip_sample_time Numeric time that tip was sampled Constant 2020  

detailed_output If TRUE will provide detailed figures for each cluster Constant FALSE  

compute_gam  Constant TRUE 

compute_cluster_muts  Constant FALSE 

Table S1: Input parameters for TFP Scanner R package.  
The majority of parameters were kept constant but some were varied in order to search for the best leading indicators derived from the TFP Scanner outputs. The parameters 
that were varied were the minimum number of descendants in clades (min_descendants), the time period from which to include samples (min_date, max_date), and the 
minimum age of the clade (min_cluster_age_yrs). * The percentage was calculated so as to set the minimum number of descendants across the time series to 20. This was 
equivalent to 0·3222688% of the minimum number of samples for the 56 day period and 0·2373887% for the 84 day period. 
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Phylogeny-derived leading indicators investigated 

We derived 19 potential leading indicators (summarised in Table S2) from each of our 720 unique outputs from 
the TFP Scanner. Each potential leading indicator was derived using a relatively simple statistical analysis of 
either the cluster growth rate statistics or the evolutionary rate analysis computed by the TFP Scanner. 

For each of the three cluster growth rate statistics (LGR, GAM LGR and simple LGR) we computed leading 
indicator time series separately using the maximum growth rate amongst clusters, the simple mean, the weighted 
mean (by cluster size) and the variance (weighted by cluster size) on both a sample and population basis. 

The reason for investigating the maximum and mean cluster growth rates as a leading indicator is that higher 
growth rates are likely to lead to higher numbers of infections and therefore increased potential for an epidemic 
wave. 

The rationale for investigating the variance of the cluster growth rates as a potential leading indicator is based 
on Fisher’s fundamental theorem of natural selection, which states that “the rate of increase in fitness of any 
organism at any time is equal to its genetic variance in fitness at that time.”9 Applying Fisher’s theorem to the 
SARS-CoV-2 pandemic, our suggestion is that the rate of increase in fitness of the virus may be represented by 
the rate of change in transmissibility. The latter is generally represented by the rate of change in the reproductive 
ratio ( 𝑑𝑅௧ 𝑑𝑡⁄  ) but for which we also use the second time derivative of UK hospitalisations 
(𝑑ଶ(𝑛𝑒𝑤 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) 𝑑𝑡ଶ⁄  ) as a directly measurable proxy, albeit with additional time dependent 
confounding factors such as inherent virus severity, host immunity, admission of patients with or due to SARS-
CoV-2 infection. In our study we represent the genetic variance in fitness of the virus by the variance of LGRs 
among clades within a large phylogeny reconstructed from SARS-CoV-2 sequences. Effectively our suggestion 
is that the growth rate can be considered a phenotype of the virus on the basis that it is a behavioural property 
influenced by genetic variation in the virus and the environment in which it finds itself. Our hypothesis was that 
higher levels of variation in LGRs are the result of increased genetic variation and that, according to Fisher’s 
theorem, this implies a higher rate of increase in fitness of the virus, which should lead to increased 
transmission. While we saw some indication of positive correlation between the variance in cluster growth rates 
and the rate of change in the effective reproduction rate, we suspect that the strength of the correlation is 
impacted by confounding factors. As a result, the leading indicators based on the variance of cluster growth 
rates did not perform as well as other phylogeny-derived leading indicators in generating EWS for increases in 
hospitalisations. 

An additional leading indicator using the variance of the cluster LGR was investigated, but this time dividing by 
the mean cluster size as a way of adjusting for the testing and sequencing capacity which varied significantly 
during the period under investigation. There is an issue here that when the number of samples is smaller the 
variance would be expected to be higher and so this is a confounding factor for this as a leading indicator. It is 
often the case that infections are low prior to a new wave of infections and so the number of sequences will be 
low and the variance higher for this reason rather than due to a genuine increase in the genetic variance. 
However, this can be investigated by comparison with situations when infections remain high but a new 
epidemic wave is caused by a new variant. Such a situation occurred when Omicron replaced Delta as the 
dominant variant in the UK. The number of infections due to the Delta variant oscillated at a relatively high 
level for a prolonged period in the second half of 2021 as NPIs had the effect of reducing the peak number of 
infections but extending the duration of the wave and producing several smaller peaks. While the number of 
Delta infections still remained high, it was supplanted as the dominant circulating variant by Omicron BA.1 in 
December 2021. Therefore elevated levels of variance in cluster LGRs in the period between September and 
December 2021 are less likely to be driven by lower sampling. The effect of sampling rate on leading indicators 
and early warning signals is also of broader interest from the point of view of future surveillance strategy, now 
that testing and sequencing capacity has been scaled down. 

We also looked at time series for the maximum and mean of the absolute values for the MCO statistic. Higher 
than expected evolutionary rates indicate a potential increase in the fitness of the virus, which may lead to 
increased transmission and therefore increase the potential for an epidemic wave. 

The final potential leading indicator was derived by identifying the Pango lineage10 that was dominant (highest 
sample frequency within a cluster) in the most clusters and computing the maximum LGR among the clusters 
where this Pango lineage was dominant.  
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Leading indicator number TFP Scanner output Statistical measure 

1 

Logistic growth rate 

Maximum 

2 Simple mean 

3 Weighted mean (by cluster size) 

4 Sample variance 

5 Population variance 

6 Sample variance / mean cluster size 

7 

GAM logistic growth rate 

Maximum 

8 Simple mean 

9 Weighted mean (by cluster size) 

10 Sample variance 

11 Population variance 

12 

Simple logistic growth rate 

Maximum 

13 Simple mean 

14 Weighted mean (by cluster size) 

15 Sample variance 

16 Population variance 

17 
Molecular clock outlier (MCO) 

Maximum of absolute values 

18 Mean of absolute values 

19 Dominant Pango lineage Maximum logistic growth rate 

Table S2: Summary of potential leading indicators derived from TFP Scanner outputs and ultimately from the 
SARS-CoV-2 pathogen via the phylogenetic tree expansion with time. 

 
 

Calculation of early warning signals (EWS) 

Within the literature, usage of the term ‘Early Warning Signals (EWS)’ varies. It can be generic or specifically 
refer to one or more of a commonly used set of statistical measures (e.g. variance, skewness, autocorrelation, 
and coefficient of variance, over a defined time period) most often reported on incidence or prevalence data, 
which we term ‘direct data’. The use of these statistical measures is supported by the theory of ‘critical slowing 
down’,11,12 which predicts that these statistical measures will undergo significant changes at the time of a critical 
transition. This theory has been applied within a range of different fields of study but in relation to infectious 
disease, significant changes in the summary statistics are expected to precede a rapid increase in cases at the 
beginning of a disease outbreak. In such circumstances the critical transition could be the change in the effective 
reproduction number: 𝑅௧భ

< 1 → 𝑅௧మ
> 1. As we have primarily investigated ‘indirect’ data, for which it is not 

clear whether there would be such a critical transition, as a leading indicator we have not relied on this theory 
and so have used a simpler statistical measure for the change in our standardised leading indicators. Therefore, 
within this study we use the term early warning signals (EWS) in its generic sense; simply, a signal that 
represents an early warning. 

We standardised the potential leading indicator time series described in the previous section by computing the 
‘robust’ z-score, rather than the conventional z-score. The ‘robust’ z-score is calculated using the median rather 
than the mean (see Equations S1 & S2) and so is less sensitive to outliers. 
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ெ
 ,                                                         [S1] 

where 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|)                           [S2] 

We chose to use this method because some of the LGR variance leading indicator time series contain very high 
outlying values. This has a significant impact on the running mean in such cases, which results in a negligible 
value for the standard z-score for dates following an outlier and therefore introduces the potential to miss EWSs 
for time periods after outlying data points. 

The standardised ‘robust’ z-score time series for each leading indicator was compared against a range of 
threshold levels (0·00 to 5·00 in increments of 0·05) in order to calibrate our method and also to investigate any 
link between the number of false positive EWS and the earliest true positive EWS. Measurement against the 
EWS threshold levels was made on an ‘add-one-in’ basis to simulate the real-time analysis that would take place 
if the method were being used as part of a surveillance programme. If the ‘robust’ z-score was above the 
threshold level for two consecutive data points we recorded an EWS. The requirement for more than a single 
consecutive data point above the threshold is to reduce the number of false positives.13 Future studies could vary 
this requirement to investigate its impact. 

Each EWS generated was assigned to a particular epidemic wave. The bins for each wave were defined as being 
between the date at which the previous wave peak of new hospitalisations had halved and the same time point 
for the wave of interest. Our rationale being that peaks in leading indicators would be finished by this time and it 
is likely that the next leading indicator peak is yet to develop. 

In order to quantify the ability of a leading indicator to generate EWS, and to be able to compare leading 
indicators, it is necessary to define the start of a wave of SARS-CoV-2 infections. 

We used the number of new coronavirus disease 2019 (COVID-19) hospital admissions in the UK rather than 
the number of new cases for defining waves of infection. The measurement of hospitalisations has been more 
consistently measured, during the pandemic period under investigation (August 2020 to March 2022), than the 
measurement of the number of new positive cases, which varied due to testing supply and demand in this 
period.14 Therefore, new hospitalisations can be argued as being a more stable measure of the burden of 
infection in the UK population and is ultimately the metric against which surveillance strategies are seeking to 
provide an early warning. That being said, the number of hospitalisations will not only have been dependent on 
the total number of infections but also on the severity of the prevailing SARS-CoV-2 variant, and the level of 
immunity from vaccination and/or prior infection. In addition, it will include hospitalisation of patients with 
COVID-19 rather than due to it and so there will be some sampling bias as the hospital population is not 
representative of the general population. There is also a longer time lag between infection and hospitalisation, 
albeit an unknown and varying proportion of hospitalisations will be with COVID-19 rather than due to it. 

We determined the start of a wave of hospitalisations as the date of the inflection point between two wave peaks 
(see Table S3). This is the earliest possible time for detection of a new wave of hospitalisations and so is a 
particularly stringent target for an EWS and therefore should be considered as more of a benchmark for 
comparison than a target. The method for defining the wave start dates also uses the full time series of 
hospitalisations over this period and so the start dates identified are earlier than would be the case if determined 
on an ‘add-one-in’ (real-time) basis. We calculated the inflection points in the waves of UK COVID-19 
hospitalisations from the complete data set using an optimised generalised additive model (GAM)13,15. The 
GAM is a smoothed function representing the time series of the number of hospitalisations in the UK. 

The daily time series of new COVID-19 hospitalisations and new cases in the UK between 23 March 2020 and 3 
May 2022 was obtained from the UK’s Coronavirus dashboard (https://coronavirus.data.gov.uk/) on 9 May 
2022.16 A GAM was fitted to the hospitalisation time series, using the mgcv package17 in the R programming 
language, to facilitate a formal method of extracting a date that we could use as our definition of the beginning 
of a wave of SARS-CoV-2 infections. 

A number of the parameters used in the GAM were varied in order to optimise the model by maximising the 
‘quality’ of the fit, as measured using R2, k-index and effective degrees of freedom (edf) / k ratio,18 and the 
ability of the model to identify start dates for the major waves of hospitalisations during this period (B.1.177, 
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Alpha, Delta, Omicron BA.1, Omicron BA.2). The selected GAMs also identify three wave start dates within 
the broad wave of infections caused by the Delta variant, which had mini peaks and troughs. 

The wave start dates were defined as the date at which the growth of the smoothed GAM of hospitalisations 
moves from negative to positive. Parameters that were varied during the GAM optimisation included the 
smoothing functions and the basis dimension, k, which sets the upper limit on the degrees of freedom. A number 
of criteria were set for selecting GAMs. Quality criteria included: edf / k ratio ≤ 0·9 and k-index ≥ 0·9. The other 
criterion was that the GAMs must identify start dates for five waves, after a low resolution filter had been 
applied. This was applied in order to avoid the requirement to identify start dates for the two smaller Delta wave 
peaks that followed its initial onset. The low resolution filter consisted of a wave peak-to-trough ratio cut-off 
level of 1·379, with the inverse (1/1·379 = 0·725) used for the trough-to-peak ratio cut-off level, and a peak-to-
peak time cut-off of 55 days. 

Predominant SARS-CoV-2 
variant during wave of UK 

hospitalisations 

Earliest date identified 
using generalised 
additive models 

(GAMs) 

Latest date identified 
using generalised 
additive models 

(GAMs) 

Range 
(days) 

Wave start date used in comparison 
with EWS dates 

Based on UK 
new hospital 
admissions 

Based on estimated 
value of Rt 

increasing above 
1* 

B.1.177 19 Aug 2020 - - 19 Aug 2020 6 Sep 2020 

Alpha 29 Nov 2020 - - 29 Nov 2020 13 Dec 2020 

Delta (1st wave) 10 May 2021 12 May 2021 3 11 May 2021 22 May 2021 

Delta (2nd wave) 3 Aug 2021 - - 3 Aug 2021 19 August 2021 

Delta (3rd wave) 27 Sep 2021 28 Sep 2021 2 27 Sep 2021 13 Oct 2021 

Omicron BA.1 25 Nov 2021 27 Nov 2021 3 26 Nov 2021 25 Nov 2021 

Omicron BA.2 21 Feb 2022 22 Feb 2022 2 21 Feb 2022 11 Mar 2022 

Table S3: COVID-19 epidemic wave start (inflection) dates in the UK. Dates computed using (a) new 
hospital admissions, and (b) estimated values of the time varying, or effective, reproduction number, or 
reproductive ratio, Rt to determine the date of ‘critical transition’ when Rt increases above a value of 1. *Using 
the midpoint in the confidence interval, with bi-weekly data transformed to daily data using a generalised 
additive model (GAM) and spline interpolation.  

A total of 2,860 GAMs were generated with 12 meeting these criteria, all of which had R2 values in excess of 
0·994. The smoothing functions used in these 12 GAMs were thin plate (tp), thin plate with modified smoothing 
penalty (ts), Duchon spline (ds), P-spline (ps), Gaussian process (gp), cubic regression spline (cr) and shrinkage 
cubic regression spline (cs). The basis dimension (k) ranged from 130 to 170. All 12 GAMs generated the same 
wave start dates for the B.1.177 and Alpha waves, while start dates for Omicron BA.2 were within one day and 
two days for Omicron BA.1 and the first Delta wave. In relation to the change in fitness of the virus, the wave 
start dates for the smaller Delta peaks after the initial onset are of secondary importance as they are a 
continuation of the first Delta peak. Nevertheless the start dates identified by the 12 GAMs for the first of these 
two smaller Delta waves were in agreement and the dates for the second were within two days. 

Hospitalisation numbers are also impacted by the day of the week that they are reported. This was taken into 
account using a weekday element in the GAM with a cyclic cubic spline with basis dimension k = 7. 
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We also calculated the lead (or lag) times for the EWS relative to the critical transition19 of the effective 
reproduction number, when 𝑅௧భ

< 1 → 𝑅௧మ
> 1 (see Table S4). However, we would note that this is an 

estimated value rather than a direct measure. We sourced the time varying, or effective, reproduction number, or 
reproductive ratio, Rt dataset from the UK Coronavirus dashboard (https://coronavirus.data.gov.uk/)16 on 20 
December 2022. We transformed this weekly dataset, which provides a likely range for the effective 
reproduction number, by taking the midpoint of the range and using a GAM, with thin plate spline and basis 
dimension k = 100, to smooth the data set and a spline to interpolate and expand to a daily time series. 

An important part of evaluating methods for generating EWS is differentiating between true and false positive 
signals. One way to do this is to define a time window around the event, such as a critical transition, and classify 
EWS within this window as a True Positive.19 We set a time window around each epidemic wave to determine 
which wave the EWS belonged to. However, the sequence data that we used to generate the EWS enables us to 
be more specific in our true or false positive classification method. We classified EWS within these time 
windows as being a true or false positive based on whether the EWS was driven by the same SARS-CoV-2 
variant, as determined by the designated Pango lineage10 including sub-lineages, that drove infections. A true 
positive was recorded where a match was made and a false positive where there was no match. 

We identified the SARS-CoV-2 variant representing the largest proportion of sequences in each phylogenetic 
cluster identified by the TFP Scanner for each tree, and with each set of scan parameters as described earlier. 
These variants were then ranked by the number of clusters in which they were the dominant variant (the 
“dominant variant ranking”). We also ranked the clusters by their LGRs (the “growth rate ranking”), including 
GAM and simple LGRs as described earlier. Only positive growth rates were included in the ranking as we are 
only interested in variants that were growing at the time an EWS was generated. If the predominant variant in 
the UK at the time, in terms of infections, appeared in the top 5 of either the dominant variant ranking or the 
growth rate ranking then we classified this as a true positive EWS. All other EWS were classified as false 
positives. 

 

Assessment of leading indicators 

The first criteria in our assessment is that a parameter set must generate at least one true positive (TP) EWS for 
each of the seven epidemic waves during the period investigated. This filter reduced the number of parameter 
sets to 40,720. 

We calculated the lead times between the earliest TP EWS and the epidemic wave start (inflection point) dates. 
We also recorded the number of false positive (FP) EWS and split them between those before and those after the 
earliest TP EWS. Our rationale being that it is more important to minimise the number of FP EWS before the 
first TP EWS. 

We used these two metrics in a variety of ways to rank the leading indicators and parameter sets. In terms of 
lead time, we used two separate criteria: (1) total lead time across all waves; (2) total lead time across waves 
driven by genomic variation (Alpha, Delta (first peak), Omicron BA.1 and Omicron BA.2). We did not include 
the first epidemic wave in the period investigated, when B.1.177 was dominant, in this latter set of waves as we 
have limited data prior to our calculated wave start date; the first phylogenetic tree that we have is dated 14 
August 2020 and the B.1.177 wave start date is 19 August 2020. Therefore, it is possible that had our leading 
indicator time series extended further back in time, earlier TP EWS would have been generated for this wave. 

Our understanding of current SARS-CoV-2 surveillance strategy is that maximising lead time is of greater 
importance than minimising FPs. This is because any EWS generated would be used as a prompt for further in-
depth analysis prior to any policy change. However, we also investigated filtering out parameter sets based on 
the number of false positives before ranking by lead time. In addition to not limiting the number of FP EWS we 
filtered for a maximum of 0, 2, 5, and 10 FP EWS, for an individual wave. We also split this between the 
number of FPs in total and the number of FPs prior to the earliest TP EWS. Another filter was applied that 
required the earliest TP EWS for each wave to either be before the wave start (inflection) date or be equal to the 
earliest TP EWS amongst the set with a TP EWS for all seven waves. These limits were also applied separately 
to the number of FPs before the earliest TP per wave. 
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B.1.177 Alpha Delta (1) Delta (2) Delta (3) 

Omicron 
BA.1 

Omicron 
BA.2 

Epidemic (hospitalisations) wave start (inflection) date 19 Aug 2020 29 Nov 2020 11 May 2021 3 Aug 2021 27 Sep 2021 26 Nov 2021 21 Feb 2022 

𝑅௧ critical transition date 6 Sep 2020 13 Dec 2020 22 May 2021 19 Aug 2021 13 Oct 2021 25 Nov 2021 11 Mar 2022 

Earliest True Positive EWS date 26 Aug 2020 23 Nov 2020 21 Apr 2021 4 Aug 2021 18 Sep 2021 2 Dec 2021 4 Feb 2022 

EWS lead time (days) relative 
to:  
Lead (-ve) and Lag (+ve) 

Hospitalisation wave start (inflection) date +7 -6 -20 +1 -9 +6 -17 

𝑅𝑡 critical transition date -11 -20 -31 -15 -25 +7 -35 

Number of False Positives 
Prior to earliest True Positive 0 0 2 0 0 2 0 

After earliest True Positive 4 0 0 0 0 0 0 

Positive Predictive Value i.e. Precision 0·76 1·00 0·95 1·00 1·00 0·90 1·00 

Change in number of daily 
hospital admissions 

between EWS and wave start (inflection) date 
Number -17 -200 -64 -17 +23 -106 -178 

% -13% -13% -37% -9% +3% -13% -13% 

between EWS and wave peak 
Number +1843 +2990 +2432 +1843 +406 +1795 +1263 

% +1418% +188% +1406% +40% +53% +214% +89% 

Table S4: Early warning signals (EWS) generated by selected phylogeny-derived leading indicators for COVID-19 waves of infection in the UK. Data shown is the 
same as in Table 1 in the main article, with the addition of lead and lag times relative to the Rt critical transition. The earliest lead time was 35 days and the longest lag time 
was 7 days. The mean lead time across the seven waves was 18·6 days. 
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After the application of the various filters, the remaining parameter sets were ranked on the basis of lead times 
across all seven waves and, separately, across the four genomic variant driven waves with sufficient data prior to 
the wave start (Alpha, 1st Delta, Omicron BA.1 and BA.2 waves). A summary of the different filters and 
ranking criteria is shown in Table S5. 

Table 3 in the main article shows the best leading indicator and parameter set that we selected for each set of 
filters and ranking criteria. The selection of a single best performing parameter set requires some subjective 
analysis and judgement as more than one parameter set will often achieve the same ranking score under the 
various criteria. Broadly speaking, in making our subjective choices we considered the overall performance of 
the parameter sets in terms of lead time and number of FP EWS. For example, two parameter sets may have the 
same total lead time across the seven epidemic waves, but the lead times may vary across the individual waves. 
An extreme hypothetical example of this could be that one parameter set generates EWS with a lead time of 20 
days for wave A and a lag time of 20 days for Wave B, which would achieve the same ranking score for total 
lead time as a parameter set generating a lead time of 0 days across both waves. In such a situation, we would 
favour the latter parameter set as it generates a useful EWS for both waves, but we recognise that different 
observers may select different parameter sets as being the ‘best’ performers under each set of ranking criteria. 
The top results for each set of filter and ranking criteria are therefore shown in a file (SM1–Best EWS Results 
by Filter and Ranking Criteria.xlsx) as part of the Supplementary Materials. 

We also calculated the precision (see equation S3), also known as the positive predictive value (PPV), of each 
parameter set for each wave and as an average per wave. While we did not use this as a formal filter or ranking 
criteria we did consider it where a subjective choice was made. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
ே௨  ்௨ ௦௧௩ ாௐௌ

(ே௨  ்௨ ௦௧௩ ாௐௌାே௨  ி௦ ௦௧௩ ாௐௌ)
=

்

(்ାி)
                  [S3] 

 
 

Filter or ranking criteria Set of variables applied 

Filters 
 

Number of true positive EWS for 
each wave 

> 0 

Number of false positive EWS 
for each wave 

= 0,  2,  5, 10, any 

Which false positive EWS to 
apply limits to 

All, or only those before the earliest true positive EWS 

Restrictions on individual wave 
true positive EWS lead time 

All, or EWS before wave start date and this is not fulfilled the EWS date must be equal to the earliest 
EWS for that wave amongst parameter sets producing at least one true positive EWS for all seven 
waves. 

Ranking criteria 
 

Lead time All, or those driven by new genomic variant (Alpha, 1st Delta, Omicron BA.1 & BA.2) 

Waves to include All, or those driven by new genomic variant (Alpha, 1st Delta, Omicron BA.1 & BA.2) 

Table S5: Filters and ranking criteria applied to EWS results from parameter sets. 

 

Comparison between phylogeny- and non-phylogeny-derived leading indicators 

During the COVID-19 pandemic, a variety of other datasets have been suggested as providing useful inputs into 
models for monitoring the dynamics of the epidemic waves. In this study we applied broadly the same 
methodology, used to generate EWS from our phylogeny-derived leading indicators, to a variety of potential 
leading indicators derived from non-phylogeny datasets. We compared lead times for EWS generated from all 
of these potential leading indicators. It should be noted that the EWS generation methodology was developed 
with a focus on the phylogeny-derived leading indicators and was then applied to the non-phylogeny-derived 
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leading indicators with some adjustments to make comparison possible. Therefore, better EWS lead times may 
be obtainable from the non-phylogeny-derived leading indicators if more focus were to be placed on them in the 
development of the methodology. 

The non-phylogeny-derived leading indicators we investigated were various polymerase chain reaction (PCR) 
cycle threshold (Ct)20-24 derived values, COVID-19 Pillar 2 test positivity rate, behavioural changes (Google 
mobility at various settings,25 CoMix survey age-stratified mean contacts26) and time-shifted hospital admissions 
data16 as a control test for the methodology. All of these data sets relate to the UK, apart from the COVID-19 
test positivity rate and PCR Ct values which only relate to England. 

In calculating the COVID-19 test positivity rate, we only included Pillar 2 community testing.  Both lateral flow 
tests (LFT) and polymerase chain reaction (PCR) tests were included in the calculation. The test positivity rate 
was calculated as the number of positive tests recorded each day divided by the sum of positive and negative 
tests. While the expectation would be that the positivity rate increases as the number of infections increase 
within the population, the positivity rate is also affected by changes in the overall number of tests. It could 
therefore be impacted by changes in behaviour towards symptomatic and asymptomatic testing.27 

Ct values determined during PCR tests can be used as a proxy for SARS-CoV-2 viral load.28 PCR Ct values are 
inversely proportional to the viral load during an infection with every ~3.3 change in Ct value reflecting 10-fold 
difference in the amount of virus.29 The expectation is that the median Ct value is lower (higher viral load) 
amongst tests earlier in an epidemic as more people have new infections (viral load drops during an infection) 
and the skewness of the distribution also changes during growth and fall of an epidemic.20 We used data 
collected from samples in England under Pillar 2 community testing. This avoided the bias seen in Pillar 1 
hospital testing towards lower Ct values (higher viral load) as might be expected for patients hospitalised as a 
result of infection. We derived 36 potential leading indicators from the Ct value data, including: the raw Ct 
values for three different gene targets (N, ORF1ab and S); normalising for the reference (or control) Ct value in 
each sample (samples with no reference Ct value were excluded from the analysis); converting to an estimated 
viral load value using equation S4.28 We also took the mean, minimum and maximum values for the three gene 
targets, as test results for some variants were impacted by target gene dropout. This was first seen in the S-gene 
target failure (SGTF) for the Alpha variant. In addition to the impact of target gene dropout, the level of Ct 
values can also vary by virus variant.30 To try to eliminate this confounder across multiple waves and variants, 
we derived additional leading indicators by calculating the skewness and standard deviation of the distribution 
of values for each day. The full set of Ct value derived potential leading indicators are shown in Table S6. 

   𝑉𝑖𝑟𝑎𝑙 𝑙𝑜𝑎𝑑 = 𝑙𝑛(2ି∆) =  𝑙𝑛 ൬2
ିቀೌೝି ೝೝ

ቁ
൰                                     [S4] 

Behavioural data can potentially be a leading indicator as more mixing within the population is likely to lead to 
increased transmission of infection. We investigated behavioural data as a leading indicator for epidemic waves 
using two datasets: Google mobility and the CoMix behavioural survey. Google mobility25 measures the number 
of people visiting (or the time spent) in various different categories of place. The data made available is the 
percentage change relative to a baseline period, which is the median daily value between 3 January and 6 
February 2020. We took a 7-day rolling mean of this data to smooth for changes due to the day of the week, but 
we did not make any adjustments for seasonality or public holidays, both of which are likely to have a material 
impact on the values. The CoMix behavioural survey data26 measures the mean number of daily contacts on a 
weekly basis. The data are stratified across a range of demographic factors, but we only used the age group 
stratification to derive potential leading indicators. 

We also included the UK hospital admissions data16 with time shifts applied as a control test for the analysis 
method used for the phylogeny-derived leading indicator data. This dataset is less relevant here, particularly 
when leading indicators are compared against the Rt critical transition rather than the hospitalisation wave start 
(inflection point) dates. 

These data sets have data points over different time ranges and different sampling rates, with some daily and 
others weekly or bi-weekly. To make them comparable we filled in data for missing dates using a simple linear 
interpolation. We then trimmed all of the data sets to the maximum range for which we had data across all 
potential leading indicators. This approach was also applied to the phylogeny-derived leading indicators for 
comparison with the non-phylogeny-derived leading indicators, but not when the former were considered alone.
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Dataset Description Potential leading indicators investigated 

PCR cycle threshold (Ct) levels 

The cycle threshold (Ct) value determined during a polymerase chain 
reaction (PCR) test can be used as a proxy for viral load [ref]. Ct 
values were used from pillar 2 community testing in the UK. Lower 
Ct values are associated with higher viral loads. 
Ct values for three different gene targets were used. Separately, we 
normalised these Ct values for the control value (normalised gene Ct 
value = gene specific Ct value - control Ct value). We also calculated 
the viral load proxy for each gene target as a potential leading 
indicator. In addition, we calculated summary statistics for use as 
leading indicators. This was repeated for the mean value across 
samples for each day as well as the median value. 

Ct value for ORF1ab gene (mean and median of daily values) 
Ct value for N gene (mean and median of daily values) 
Ct value for S gene (mean and median of daily values) 
Ct value for control (mean and median of daily values) 
Minimum Ct value for O, N, S genes in each sample (mean and median of daily values) 
Mean of Ct values for O, N, S genes in each sample (mean and median of daily values) 
Normalised Ct value for O gene (mean and median of daily values) 
Normalised Ct value for N gene (mean and median of daily values) 
Normalised Ct value for S gene (mean and median of daily values) 
Viral load calculated from O gene Ct value (mean and median of daily values) 
Viral load calculated from N gene Ct value (mean and median of daily values) 
Viral load calculated from S gene Ct value (mean and median of daily values) 
Minimum viral load value for O, N, S genes in each sample (mean and median of daily values) 
Mean viral load value for O, N, S genes in each sample (mean and median of daily values) 
Maximum viral load value for O, N, S genes in each sample (mean and median of daily values) 
Skewness of the daily distribution of  the minimum Ct value for O, N, S genes in each sample 
Standard deviation of the daily distribution of  the minimum Ct value for O, N, S genes in each sample 
Skewness of the daily distribution of  the maximum viral load values for O, N, S genes in each sample 
Standard deviation of the daily distribution of  the maximum viral load values for O, N, S genes in each 
sample 

Google mobility 

Percentage change in the number of visitors to (or time spent in) 
categorised places compared to the baseline, which is the five-week 
period from 3 January to 6 February 2020. 
Data for six different categories of place were available. We added a 
seventh which we calculated as the inverse of the Parks category data. 
The percentage change as well as the 7-day rolling mean of the 
percentage change were investigated in the analysis. 

Grocery & pharmacy 
Parks 
Parks (inverse) 
Residential 
Retail and recreation 
Transit stations 
Workplaces 

Grocery 7-day rolling mean 
Parks 7-day rolling mean 
Parks (inverse) 7-day rolling mean 
Residential 7-day rolling mean 
Retail and recreation 7-day rolling mean 
Transit stations 7-day rolling mean 
Workplaces 7-day rolling mean 

CoMix survey 
Mean number of daily contacts as measured by a weekly survey in 
the UK. Data includes stratification by age group. 

All age groups 
All adults 
Ages 0-4 years 
Ages 5-11 years 
Ages 5-17 years 
Ages 18-29 years 
Ages 18-59 years 

Ages 30-39 years 
Ages 40-49 years 
Ages 50-59 years 
Ages 60-69 years 
Ages 60 years and over 
Ages 70 years and over 

New hospital admissions  
Daily new hospital admissions in the UK with a time shift applied to 
use as a control to check the method used in the genomic leading 
indicator analysis, but also included here. 

0-day time-shift 
10-day time-shift 

20-day time-shift 
30-day time-shift 

COVID-19 test positivity rate Pillar 2 community testing in England (lateral flow and PCR test) Positivity rate 7-day rolling mean of positivity rate 

 
Table S6: Non-phylogeny-derived leading indicators investigated. 
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All of these potential leading indicator datasets have a time lag between the date of the last data point, or the 
time taken for data to be included in the set, and the publication date. To try to adjust for this in our attempt to 
simulate real time EWS generation, we added 7 days to the hospitalisation data, the Ct value data and the test 
positivity rate data. We added 3 days to the Google Mobility data, which is stated to be published 2-3 days after 
the fact. For the CoMix data we added 10 days; comprising 7 days due to the bi-weekly basis of the dataset, 
which uses the mid-point of the two-week period, and a further 3 days for analysis and publication. 

Clearly, the classification method for True or False Positives described earlier involving matching the variant 
contributing to the EWS signal with the variant driving the epidemic waves is not possible for the potential 
leading indicators that were not derived from the SARS-CoV-2 phylogeny. We therefore used a time window 
for such leading indicators; a common approach often used for ‘direct’ data. We also applied this as a secondary 
method to the phylogeny-derived leading indicators so as to make them comparable to the non-phylogeny-
derived leading indicators. We made some further adjustments to the phylogeny-derived leading indicator data 
sets to make them comparable. The time series were expanded to daily, with a simple linear interpolation used 
to fill values for missing dates. We also trimmed the time series date range to match that of the maximum range 
to which all phylogeny-derived and non-phylogeny-derived leading indicators had data. 

We used time windows starting 30 days before our defined wave start (inflection) date, to limit overlap with 
previous waves, and ending 5 days after, to account for small possible bifurcation delays. This is in line with the 
time window used by Proverbio et al.19 We also looked at results using a time window of -30 < t < +10 days, as 
we knew that for some waves the earliest true positive EWS for phylogeny-derived leading indicators was more 
than 5 days after the wave start (inflection) date. For this part of the analysis, we dropped the requirement for 
two consecutive data points to be above the threshold before recording an EWS. This was to enable the 
calculation of receiver operating characteristic (ROC) statistics with a more straightforward calculation and 
interpretation of True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). 
Therefore any data point above the EWS threshold and within the time window was recorded as a TP and any 
below the threshold within this time window were FNs. We applied the reverse classification outside the time 
window; FP above the threshold and TN below. We repeated this method using the Rt critical transition date as 
an anchor point for the time window. While this method enables comparison between the various potential 
leading indicators it is clear that some EWS will be classified in a different category compared with the method 
that tries to match the variant generating the signal and that driving the epidemic wave. One possible way to 
reconcile this is that True Positives (TPs) using this matching method that occur more than 5 days (or 10 days) 
after the wave start (inflection) date and/or Rt critical transition date could be considered to be too late to be a 
useful EWS and so may as well be considered to be a False Positive. 

We also applied a different ranking process to compare the phylogeny-derived leading indicators with the non-
phylogeny-derived leading indicators that we investigated. Using the classification of the ‘robust’ z-score values 
we were able to calculate a range of ROC statistics, including the True Positive Rate (equation S5), also known 
as the Sensitivity, and False Positive Rate (equations S6 & S7). 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
்

் ା ிே
=  

ே௨  ்௨ ௦௧௩

ே௨  ்௨ ௦௧௩ ା ே௨  ி௦ ே௧௩
    [S5] 
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= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −  
்ே

ி ା ்ே
                            [S7] 

 

Calculating these ratios across a range of EWS thresholds (-5·0 to +5·0 in increments of 0·05) we were able to 
plot a ROC curve and calculate the area under the curve (AUC). We calculated the ROC AUC for individual 
waves as well as for time periods covering multiple waves: all seven waves; a period excluding the B.1.177 
wave; and a period excluding the B.1.177 wave and the Omicron BA.2 wave. We have limited data in our 
leading indicator time series ahead of the B.1.177 wave start date and limited data after the start of the Omicron 
BA.2 wave start date, for some leading indicators investigated. 

We used a variety of measures to assess the ability of each leading indicator to generate EWS over the period. 
These included the ROC AUC as well as the Matthews Correlation Coefficient (MCC),31 shown in equation S8, 
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which has been used in various fields and has been suggested as a more discriminative measure of binary 
classification assessment.32 A high value for the MCC, which ranges from -1 to +1, can only be achieved with 
high values in all four basic rates of the confusion matrix (Sensitivity, Specificity, Precision and Negative 
Predictive Value), whereas a high value for the ROC AUC can be produced without values for Precision (aka 
Positive Predictive Value) or Negative Predictive Value necessarily being high. We also calculated the 
normalised version of the MCC (see equation S9), which ranges from 0 to +1 making it more comparable to the 
ROC AUC. 
         

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =  
(்·்ே)ି(ி·ிே)

ඥ(்ାி)·(்ାிே)·(்ேାி)·(்ேାிே)
               [S8] 

 
                                             

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑀𝐶𝐶 =  
ெ ା ଵ

ଶ
                                                        [S9] 

 

We also calculated the F1 and Fowlkes-Mallows Index which are more focused on positive results. 

This method was applied to the 19 phylogeny-derived leading indicators shown in Table S2, with the same TFP 
Scanner parameter sets and filters described earlier, and the 71 non-phylogeny-derived leading indicators shown 
in Table S6. The number of EWS thresholds was increased from 101 (0·00 to +5·00 in increments of 0·05) to 
201 (-5·00 to +5·00 in increments of 0·05) and we investigated four true positive time windows as described 
earlier. This resulted in a total of 11·1 million individual leading indicator parameter sets to be assessed. 

In filtering and ranking these leading indicator parameter sets, we excluded performance in the B.1.177 and 
Omicron BA.2 waves, due to there not being sufficient data points before and after, respectively, the wave start 
(inflection) and/or Rt critical transition dates. Our performance assessment was therefore focused on the Alpha, 
1st, 2nd and 3rd Delta, and Omicron BA.1 waves. Firstly, we filtered for leading indicator parameter sets that 
produced a normalised MCC value for each of these five waves individually. This reduced the number of 
leading indicator parameter sets to 899,296. Normalised MCC’s were typically not defined due to there either 
being no positives or no negatives for one or more individual waves. In order to assess the consistency of EWS 
performance, we computed the minimum value and the arithmetic mean of the normalised MCC across three 
sets of individual waves: all five waves with sufficient data (Alpha, Delta (1,2,3), and Omicron BA.1); waves 
driven by new genomic variants (Alpha, Delta (1), and Omicron BA.1); and waves not driven by new genomic 
variants (Delta(2,3)). We then identified the best leading indicators for each of these sets of waves by ranking 
them using the mean percentile rank based on the minimum and arithmetic mean of the normalised MCC across 
the waves. The top 5,000 ranked leading parameter sets can be found in a separate file (SM2–
TFPS_vs_nonTFPS_Perc_Rank_Mean_Min_MCC.xlsx) as part of the Supplementary Material. 

Table S7 shows the top ranked leading indicators based on all waves with sufficient data: Alpha, Delta (1,2,3), 
and Omicron BA.1. The leading indicators derived from phylogenomic data and non-phylogenomic data judged 
to have the best EWS performance are plotted in Figure S1. In relation to the non-phylogeny-derived leading 
indicators, the Google mobility workplaces leading indicator ranked slightly higher than the Google mobility 
grocery & pharmacy leading indicator, however, we have shown the latter in Figure S1 because, in our view, the 
normalised MCC results for the former are impacted by the periodicity of the weekday/weekend values. This is 
reflected in the Google mobility workplaces 7-day mean leading indicator, which smooths this periodicity, with 
the same EWS threshold value having a much lower ranking (93rd percentile vs 99th percentile, with mean 
normalised MCCs of 0·59 and 0·64, and minimum normalised MCCs of 0·44 and 0·54 respectively). 

While the highest ranked non-phylogeny-derived leading indicators are preceded by a large number of 
phylogeny-derived leading indicators, they are not far behind in terms of percentile rank. However, from Figure 
S1 and Table S7 it can be seen that the best phylogeny-derived leading indicator outperforms the best non-
phylogeny-derived leading indicator using this method of generating EWS and assessing them. The normalised 
MCC and ROC AUC values are higher, and the proportion of TP and TN is visibly higher in Figure S1.d than in 
S1.e. 
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Figure S1: Early warning signals for COVID-19 epidemic waves in the UK assessed using ‘time window’ 
method. (a) New recorded positive cases of COVID-19 in the UK. (b) New COVID-19 hospital admissions in 
the UK with epidemic wave start (inflection) dates marked. (c) Estimated COVID-19 effective reproduction 
number (Rt) with 90% confidence intervals and ‘critical transitions’ (when Rt increases above 1) marked. (d) 
‘Robust’ Z-score for one of the best performing leading indicators derived from the SARS-CoV-2 phylogeny 
(mean cluster logistic growth rate). EWSs are marked as true positive, false positive, true negative or false 
negative depending on whether they are above or below the EWS threshold and inside or outside the time 
window (in this case, -30 < Rt critical transition date < +5 days). (e) as in (d) but showing the best selected 
leading indicator derived from non-phylogenomic data (Google mobility grocery & pharmacy). Details of the 
leading indicator parameter values are shown in Table S7. 

 
 
Analysis Pipeline 

The analyses described here were made using the R programming language (version 4.2.0). The code and a 
summary of the pipeline is available here https://github.com/KieranODrake/Early_Warning_Signal.  
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1 Rt+5 Genomic Mean LGR 7 84 100 70 0.05 0.20 0.77 0.81 0.93 1.00 0.63 0.59 0.69 0.89 0.73 0.76 0.72 0.48 0.57 0.82 0.63 100.00 0.74 100.00 

2 Rt+5 Genomic Mean GAM LGR 7 84 100 65 0.05 0.25 0.75 0.82 0.81 1.00 0.63 0.60 0.81 0.95 0.65 0.67 0.79 0.54 0.55 0.91 0.63 100.00 0.74 100.00 

3 Rt+5 Genomic Mean LGR 14 84 100 60 0.05 0.15 0.77 0.82 0.91 1.00 0.62 0.60 0.73 0.88 0.63 0.76 0.81 0.49 0.63 0.73 0.62 100.00 0.74 99.99 

4 Rt+5 Genomic Mean LGR 14 84 100 70 0.05 0.20 0.76 0.82 0.88 1.00 0.61 0.59 0.80 0.93 0.72 0.76 0.74 0.50 0.57 0.82 0.61 99.99 0.75 99.99 
5 Rt+5 Genomic Mean GAM LGR 7 84 100 65 0.05 0.20 0.78 0.82 0.93 1.00 0.63 0.60 0.72 0.95 0.64 0.67 0.78 0.54 0.57 0.91 0.63 100.00 0.74 99.99 

6 Rt+5 Genomic Mean GAM LGR 7 84 100 60 0.05 0.20 0.74 0.82 0.88 1.00 0.64 0.61 0.69 0.91 0.63 0.68 0.83 0.57 0.59 0.82 0.63 100.00 0.73 99.99 

7 Rt+5 Genomic Mean GAM LGR 7 84 100 70 0.05 0.20 0.74 0.82 0.93 1.00 0.62 0.61 0.76 0.93 0.63 0.69 0.77 0.50 0.55 0.82 0.62 99.99 0.74 99.99 
8 Rt+5 Genomic Mean GAM LGR 7 84 100 70 0.05 0.20 0.79 0.84 0.80 1.00 0.61 0.63 0.96 0.98 0.73 0.80 0.65 0.45 NA 1.00 0.61 99.99 0.75 99.99 

9 Rt+5 Genomic Mean GAM LGR 7 84 100 75 0.05 0.25 0.75 0.80 0.84 0.99 0.61 0.62 0.78 0.93 0.67 0.71 0.77 0.51 NA 0.82 0.61 99.99 0.73 99.99 
10 Rt+5 Genomic Mean GAM LGR 14 84 100 80 0.05 0.25 0.73 0.81 0.80 0.99 0.61 0.61 0.86 0.96 0.71 0.72 0.73 0.49 NA 0.73 0.61 99.99 0.74 99.99 
11 Rt+5 Genomic Mean LGR 14 84 100 60 0.05 0.20 0.78 0.82 0.88 1.00 0.62 0.60 0.69 0.88 0.69 0.76 0.75 0.49 0.59 0.73 0.62 100.00 0.73 99.99 

12 Rt+5 Genomic Mean GAM LGR 7 84 100 70 0.05 0.30 0.77 0.82 0.78 1.00 0.63 0.61 0.85 0.93 0.67 0.69 0.70 0.50 NA 0.82 0.63 100.00 0.73 99.99 
13 Rt+5 Genomic Mean GAM LGR 14 84 100 70 0.05 0.25 0.75 0.83 0.80 1.00 0.61 0.61 0.86 0.96 0.66 0.69 0.79 0.56 NA 0.82 0.61 99.99 0.74 99.99 

14 Rt+5 Genomic Mean GAM LGR 7 84 100 60 0.01 0.25 0.74 0.78 0.78 1.00 0.63 0.60 0.81 0.91 0.65 0.63 0.77 0.61 0.62 1.00 0.63 100.00 0.73 99.99 

15 Rt+5 Genomic Mean GAM LGR 14 84 100 60 0.05 0.25 0.75 0.83 0.80 1.00 0.62 0.61 0.85 0.94 0.66 0.69 0.72 0.55 0.55 0.91 0.62 99.99 0.73 99.99 
16 Rt+5 Genomic Mean GAM LGR 14 84 100 65 0.05 0.25 0.75 0.83 0.78 1.00 0.61 0.61 0.81 0.94 0.67 0.68 0.79 0.57 NA 0.91 0.61 99.99 0.73 99.99 

17 Rt+5 Genomic Mean GAM LGR 14 84 100 80 0.05 0.20 0.74 0.81 0.81 0.99 0.61 0.61 0.80 0.96 0.69 0.72 0.74 0.49 0.55 0.73 0.61 99.99 0.73 99.99 

18 Rt+5 Genomic Mean GAM LGR 14 84 100 75 0.05 0.20 0.74 0.82 0.85 0.99 0.61 0.62 0.82 0.94 0.64 0.71 0.76 0.50 0.55 0.82 0.61 99.99 0.74 99.99 

19 Rt+5 Genomic Mean GAM LGR 7 84 100 80 0.05 0.20 0.74 0.80 0.87 0.99 0.62 0.61 0.73 0.96 0.68 0.71 0.74 0.45 NA 0.82 0.62 99.99 0.73 99.99 
20 Rt+5 Genomic Mean LGR 14 84 100 80 0.05 0.15 0.74 0.80 0.91 0.99 0.61 0.59 0.71 0.93 0.71 0.77 0.70 0.42 0.59 0.73 0.61 99.99 0.73 99.99 
… … … … … … … … … … … … … … … … … … … … … … … … … … … … 

Highest ranked non-phylogenetic-derived leading indicators 

3506 Rt+5 Non-
genomic 

Google mobility: 
workplaces 

NA NA NA NA NA 0.30 0.52 0.48 0.66 0.82 0.67 0.67 0.54 0.36 0.59 0.60 0.76 0.78 0.42 0.44 0.54 99.60 0.64 99.22 

3869 Rt+5 Non-
genomic 

Google mobility: grocery 
& pharmacy 

NA NA NA NA NA 0.45 0.38 0.31 0.70 0.70 0.65 0.68 0.59 0.49 0.56 0.76 0.67 0.64 0.60 0.57 0.56 99.80 0.63 99.14 

3909 Rt+10 Non-
genomic 

Google mobility: 
workplaces 

NA NA NA NA NA 0.30 0.56 0.54 0.68 0.87 0.69 0.68 0.52 0.32 0.60 0.68 0.78 0.77 0.42 0.44 0.52 99.12 0.65 99.13 

Table S7: Highest ranked genomic- and non-genomic-derived leading indicators. Ranking is by percentile for the arithmetic mean and minimum values for the normalised MCC across the 
Alpha, Delta (1,2,3) and Omicron BA.1 waves. The normalised MCC is calculated using the four elements of the confusion matrix (TP, FP, TN, FN) as defined using a time window anchored 
around either the wave start date or the Rt critical transition date and with a variable end date (+5 or +10 days). The data shown is an extract from the top 5,000 ranked leading indicator parameter 
sets (SM2–TFPS_vs_nonTFPS_Perc_Rank_Mean_Min_MCC.xlsx in the Supplementary Material), which only includes three non-genomic leading indicator parameter sets. The best performing 
leading indicator on this basis is the mean cluster logistic growth rate which has a mean normalised MCC of 0·74 (range 0·63 to 0·93). This compares favourably against the highest ranked non-
genomic leading indicator parameter set which has a mean normalised MCC of 0·64 (range 0·54 to 0·76). 
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Sensitivity Analyses 

Generation time 

The generation time for SARS-CoV-2 may vary across different time periods and for different variants and 
indeed a range of estimates have been reported during the pandemic. The analysis presented in the main article 
used a generation time of 6·5 days5-8. In order to assess the sensitivity of our methodology to the value chosen 
for the generation time, we repeated the analysis using a generation time of 5·0 days for the two best leading 
indicators highlighted in the main article. As shown in Figure S2, there is minimal difference in the leading 
indicator time series and this made no difference to either the timing of the early warning signals or the number 
of false positive signals before and after the earliest true positive signal. This sensitivity analysis was also 
repeated, with the same result, using two different region definitions for geographic aggregation (adm1 and 
adm2) for the purpose of geo-matching samples in the computation of cluster logistic growth rates, as described 
in the Methods section. 

 

Figure S2: Methodology is not sensitive to value used for generation time. There is a small difference in the 
time series values for the dominant Pango lineage max logistic growth rate (LGR) leading indicator produced 
using generation times (Tg) of 6·5 and 5·0 days, as shown in (a), however, when the rolling ‘robust’ z-score (the 
time series used to generate early warning signals (EWS)) is computed, there is virtually no difference, as seen 
in the overlapping plots shown in (b). This situation is repeated for the simple LGR mean leading indicator 
shown in (c) and (d). The EWS generated using these time series are unchanged by the change of value for 
generation time input into the Transmission Fitness Polymorphism (TFP) Scanner. 

 

Geographic aggregation 

A generalised linear model (GLM) was used to calculate the log odds of a sample being from a cluster of 
interest compared to a geographically (by country) and temporally matched sample weighted by prevalence, and 
multiplied by the estimated mean generation time of 6·5 days5-8 to calculate the relative logistic growth rate per 
generation for each cluster of interest. To test the sensitivity of the EWS results to the scale of geographic region 
used in cluster matching we generated EWS using the two best performing leading indicators and parameter sets 
from the primary analysis but with finer scale geographic matching at administrative level 2 (adm2). The set of 
genomic sequences was 13·9% smaller given the absence of sufficient metadata to determine the adm2 value. 
As can be seen from Table S8, the EWS results generated using these two leading indicator and parameter sets 
are weaker with the finer scale geographic matching, both in terms of lead times and the number of false 
positives. While it is expected that at smaller scales estimates become more sensitive to stochastic effects and 
correlated sampling, more extensive analysis would be required to be able to draw a firm conclusion regarding 
geographic scale given the small number of parameters tested in the sensitivity analysis. 



Page 19 of 21 
 

 
B.1.177 Alpha Delta (1) Delta (2) Delta (3) 

Omicron 
BA.1 

Omicron 
BA.2 

Epidemic wave start (inflection) date 19 Aug 2020 29 Nov 2020 11 May 2021 3 Aug 2021 27 Sep 2021 26 Nov 2021 21 Feb 2022 

Dominant Pango lineage max logistic growth rate (LGR) (min cluster age = 7 days, max cluster age = 56 days, min descendants = 20, LGR p-value limit ≤ 0·01, LGR threshold for sub-cluster replacement by parent = 
85%, ‘robust’ z-score threshold for generating EWS = 0·00) 

Earliest True Positive EWS date 
Geo. aggregation = country 26 Aug 2020 23 Nov 2020 21 Apr 2021 4 Aug 2021 18 Sep 2021 2 Dec 2021 4 Feb 2022 

Geo. aggregation = administrative 
level 2 

25 Aug 2020 N/A 21 Apr 2021 10 Aug 2021 29 Sep 2021 2 Dec 2021 4 Feb 2022 

EWS lead time (days) relative to wave start (inflection) date 
Lead (-ve) and Lag (+ve) 

Geo. aggregation = country +7 -6 -20 +1 -9 +6 -17 

Geo. agg. = administrative level 2 +6 N/A -20 +7 +2 +6 -17 

Number of False Positives 
Prior to earliest True Positive 

Geo. aggregation = country 0 0 2 0 0 2 0 
Geo. agg. = administrative level 2 3 N/A 1 0 0 4 0 

After earliest True Positive 
Geo. aggregation = country 4 0 0 0 0 0 0 
Geo. agg. = administrative level 2 4 N/A 0 0 0 1 0 

Simple LGR mean (min cluster age = 14 days, max cluster age = 56 days, min descendants = 20, no LGR p-value limit, LGR threshold for sub-cluster replacement by parent = 85%, ‘robust’ z-score threshold for 
generating EWS = 0·00) 

Earliest True Positive EWS date 
Geo. aggregation = country 25 Aug 2020 23 Nov 2020 17 Apr 2021 2 Aug 2021 18 Sep 2021 2 Dec 2021 4 Feb 2022 

Geo. agg. = administrative level 2 25 Aug 2020 18 Dec 2020 17 Apr 2021 2 Aug 2021 26 Sep 2021 2 Dec 2021 4 Mar 2022 

EWS lead time (days) relative to wave start (inflection) date 
Lead (-ve) and Lag (+ve) 

Geo. aggregation = country +6 -6 -24 -1 -9 +6 -17 

Geo. agg. = administrative level 2 +6 +19 -24 -1 -1 +6 +11 

Number of False Positives 
Prior to earliest True Positive 

Geo. aggregation = country 1 0 14 0 0 1 0 
Geo. agg. = administrative level 2 5 0 15 0 0 3 0 

After earliest True Positive 
Geo. aggregation = country 4 0 0 0 0 0 0 
Geo. agg. = administrative level 2 0 0 9 0 0 2 0 

Table S8: Strongest performing leading indicators using country level geographic aggregation for cluster matching, show weaker performance with finer geographic 
aggregation. The mean early warning signal (EWS) lead time generated across the seven SARS-CoV-2 epidemic waves in the UK using the dominant Pango lineage max 
logistic growth rate (LGR) leading indicator fell from 5·4 days to 2·7 days when the geographic aggregation (geo. agg.) for cluster matching was changed to the finer scale 
administrative level 2. In addition, the total number of false positives increased from 8 (4 before the earliest true positives and 4 after) to 13 (8 before and 5 after). In addition, 
no EWS was generated for the Alpha wave. The simple LGR mean leading indicator also produced weaker performance at the finer geographic scale: mean lead time of 6·4 
days vs. mean lag time of 2·3 days, and 20 false positives (16 before and 4 after) vs 34 (23 and 11). 
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