
Supplementary material for: Embedding-based
alignment: combining protein language models with
dynamic programming alignment to detect structural
similarities in the twilight-zone

This supplementary material accompanies the paper titled "Embedding-based alignment: com-
bining protein language models with dynamic programming alignment to detect structural
similarities in the twilight-zone". This document provides additional details regarding the meth-
ods compared to EBA in section 3.1. Here we also show the computation times for the same
analysis. Furthermore, we describe an example that shows how our method handles domain
flexibility.

1. METHODS DETAILS

Needleman-Wunch with BLOSUM matrix
We run the Needleman-Wunch global alignment using EMBOSS Needle [7] with default parame-
ters: "score matrix": EBLOSUM62, "Gap_penalty": 10.0, "Extend_penalty": 0.5. Here we report the
following Needle output: alignment score, sequence identity and sequence similarity. Alignment
score has been normalized the same way as the EBA alignment score. Best performances are
obtained using sequence similarity and are reported in Table 1 of the main manuscript.

Table S1. Spearman correlations between the similarity predictions obtained running a Needleman-Wunch
global alignment. The best scores on this table are reported in Table 1 of the manuscript.

TMmin TMmax

Sequence Similarity 0.61 0.43

Sequence Identity 0.60 0.43

Alignment Score 0.56 0.41

HHalign
We generated alignments for the Pisces’s pairs using HHalign [10] with default parameters. The
required profiles were generated with two iterations of HHblits [10] with default parameters on
UniClust30 30_2018_08. We normalized the alignment score produced by HHalign as in EBA,
by dividing by the length of the longer/shorter sequence for the comparison to TMmax/TMmin,
respectively.

TM-vec
We installed TM-vec [2] version 1.01 from https:https://github.com/tymor22/tm-vec. We then
performed the analysis with each one of the 4 TM-vec models available: ‘tm_vec_swiss_model.ckpt‘,
‘tm_vec_swiss_model_large.ckpt’, ‘tm_vec_cath_model_.ckpt’ and ‘tm_vec_cath_model_large.ckpt’.
The best performances are obtained using ‘tm_vec_cath_model_large.ckpt’, and are reported in
Table 1 of the manuscript. Since TM-vec predicts TM scores no normalization is needed.

Table S2. Spearman correlations between the similarity predictions obtained running TM-vec. The best
scores (cath model large) are reported in Table 1 of the manuscript.

TMmin TMmax

swiss model 0.78 0.70

swiss model large 0.77 0.75

cath model 0.80 0.79

cath model large 0.81 0.82



pLM-BLAST
We installed pLM-BLAST from https://github.com/labstructbioinf/pLM-BLAST on date 27/12/2022.
Since pLM-BLAST [5] generates a local alignment, multiple alignments are associated to each
pair of sequences. For each pair of sequences in the PISCES data, we selected the best alignment
score as a proxy for sequence similarity.

ProtTucker
We downloaded the pre-computed embeddings for the PDB sequences from: https://github.com/Rostlab/EAT.
We then selected the embeddings associated to the sequences used in the analysis 3.1 of the
manuscript. Finally, we computed the Euclidean distance between these embeddings.

2. EBA COMPUTATION TIME

We report here the EBA computation times for the sequence pairs of the analysis described in
section 3.1 of the manuscript. Each point represents a pair of sequences. We can observe how
the time needed to compute the EBA score grows linearly with the product of the length of
the sequence pair. These analysis were run on a single thread on a "AMD EPYC 7742 64-core"
Processor.

Fig. S1. Computation times for PISCES’s pairs in function of the product of the sequences
length. We compare: EBA, EBAplain, AD and TM-align. We included only the sequence pairs
for which TM-align was able to generate an alignment. In the left plot: on the x-axis we show
the product of the length of the two sequences, while on the y-axis the computation time. In
the one on the right we show the same thing, but in logarithmic scale, in order to appreciate the
difference with the AD. The computation time includes only the generation of the similarity
matrix and the computation of the alignment; not the per-residue embedding generation.

Table S3. Average computation times for PISCES’s pairs. We compare: EBA, EBAplain, AD
and TM-align, including only the sequence pairs for which TM-align was able to generate an
alignment.

EBA EBAplain AD TM-align

average time (s) 0.02 0.02 7 · 10−5 0.17

3. FLEXIBLE DOMAIN IDENTIFICATION

Compared to the TM score, the method under consideration offers several advantages. For
example, the TM score metric relies on rigid superpositions, which can limit similarity detection
due to structural flexibility. For instance, as illustrated in Figure S2, two structures that undergo
a hinge movement may receive a low TM score, whereas the EBA method can still accurately
identify the similarity between the corresponding sequences.
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Fig. S2. Outlier of the EBA classification in the PISCES analysis. These proteins share the same
domains but with a different relative orientation. Notably, the EBA method was able to capture
the structural similarity between these proteins, whereas the TM score failed to do so.

4. PROTEIN LANGUAGE MODELS COMPARISON

Fig. S3. Cumulative sensitivity distribution for the annotation transfer analysis on the
SCOPe40 database for: family, super family and fold. The sensitivity is computed as the area
under the ROC curve up to the first FP. With TPs being matches within the same group and FPs
being matches between different folds. We report the performances of EBA, EBAplain and AD
for the following protein language models: ProstT5 [3], ProtT5 [1], ESM-1b [9].

Fig. S4. Posterior probability of belonging to the same group in the transfer annotation anal-
ysis on the SCOPe40 dataset. The posterior probabilities are computed using EBAmin with
ProtT5 and ESM-1b as underling language models.
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5. HOMSTRAD ALIGNMENT QUALITY

Table S4. Alignment quality sensitivity and precision for the HOMSTRAD [8] benchmark.
With sensitivity being: TP residues in alignment/query length and precision being TP
residues/alignment length. This values refer to the plot in Figure 3 panel B of the manuscript.

Sequence-based Structure-based

EBA EBAplain MMseqs2 Foldseek Foldseek-TM TM-align CLE-SW DALI

Sensitivity 0.859 0.789 0.325 0.833 0.872 0.877 0.759 0.858

Precision 0.861 0.832 0.597 0.868 0.885 0.890 0.794 0.913

Fig. S5. Scatter plots for alignment quality comparison between EBA-ProstT5, DALI [4] and
Foldseek [6]. For each element of the HOMSTRAD benchmark set we compare the F1 score
generated with the different aligners. Notice that DALI failed in 46 of the alignments, we did
not include those in the scatter plot.

6. SIGNAL ENHANCEMENT EXAMPLE

Fig. S6. Pairwise distance matrix and enhanced similarity matrix (SMenh) of the two pairs of
sequences shown in Figure 1 of the manuscript. This figure shows how the signal enhancement
strengthens the signal for pair 2.
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