Supporting Information

Probing the Cytotoxic Signaling Induced by Eupenifeldin in Ovarian Cancer Models

Amanda C. Maldonado^{1‡}, Monica A. Haughan^{2‡}, Manead Khin², Julia Ekiert^{2,} Ziwei Zhang², Daniel Lantvit², Zeinab Y. Al Subeh³, Herma C. Pierre⁴, Maryna Salkovski⁵, Tal Hirschhorn⁶, Yu (Tom) Gao², Cedric J. Pearce.⁷, Brent R. Stockwell^{6,8} Leslie N. Aldrich⁵, Nicholas H. Oberlies⁴, and Joanna E. Burdette^{2*}

¹Chicago Biomedical Consortium, Northwestern University, Evanston, Illinois, United States

²Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States

³Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan

⁴Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States

⁵Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, United States

⁶Department of Biological Sciences, Columbia University, New York, NY, 10027, United States

⁷Mycosynthetix Inc., Hillsborough, NC 27278, United States

⁸Department of Chemistry, Columbia University, New York, NY, 10027, United States

*Corresponding author

[‡]Equal contribution

TABLE OF CONTENTS

Supplement 1 Eupenifeldin Isolation Purity Data	.3
Supplement 2 Hollow Fiber Assay Data	4
Supplement 3 Annexin V vs PI	5
Supplement 4 PARP Western Blots	.6
Supplement 5 Proteomic Analysis	.7
Supplement 6 Ferroptosis Potentiation Assays	10

SUPPLEMENT 1- Eupenifeldin Isolation Purity Data

S1.1 Isolated eupenifeldin HPLC Data

¹H NMR Spectrum of Eupenifeldin (400 MHz, CDCl₃)

S1.2 Isolated eupenifeldin NMR Data

	Body Weight (g)						% Change	
Treatment	Mouse ID	Day	Day	Day	Day	Day		
Group	number	0	2	4	6	7		
Vehicle	101	23.5	22.2	22.4	21.8	21.8	7.23	
	102	18.3	18.1	18.8	18.3	18.8	2.73	
	103	20.9	20.2	20.2	20.1	20.0	4.31	
	104	19.1	18.8	19.4	19.0	19.0	0.521	
	105	19.1	19.3	19.8	19.6	19.4	1.57	
	106	17.8	17.6	18.1	18.0	17.9	0.562	
	107	16.9	16.8	16.9	16.6	16.8	0.592	
	108	16.9	16.8	17.2	16.9	17.1	1.18	
Taxol	109	19.6	19.6	19.2	16.3	16.8	14.3	
2.8mg/kg	110	22.4	22.5	21.2	20	20.4	8.93	
	111	19.8	19.5	18.9	16.4	Died	17.2	
	112	20.1	19.6	20.5	17.3	17.1	14.9	
	113	19.4	19.2	19.3	17.3	Died	10.8	
	114	19.7	19.8	19.2	16.9	17.1	13.2	
	115	20.0	19.8	19.1	17.4	19.1	4.50	
	116	19.9	19.2	18.9	17.4	18.0	9.55	
Eupenifeldin	117	17.4	17.7	17.6	16.6	16.1	7.47	
0.5mg/kg	118	17.9	18.4	18.8	17.6	16.5	7.82	
	119	16.0	16.7	16.0	14.9	14.1	11.88	
	120	21.0	20.8	20.4	20.2	20.4	2.86	
	121	17.6	18.1	17.3	16.5	16.1	8.52	
	122	18.4	19.3	18.7	18.2	17.7	3.80	
	123	19.5	20.3	20.2	19.3	18.8	3.59	
	124	18.6	19.2	19.0	18.3	17.6	5.38	

SUPPLEMENTAL 2 – Additional Hollow Fiber Assay Data

S2.1 Mouse body weights and percent change over the course of treatment in the hollow fiber assay.

S2.2 Percent surviving OVCAR8 cells from the *in vivo* hollow fiber assay.

SUPPLEMENTAL 3 Annexin V vs PI

S3.1 Representative plot of DMSO Control.

SUPPLEMENTAL 4- Additional PARP Western Blots

S4.1 Representative western blot of OVCAR8 25nM eupenifeldin treatment compared to 20nM Taxol (T20).

S4.2 Representative western blot of OVCAR5 25nM eupenifeldin treatment compared to 10nM Taxol (T10).

SUPPLEMENTAL 5 - Proteomic Analysi	is
------------------------------------	----

		Downregulated Proteins					
-		POLR2H	SCO1	TCOF1			
Upregulated Proteins		ETFB	FAM136A	HEXB			
ASNS	TFRC	FTL	PPIF	UQCRC2			
CD55	SLC3A2	RPL7	PPM1B	ABHD10			
ATP6V0D1	RAB2A	RPL11	ATP5MC1	RPL34			
EIF2B1	FARSB	TOMM6	AK3	COX5A			
TMED2	GNAS	COX5B	PHB2	ACO2			
ATP2B1	EPHA2	FKBP9	PHB	HADHB			
WARS1	EEF1G	RPS29	CTSB	NDUFB10			
AARS1	SEC63	TUFM	SUCLA2	SDHA			
TMOD2	KPNB1	PRDX3	RPL31	NDUFS1			
GFPT1	TARS1	IMMT	ATP5F1E	HIST1H2BO			
PHGDH	UFL1	OGDH	HINT2	RPL37A			
CANX	KARS1	PFN2	ATP5F1D	ATP5IF1			
ANXA5	KNG1	RPL10	DLST	ATP5PF			
SARS1	CD44	PDHA1	FAU				

S5.1- List of All Upregulated and Downregulated Proteins

S5.3 Principle Component Analysis Plot

SUPPLEMENTAL 6 - Additional Ferroptosis Potentiation Assays

S6.1 HT-1080 cells treated with (A,B) a ferroptosis inducer in a 2-fold dilution series, in the absence or presence of 1 μ M or 100 nM Eupenifeldin and (C-E) in combination with ferrostatin-1

S6.2 OVCAR3 potentiation by eupenifeldin for RSL3- or IKE-mediated ferroptosis

S6.3 Lipid Peroxidation Measurements in OVCAR3. (A) 3hr RSL Treatments (B) 3hr Eupenifeldin Treatments (C) 6hr Eupenifeldin Treatments