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INTRODUCTION 
 
Note 1. The brain is an integral part of the body. For the ease of description only, we refer to 
brain-body relationship as if the body corresponded to all other organs but the brain. Organism is 
a term related to the body, referring to individual forms of life in bacteria, protists, fungi, plants 
and animals. 
 
Note 2. Embodied cognition has weak and strong formulations. The weak view states that the 
body exerts a significant and measurable influence on cognitive processing, implying that failing 
to monitor changes in the body cannot fully account for cognition. The strong formulation goes 
further suggesting that the body acts as a (partial) realizer of cognitive processing that is 
distributed across neural and non-neural entities (Varga and Heck, 2017). 
 
Note 3. While the reductionist principle of divide et impera has been repeatedly shown to be an 
efficient strategy for describing and understanding many aspects of science, it has had limited 
success in cognitive neuroscience. From this viewpoint, it is presumed that organs of the body—
including the brain—have distinct stand-alone functions. While this may appear to be true, there 
is no bodily organ capable of survival without most other components of the body. Thus, each 
‘stand-alone function’ typically serves the entire body. The brain is no exception, it is useless 
without the body it evolved to serve, and in turn which it regulates (Varela et al., 1991). 
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MIND-BRAIN-BODY 
Note 1. The issue of representation has long been discussed in psychology and cognitive science. 
According to the ‘‘representationalist’’ view, states of the world are “encoded” or “modeled” or 
mirrored by the states of the mind.  A challenging response was offered by behaviorism, arguing 
that cognition cannot be separated from the activities of the animal (Watson 1924; Skinner). The 
declined influence of behaviorism was due mainly to its unjustified belief that cognition and 
decisions can be understood simply by shaping behavior with post hoc credit assignment of 
reward and punishment. The Skinnerian view was revived recently and became popular under 
the label of “reinforcement learning” (Sutton and Barto, 2014). Even Skinner’s own students 
recognized the limitations of reinforcement and emphasized the species-specific preconfigured 
nature of behavioral responses (Breland and Breland, 1961) and the limitations are well-
illustrated by the extensive literature on “autoshaping” (Brown and Jenkins, 1968), arguing that 
signals and reinforcers simply provide an opportunity for implementation of innate tendencies 
(Buzsaki, 1982). European ethology, focusing on detailed description of behavior in the animal’s 
ecological niche was an important antidote for both representationalism and reinforcement 
learning (Frisch 1953; Lorenz 1949; Tinbergen, 1951;). Ethology and experimental psychology 
have produced ample demonstrations that both simple and complex organisms are prepared to 
associate certain events, unprepared to associate others, and contra-prepared to associate still 
others (Seligman 1970). A related but somewhat independent line of research is exemplified by 
the Gibsonian ecological psychology (Gibson 1966, 1979), a direct descendent of American 
naturalism. Ecological psychology advanced the thought that behavior is not for gathering 
information but to guide actions afforded by the organism’s niche. We perceive the surroundings 
in order to do things. Embodied cognition and the situated mind (Brooks 1991) movement grew 
out from ecological psychology but it had very few followers in neuroscience (Chemero 2009; 
Freeman and Skarda, 1990; Juavinett et al., 2018; Krakauer et al., 2017; Parker et al., 2020).  
 
Note 2. In addition to limiting behavioral observations related to brain activity, head-fixing is 
deemed extremely stressful by placing the practice in USDA Category E. Rodents are both 
acrophobic agoraphobic and placing them in virtual and physical open space is aversive and 
likely results in distorting many brain-behavior correlations (Suppl Fig. 1). 
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Note 3. “Representation” is a key ingredient of the outside-in framework. What it actually means 
in terms of brain mechanisms is often not clear. It has some relationship to the idea of the 
“engram” which refers to a conceived physical embodiment of an event. Representation is 
fundamentally a relationship between some aspects of the world with its objects and events and 
brain activity. But whether and how different brains of different animals represent the same thing 
(the objective “truth”) is rarely asked (Freeman and Skarda, 1990). One can approach 
“representation” from a soul-less point of view of a machine. The exploration of a navigating 
robot allows it to detect and register correlations between its particular own movements and 
sensory inputs from landmarks, such as walls. This is possible only because of the robot’s 
structured, low-level activity of wall following, which allows it to infer a relationship between its 
movements and sensor readings (e.g., distances). The exploration unfolds in time, thus 
landmarks have extension over time. There are no explicit instructions inside the robot that tell it 
to follow a wall, there is no centralized decision maker and of course there is no subjective 
representation of walls or landmarks. Landmarks come into being as the result of the robot’s 
structured activity within a particular environment (George et al., 2021; Henriks-Jansen, 1996). 
Intelligent behavior of autonomous robots is an emergent property of a machine (an “agent” in 
the parlance of AI) embedded in an environment with which it continuously interacts. 
 
 

  
Supplementary Fig. 1. The number of publications with ‘head fixation’ used as a search term 
(PubMed). 
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BODY-BRAIN-MIND 
 
Primacy of Action and Internal Senses – Body Teaches Brain 
Note 1. Intrauterine teaching of the brain by the body. Internally generated activity and outputs 
are also critical during ontogenetical development (Katz and Shatz 1996). For example, during 
intrauterine life, the body teaches the brain about the rapidly changing body scheme. Irregular 
small muscular twitches, limb jerks and whole-body startle responses (“baby kicks”) emerge 
during the latter part of the second trimester of pregnancy. These actions trigger the first 
organized brain patterns, known as “early spindles” or “delta brush”. The topographic 
distribution of these induced physiological events in the somatosensory areas has a 
correspondence with the body parts (Khazipov et al., 2004; Milh et al., 2007). Due to the 
physical constraints of the bones and joints, only a limited fraction of muscle movement 
combinations can occur, out of the potentially very large number of possibilities that could result 
from unrestrained combinations of the activity of the 600 or so skeletal muscles we have (Bizzi 
et al., 1991). Therefore, such dumb “training” from muscle twitch combinations and the resulting 
co-occurring cortical activity can guide cortico-cortical connections and establish motor 
combinations that will be used later in life. Once the basic Bauplan is established, spindles 
become “internalized” and largely disengage from body inputs, but persist during early stages of 
sleep and may continue to perform a similar function (Khazipov et al. 2004). Because 
morphology of the body changes throughout the life span, changes in the periphery are 
coordinated with changes in the nervous system to maintain the match between them. Another 
example of early coordinated motor activity is non-nutritive sucking behavior, which emerges at 
13 weeks in utero in humans. Its pattern-generating circuit is located in the brainstem, and 
similar to baby kicks, the oromotor bouts trigger thalamocortical oscillations (Grassi et al., 2016; 
Moore et al., 2014). Coordinated changes in motor control and peripheral structures are striking 
in animals such as insects or frogs, whose larval and adult bodies differ (Truman 1992; 
Stehouwer 1992). Patterns of motor neuronal outputs are transformed significantly by the 
properties of the body (Zajac 1993). A remarkable example is the transformation from 
quadrupedal to bipedal locomotion in dogs and bears with loss or disuse of leg(s) during early 
development. 
Links to examples of transformation from quadrupedal to bipedal locomotion. 
https://www.youtube.com/watch?v=2WLErtXO1wo 
https://www.youtube.com/watch?v=1f8xSZNHVRo 
https://www.youtube.com/watch?v=gXienXTA4M0 
https://www.youtube.com/watch?v=kcIkQaLJ9r8  
 
Note 2. Body part illusion experiments also support the primacy of action even in adults with a 
well-developed somatosensory “map”. When participants perform a repetitive finger movement 
with their hidden index finger under the table while a yoked rubber hand is placed in full view 
displaying the corresponding finger movements, after a few trials they experience the moving 
rubber hand as their own (“ownership”) and that they are directly controlling its movements 
voluntarily (“agency”; Kalckert & Ehrsson, 2012, 2014). When the experimenter visibly touches 
the rubber finger with a paintbrush and, at the same time and unknown to the participant, also 
touches her hidden hand with another paintbrush multiple times, the participant voluntarily 
accepts the rubber hand as her own (Botvinick and Cohen 1998). The “rubber hand feels as 
touched” even though no somatosensory signals arrive from it to the brain.  

https://www.youtube.com/watch?v=2WLErtXO1wo
https://www.youtube.com/watch?v=1f8xSZNHVRo
https://www.youtube.com/watch?v=gXienXTA4M0
https://www.youtube.com/watch?v=kcIkQaLJ9r8
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If a temporal delay is inserted between voluntary finger movement and the yoked finger 
movement of the rubber hand, the feeling of ownership and agency over the avatar hand does not 
emerge. Further, by manipulating the type of movement (active or passive) and spatial-
anatomical orientation of the rubber hand with respect to the and real hand (congruent or 
incongruent) the sense of body ownership and agency can be manipulated separately (Kalckert 
and Ehrsson, 2014, 2017). Overall, these experiments demonstrate that utility and meaning of 
inputs to the brain arise via actions. 
 
Note 3. Avatar limb illusion. A complementary condition to the alien hand illusion (in normal 
subjects) is the “alien limb” syndrome as depicted somewhat unrealistically in the film Dr. 
Strangelove (1968). These patients lack agency of action and feel no ownership of a moving 
body part. Simple or complex movements of a limb are present but the patients may not be aware 
of the actions, occasionally leading to the denial of ownership of the limb itself (Biran and 
Chatterjee, 2004). Importantly, their feeling of agency and ownership for other body parts remain 
intact. When movement of the alien limb is pointed out to them, they report it as unintentional or 
unnoticed, or occasionally in opposition to their intentions. “The hand feels foreign” or “has a 
will of its own”. Brain pathology typically involves damage to the medial frontal cortex and 
accompanying damage to the corpus callosum due to infarction in the territory supplied by the 
anterior cerebral artery, or corticobasal degeneration (Di Pietro et al., 2021). In fMRI 
investigations, the reduced sense of agency and alien limb severity are associated with structural 
and functional changes in the pre-supplementary cortical area and its connectivity with the 
prefrontal network (Abdulkarim et al., 2022; Wolpe et al., 2020). This syndrome illustrates that 
normal reafferentation from the body and even completely intact sensory system are not 
sufficient for perceiving the body without the brain being in full action control. In the reverse 
direction, the ownership of a phantom limb and the painful feeling that may arise from “it” after 
its loss or amputation is a well-studied clinical problem. If sensation was solely dependent on 
external inputs, phantom limbs would not be felt mentally (Brecht 2017; Ramachandran et al., 
1995). 
 
Note 4. Scalable connectome. Repurposing neuronal circuits in brains with growing complexity 
is invariably linked with the integration of the circuit in question with the newly added brain 
volume. A fundamental rule of brain organization is that local computation takes place under the 
constraints of global computation. In addition, local computation can be broadcasted either 
globally or selectively to virtually any brain circuits (Buzsaki 2006). This accomplishment 
depends on laying down the necessary wiring and sufficient numbers of synaptic connections to 
allow local-global interactions.  
 
For example, breathing is commonly viewed as a simple motor function, sustained autonomously 
by a kernel of neurons in preBötzinger complex in the ventrolateral medulla (Yackle et al., 
2017). How breathing is generated and where in the body such command mechanisms exist has 
fascinated researchers for centuries. Perhaps the first person to point into the right direction was 
the French physiologist Pierre Flourens, who thought that respiration is controlled by the ‘noeud 
vital’ located in the medulla oblongata (Flourens, 1858). This hypothesis gained experimental 
support by observing that specific lesions affected breathing (Lumsden, 1923). Locating the 
pattern generator in the preBötzinger nucleus had to wait several decades.  



 9 

 
Because breathing is performed by the coordinated action of approximately the same number of 
muscles in all mammals, from the mouse to the whale, one might expect that the same number of 
neurons could manage respiration, irrespective of body size. Yet, the volume of the preBötzinger 
complex increases proportionally with brain size. Why are more neurons needed in larger 
animals to control for the same type of rhythmic function? A reasonable answer is the 
bidirectional communication between the medulla respiratory neurons and the rest of the brain. 
The otherwise autonomous respiration can be controlled voluntarily, for example, during speech 
production or the playing of a wind instrument and affected by emotion (Arshamian et al. , 2018; 
Brown and Gerbarg, 2009; Johannknecht and Kayser, 2021; Nakamura et al., 2018; Nardi et al., 
2009; Herrero et al., 2017; Perl et al., 2019; Zelano et al., 2016). In the reverse direction, 
breathing has long been known to influence higher order behaviors. Neurons in preBötzinger 
complex can entrain neurons in a large number of brain regions (Biskamp et al., 2017; Heck et 
al., 2019; Ito et al., 2014; Kleinfeld et al., 2014; Karalis and Sirota, 2022; Liu et al., 2017; Tort et 
al., 2018). This effect may be conveyed by corollary messages inside the brain rather than 
through exafferentation from the diaphragm or intercostal muscles (Huf et al., 2022). Supplying 
sufficient numbers and length of axons requires multiplication of these neurons. Conversely, 
numerous brain circuits in growing brains keep their access to respiratory neurons requiring an 
increase in both neuron size and number.  
 
This reasoning likely applies to other neuron groups with “simple” basic functions, such as 
neuromodulators. The numbers of neurons in the locus coeruleus grow from 1,600 in the rat 
(unilaterally) to 50,000 in humans and are correlated with the size of the medulla and neocortical 
gray matter (Foote et al., 1983; Sharma et al., 2010). The number of neurons in VTA has 
increased from 25000 neurons in rats to 2.5 million in humans (Halliday and Törk 1986). This 
“access need” hypothesis can explain why spiking activity in virtually identical neurons can have 
so many different correlates, such as place fields and odor-specific responses in VTA dopamine 
neurons (Fujisawa et al., 2011).  
 
An alternative solution to send longer axons and receive more inputs would be to increase 
neuron size. Examples include Betz cells of the primary motor cortex in large body size animals, 
where connecting the spinal cord segments at increased length require longer and thicker axons 
to increase axon conduction velocity and, thus, the ability of sending spikes within constant time 
frames independent of body size. However, increasing neuron size may have metabolic 
limitations (Fonseca-Azevedo et al., 2012). In contrast, increasing neuronal numbers, which can 
project to different targets and receive inputs from multiple targets by subsets of neurons come 
with circuit versatility and increased computation power. The increased number of projection 
neurons, linked by local axons and local interneurons allow for flexibly broadcasting local 
computation globally or to specific targets. 
 
Note 5. A hungry newborn baby does not care about the beauty or complexity of the world. Its 
brain generates an action in the form of crying when a homeostatic need (an internal sense) is not 
being met. This simple action is sufficient because evolution has equipped the baby’s niche—the 
environment into which a baby is born—with a caregiver. Perceiving and recognizing the 
mother’s face and other close family members comes weeks later (Burnham, 1993).  
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Note 6. Actions Dominate Waking Brain Activity 
In the somatosensory barrel cortex, intermingled populations of neurons respond not only to 
whisker touch but also to whisker movement, key components of object identification and 
navigation by active touch. The corollary template from the vibrissal motor cortex is projected to 
layer 1 of the barrel cortex (vS1; Petreanu et al., 2012). In auditory structures, one’s own actions 
have long been known to affect sound-induced responses (Schneider and Mooney, 2015). In the 
visual cortex of mice, locomotion magnifies visual responses via changes in gain (Niell and 
Stryker, 2010), and activity of many neurons varies with movement speed (Saleem et al., 2013). 
Both cortical and subcortical activity is dominated by uninstructed movements not required for 
the experimenter-specified task. Trial-by-trial fluctuations to sensory inputs, often considered to 
be due to 'noise', can be accounted for by “spontaneous” movement variables, especially by paw 
movements, licking and facial muscle twitches as well as pupil diameter, reflecting the effect of 
the autonomic nervous system on sensory responses (Stringer et al., 2019).  
 
Most of these studies have been performed in the head-fixed preparation, which conveniently 
allows large-scale recording but confine free movement. However, head movements are critical 
to adjust visual, auditory and odor sensors in an optimal position, particularly during navigation 
(Meyer et al., 2018). During head movements, layer 6 principal neurons in mouse primary visual 
cortex respond to the angular velocity of horizontal rotation. The motor command signal is 
conveyed to the visual cortex by way of the retrosplenial cortex and combined with visual 
information in a linear manner (Vélez-Fort et al., 2018). An upstream system of the retrospenial 
cortex is the entorhinal-hippocampal system, which relies heavily on motion signals 
(McNaughton et al., 1996). This visual-motion processing path is therefore a corollary discharge 
system, reporting self-generated inputs to higher order and sensory systems. In more complex 
brains, eye movements are the main source of visual exploration. During saccadic eye 
movements, transfer of visual information from the retina is suppressed, followed by a transient 
gain in circuit computation in visual and related areas (Leopold and Logothetis, 1998). Overall, 
these findings indicate that action commands profoundly shape neural activity throughout the 
brain and that corollary feedback from action systems to classical sensory areas is a more 
significant component than “exafferentation” conveyed by the sensors about the environment. 
Sensory cortices alone cannot veridically “represent” the body or the external world. Analogous 
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the landing distance in a gap jump task, likely coordinated with a central prediction (or error) 
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COGNITION FROM ACTION 

Note 1. Conceptualizing thinking as a body-disengaged operation (Buzsaki 2019), may explain 
why the target circuits of prefrontal cortical areas are so similar to those of the motor cortex with 
their dutiful corollary efferent connections to the rest of the brain (Passingham et al. 2002; Miller 
and Cohen, 2001). In the cognitive literature, these internal connections are referred to as “top-
down” control (Miller and Cohen, 2001) but it is important to point out that they are analogous to 
the corollary discharge principle present even in the simplest brains (Fig. 1).  
 
Note 2. Navigation in animals in which the hippocampus does not receive a corollary timing 
signal (e.g., echolocation in bats (Jones and Teeling, 2006) or saccadic eye movements in 
primates (Jutras et al., 2013) is invariably linked to hippocampal theta oscillations (an “internal 
timer”), the cycles of which contain sweeps of time (phase)-organized neural sequences 
corresponding to segments of the animal’s travel along past, present, and future locations 
(Dragoi & Buzsáki 2006; O’Keefe & Recce 1993; Skaggs & McNaughton 1996).  

Note 3. Action-based classification of memory. The value of a memory is only as good as its 
retrievability. While working-memory representations typically vanish immediately after being 
transformed into action, with no further service to the organism, other information enters long-
term storage, and with support from the hippocampus, this knowledge can then assist with 
multiple future actions, including creating novel ideas. Thus, distinguishing memory 
mechanisms based on their single utility or multiple utilities is perhaps more meaningful 
than distinguishing between working and long-term memories (Buzsaki et al., 2022). 
 
Note 4. Replay of waking experience during sleep corresponds to a correlation between rank 
order of spike sequences during the different brain states. These correlations are often considered 
to be acquired from learning experience. However, it has been noted that the correlations 
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between spike sequences across sleep episodes with interleaving waking are much higher than 
between learning and post-learning sleep (Hirase et al. 2001; Kudrimoti et al., 1999; Lee & 
Wilson, 2002; Luczak et al., 2007; Nadasdy et al., 1999; Wilson & McNaughton, 1994). 
Furthermore, wake-sleep correlations are higher in the neocortex (Euston et al., 2007; Ji and 
Wilson, 2007), striatum (Lansink et al., 2009; Pennartz et al., 2011; van der Meer et a., 2010), 
head directions system and entorhinal cortex (Gardner et al., 2019). The head-direction (HD) 
system functions as a compass, with member neurons robustly increasing their firing rates when 
the animal’s head points in a specific direction (Ranck 1985). The reference of the compass 
(virtual 0 degree) is specific to each environment, determined by the constellation of sensory 
cues, and the activity packet varies systematically when the animal turns its head from side to 
side. However, this sequential firing is preserved during sleep, revealing its internally organized 
nature. During REM, the spontaneous drift of the activity packet is similar to that observed 
during waking but accelerates tenfold during nonREM sleep. From a population of head 
direction neurons one can decode the animal’s actual head orientation, and infer a ‘virtual gaze’ 
during REM—that is, which direction the mouse is ‘looking’ (Peyrache et al., 2015). Indeed, the 
changes in the ensemble activity of head direction neurons are in register with the direction of 
eye movements both in the waking animal and REM sleep (Senzai & Scanziani, 2022). The 
invariance of the correlation structure of the head direction neurons across environments and 
brain states, independent of specific sensory inputs demonstrates an internally organized 
continuous attractor dynamic (“ring attractor”; Knierim and Zhang 2012; Peyrache et al., 2015).  
 
The head direction sense is fundamental in navigation and also present in animals with small 
brains, such as insects. While in mammals, the ring attractor is virtual, in the fruit fly Drosophila 
melanogaster it is literally a ring, called central complex. The central complex is an unpaired, 
midline-spanning set of neuropils that consist of the protocerebral bridge, the ellipsoid body, the 
fan-shaped body and the paired noduli. The protocerebral bridge is organized in 16-18 
contiguous glomeruli and the ellipsoid body in eight adjoined tiles.  The central complex 
implicated in many navigation-related processes, and it has been shown that the activity ‘bump’ 
moves from one group of neurons to the next as the animal rotates with respect to its surrounding 
even when the fly walks in darkness (Seelig and Jayaraman, 2015; Giraldo et al., 2018).  
 
The head direction system is a prime example how neuronal activity can be transduced by 
combining different types of computation. Investigators observed that some neurons in the 
entorhinal cortex fire specifically near walls (“border cells”; Solstad et al., 2008; Savelli et al., 
2008) or predicted that there should be dedicated a neuron “type” that signals the boundaries of 
the environment (“boundary vector cells”; Lever et al., 2009). These are also head direction 
neurons, which are modulated by the affordances and constraints of the walls or gaps, where the 
animal can walk only parallel (and not across) the border and combine head direction with visual 
and haptic flow (“the wall is on my right”; Peyrache et al., 2017).  
 
Note 5. Since head direction neurons are characterized by a 60°-wide correlated neuronal firing 
(activity packet) in all brain states, it was suggested that entorhinal grid cell organization also 
depends on head direction information (Peyrache et al., 2015). Indeed, lesion or inactivation of 
thalamic head direction neurons disrupted grid cell organization (Winter et al., 2015). Further 
support for the intricate dependence of entorhinal grid cells on the head direction organization 
comes from subsequent observations that the spatial phase offsets of grid cells in the waking 
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animal correlates strongly with spike rate correlations of these neurons during both REM and 
nonREM sleep with the same magnitude of nonREM compression than in the case of head 
direction neurons. Similarly, brain state-invariant correlations between conjunctive grid-head 
direction and pure head direction cells in the medial entorhinal cortex were predicted by their 
head direction tuning offsets during waking (Gardner et al., 2019). These findings were extended 
by showing that the brain state invariance of the correlation structure of grid cells is maintained 
across environments, thus independent of specific sensory inputs. The joint activity of grid cells 
from an individual entorhinal module resides on a toroidal manifold. Positions on the torus 
correspond to positions of the moving animal in the environment and are maintained between 
environments and from wakefulness to sleep. Thus, the one-dimensional ring attractor is 
transduced onto network dynamics on a toroidal manifold (Gardner et al., 2022).  
 
Overall, these findings demonstrate the dominance of preconfigured dynamics, which can 
provide a flexible scaffold to which individual experiences can be matched. Learning thus does 
not require synthesizing neuronal sequences from scratch but only minor modifications of a 
preexisting backbone structure (Dragoi and Tonegawa, 2011; Grosmark and Buzsaki, 2016).     
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Note 1. Hippocampal research has a rich history connecting the ambulatory features of the 
preparative state with hippocampal physiology (Vanderwolf, 1969). During such states, the 
neural computations of the hippocampus are organized by a ~8 Hz ‘theta’ oscillation, where the 
precise frequency of this computation is flexible, and moves in step with the rate of experience 
with the external world ( Maurer et al., 2012).  
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result in altered hippocampal phase sequence dynamics. Hippocampus 22, 737–747.  
 
 
Multiplexed Reader Mechanisms of Hippocampal Messages  
Note 1. A long series of past works have examined the various potential roles of the lateral 
septum in effecting behavior. Following lateral septum lesion, (Brady & Nauta 1953)originally 
described behavioral consequences as ‘general emotional reactivity’ (see also; (Spiegel et al. 
1940)). Subsequently different authors have attributed specific roles of the lateral septum in 
anxiety (Chee & Menard 2013; Parfitt et al. 2017), arousal (Li et al. 2015), aggression (Wong et 
al., 2016), contextual memory(Besnard et al. 2019; Jarrard 1993; Leutgeb & Mizumori 2002; 
Vouimba et al. 1998), food intake (Azevedo et al. 2020; Scopinho et al. 2008; Sweeney & Yang 
2015, 2016; Terrill et al. 2016) spatial memory (Jaffard et al. 1996; Simon et al. 1986), sexual 
behavior (Tsukahara et al. 2014), sexually dimorphic social play (Veenema et al. 2013), social 
preference (Shin et al. 2018), social memory (Leroy et al. 2018; Lukas et al. 2013), reward and 
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addiction (Cornish & van den Buuse 1996; Heath 1963; Le Merrer et al. 2007; Luo et al. 2011; 
McGlinchey & Aston-Jones 2018; Olds & Milner 1954; Sartor & Aston-Jones 2012; Zahm et al. 
2010), gastric motility (Gong et al. 2013), and endocrine responses to stress (Anthony et al. 
2014; Usher et al. 1974; Yadin & Thomas 1996). How the lateral septum contributes to all these 
diverse behaviors remain to be addressed. One alternative is that multiple descending circuits 
operate in parallel, each with a unique behavioral function. Another, perhaps more likely, 
explanation is that only a single corticofugal computation is in place in the lateral septum and the 
outcome of its damage depends on the affordance of the circumstances, and contextually 
appropriate action selection (Luo et al. 2011). 
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Hippocampal SPW-Rs reduce peripheral glucose levels 
Note 1. The first report on the potential impact of brain activity on peripheral glucose levels was 
published over a century ago. Kersten (1921) noted in human patients with epilepsy that petit 
mal episodes were followed by a drop in glucose levels (Suppl. Fig. 2), while a precipitous rise 
in blood glucose levels followed other seizures.  It was not until 60 years later that direct 
electrical stimulation of the dorsal hippocampus in rabbits was shown to decrease glucose levels 
by 32-59% and increase insulin levels by 154-229% in the bloodstream, the effect size increasing 
in the hyperglycemic state (Seto et al. 1983). Another centennial anniversary is the first 
administration of insulin to a human on January 12, 2022 (Banting 1922). 
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Note 2. Regular oscillations in circulating glucose levels on the time scale of minutes can predict 
and influence physiological states. Current glucose level provides information about available 
energy for the brain for timely allostatic responses (Tingley et al., 2021). 
 
Note 3. The brain works cooperatively with pancreatic islets to adjust glucose production, 
storage, and utilization. Data obtained from type 2 diabetes patients implicates both brain and 
islet dysfunction in this process. In addition to the vagal nerve, pancreatic islets are also 
innervated by the dorsal root ganglion sensory neurons of the spinal cord (Mirzadeh et al. 2022). 
Traditional treatments of type 2 diabetes are based on a pancreatic islet-focused view of glucose 
metabolism but recent works show that the brain can also modulate insulin-independent glucose 
disposal. Sympathetic nervous system output to the pancreatic beta cells suppresses both 
glucose-stimulated and basal insulin secretion, while parasympathetic output increases glucose-
stimulated insulin secretion (Ahrén 2000; Chien et al., 2019). In addition to the pancreas, the 
vagal nerve extensively innervates the gastrointestinal tract and the liver as well (de Lartigue G. 
2016; Lin et al., 2021; Shimazu 1986). Distinct sensory neurons of the gastrointenstinal tract 
respond to different gut-derived signals and that their activation contributes to the regulation of 
feeding and glucose metabolism. Opto- or chemogenetic stimulation of upper-gut-innervating 
glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents, which relay anorexigenic 
signals to parabrachial nucleus neurons in the brainstem, reduced feeding. Conversely, their 
inhibition elevated blood glucose levels independent of food intake. In contrast, 
chemogenetically stimulating vagal afferents that synaptically engage tyrosine-hydroxylase-
expressing neurons in the nucleus of the solitary tract (NTS) increased feeding (Chen et al., 
2020; Dranse et al., 2018; Clemmensen et al., 2017; Kim et al., 2018; Soty et al., 2017). 
 
Note 4. The mechanisms supporting glucose homeostasis are overlapping with thermoregulation 
and sleep, and cold also suppresses insulin secretion (Young et al., 1979). To maintain core body 
temperature, thermogenic tissues rapidly increase glucose utilization by brown adipose tissue and 
shivering by skeletal muscle. Enhanced glucose utilization is facilitated in part by increased 
insulin sensitivity in these tissues (Vallerand et al., 1987), needed to preserve core temperature in 
the cold (Maickel et al., 1967). Most of these research observations have been performed in 
waking animals but it is not well understood how these processes apply to sleep, and especially 
to REM sleep when brain temperature is rapidly elevated in the absence of muscle-produced heat 
(Petersen et al., 2022).  
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Supplementary Fig. 2. Peripheral blood sugar changes during petit mal seizures (Anfall) and 
generalized grand mal seizure (Krampfanfall) in an epileptic patient. Note large decreases of 
sugar levels after petit mal attacks. (Reproduced from Kersten 1921). 
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Hippocampus as an Internal Sensor of Body State 

Note 1. The neuronal signaling often repurposes various molecules of the body. For example, the 
gut peptide cholecystokinin (CCK) possesses multiple functions in the gastrointestinal tract, 
including gallbladder contraction and countering insulin-induced hunger. In the brain, it is 
present in a subclass of inhibitory interneurons, and CCK inhibits expression of orexigenic 
peptides in the hypothalamus (Chandra & Liddle, 2007). Peripherally, the vasoactive intestinal 
peptide (VIP) functions as a vasodilator and also stimulates electrolyte secretion in the jejunum 
(Lu et al., 2022). In the hypothatalamic suprachiasmatic nucleus, VIP synchronizes neurons of 
the circadian clock via activating the cAMP–MAPK–CREB cascade (Antle, M. C. & Silver, 
2005; Vosko et al., 2007) and is also an important signaling substance in another set of 
interneurons (Freund & Buzsaki, 1996). NPY, a neuropeptide, also potently stimulates feeding 
(Andermann and Lowell, 2017). In mammals, corticosteroids excreted by the adrenal glands are 
essential in maintaining the structural integrity of hippocampal granule cells (Sloviter et al., 
1989). These and other examples illustrate the deep interdependence between brain and body. 
Even though brain architecture becomes modified in different ways in ever more complex brains, 
it continues to interact with the body’s fundamental functions. 
 
Note 2.  Another example of exaptation is the relationship between physical pain and pain from 
social exclusion because several chemical pathways activated by physical pain and pain from 
social exclusion overlap, illustrating that the physical pain system may have been co-opted to 
motivate social animals to respond to threats to their inclusion in the group (MacDonald & 
Leary, 2005). 
 

Note 3. The terms automatic and autonomous refer to an independent operation of the periphery 
from the brain’s conscious control. Yet, certain autopilot functions, such as respiration, can be 

https://doi.org/10.1007/978-1-4939-2895-8
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brought under voluntary control, for example, during speech production. Nearly all other 
autonomic functions are affected by emotions, and, in turn, become a conscious experience 
(LeDoux 1995), either by enhanced feedback from the body or by the corollary reafference 
signaling path in the brain. When disengaged from direct effect on the body, these reafference 
mechanisms may be responsible for memory-induced emotional re-experience, including post-
traumatic stress disorder (PTSD; Sherin & Nemeroff, 2011). While normal waking from sleep is 
preceded by a massive release of adrenocorticotropin and cortisol, similar to anticipation of 
stressful events, such anticipation can be brought under volitional control. In people who can 
accurately time the end of their night’s sleep at will, without using an alarm clock, the 
concentration of adrenocorticotropin in the blood also surges before waking (Born et al., 1999). 
These findings illustrate not only conscious voluntary control over hormonal release mechanisms 
but also that such, presumably, cortical supervision continues throughout sleep. In summary, 
while the brain can disconnect its communication with the environment, its bidirectional 
communication with the body persists during sleep. Subconscious cortical control over 
autonomic, endocrine and immune systems is ubiquitous, and may be the mechanism underlying 
numerous placebo effects (Hróbjartsson & Gøtzsche, 2001).  
 
Note 4. Hundreds of millions of neurons of a distributed “brain” control the alimentary system 
and gather inputs from the various chemical and mobility signals from the gut and regulate a 
plethora of functions, including food intake and energy homeostasis. This peripheral “gut 
system” is traditionally dealt with as separate from the brain despite the rapidly accumulating 
evidence for gut-brain-gut interactions (Alhadeff et al., 2021). Thus, the metaphor of “gut 
feeling” may indeed have a physiological basis. Similar to the hippocampus, cerebellum and 
basal ganglia (main Fig. 1), the peripheral nervous system can be conceived as a side loop to the 
“core” organization of the brain.  
 
Note 5.  The sleep-wake dichotomy is strongly related to other brain operations such as 
sympathetic-parasympathetic functions, arousal, somatic and autonomic motor control. A recent 
suggestion is “that a primary function of sleep is to suppress motor activity” (Liu and Dan, 
2019). However, it has been reported that stereotypic wheel running is associated with a 
substantial reduction in firing rates among a large subpopulation of cortical neurons, associated 
with sleep-like delta power, especially at high speeds (Fisher et al., 2016; Lyamin et al., 2004). 
Higher functions areas thus can disengage while the rest of the brain works on ‘autopilot’. 
 
Note 6. The potential role of the hypothalamus in sleep and wake was first identified in patients 
affected by encephalitis lethargica, associated with insomnia, since the hypothalamic areas often 
degenerated in these patients (von Economo, 1930). In rats and cats, surgical lesion of the 
hypothalamic preoptic area (POA) also induced sleeplessness and it was named as the “sleep 
center” of the brain (Nauta, 1946; McGinty and Sterman, 1968). Its sleep-inducing effect is 
under the inhibitory control ventrolateral part of the posterior hypothalamus (Sallanon et al., 
1989) and many other descending afferents, suggesting that a complex circuit is involved in the 
regulation of wake-sleep state changes. Sleep neurons in POA are believed to promote sleep by 
suppressing postulated arousal circuits, such as the histaminergic tuberomammillary neurons, 
serotoninergic neuron in raphe nucleus, and noradrenergic locus coeruleus neurons (Saper and 
Fuller, 2017). More contemporary experiments identified galanin-expressing neurons in POA as 
the key subset, since their chemogenetic stimulation promoted sleep (Kroeger et al., 2018). In 
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contrast, optogenetic stimulation of galanin neurons either promoted nonREM sleep (at < 4 Hz 
stimulation; Kroeger et al., 2018) or wakefulness (> 8 Hz; Chung et al., 2017), suggesting that 
even this cell “type” is mixed.  Optogenetic stimulation of several other types of GABAergic 
neurons in POA (which also express cholecystokinin, CCK, corticotropin-releasing hormone, 
CRH, TAC1, prodynorphin, PDYN and tachykinin, TAC1) also promoted sleep. Many of these 
neurons project to the tuberomammillary nucleus (TMN), which releases the neuromodulator 
histamine. In contrast, glutaminergic POA neurons projecting to TMN induced wakefulness 
(Kroeger et al., 2018). Over the years, many sleep promoting neuron types and “sleep circuits” 
have been described (Weber and Dan, 2016). Yet, it is unlikely that sleep induction is the sole 
physiological function of these circuits. 
 
Note 7. Blood pressure and heart rate decrease during nonREM sleep. This brain-body 
relationship between cardiovascular changes and sleep is reciprocal. Chemogenetic or 
optogenetic activation of barosensitive neurons in the nucleus of the solitary tract (NST) 
promotes non-REM sleep in addition to decreasing the blood pressure and heart rate (Koch 1932; 
Bridgers et al.,1985; Silvani and Dampney, 2013; Benarroch, 2018; Silvani et al., 2015; Yao et 
al., 2022). Cholinergic neurons in the nucleus ambiguus – one of the targets of the NST for 
cardiac baroreflex – also increased non-REM sleep. Furthemore, stimulation of the carotid 
baroreceptors in the body can be used to induce or facilitate sleep (Mazzella et al., 1957; Padel 
and Dell, 1965; Cooper and Hainsworth, 2009). In humans, the sleeping (supine) posture causes 
stronger activation of the baroreflex pathway (Cole 1989; no wonder we have a hard time 
sleeping in sitting, upright position on aircrafts).   
 
Note 8. It should be noted that the POA is also regarded as the most important thermoregulatory 
“center” in the brain and also plays a role in energy conservation (Harding et al., 2018). These 
neurons receive indirect inputs from surface thermoreceptors in the skin, spinal cord, and deep 
structures in the abdominal cavity, and subgroups of POA neurons (expressing TRPM2 channels; 
Song et al., 2016) have the intrinsic ability to sense changes in local brain temperature. POA 
warming reduces heat production and increases heat-loss responses by vasodilation, sweating, 
increased respiration, inhibition of UCP-1 in brown adipose tissue. Moreover, it induces 
ambulation, search for cooler environment and, social crowding and nest building. Conversely, 
cooling of the same area increases heat production and reduces heat loss by 
inducing vasoconstriction, shivering, activation of UCP-1, increasing metabolism, and induces 
both locomotion and food intake (Siemens and Kamm, 2018). Thus, several functions are 
attributed to POA, although they may be interconnected. This interconnectedness feature is 
generalizable to other hypothalamic nuclei (and likely to thalamus and other brain regions). 
“Dedicatedness” is thus largely a reference to the investigating conditions rather than a reflection 
of true physiological function. This experimenter-centric classification is explicitly demonstrated 
by the discovery of the orexin/hypocretin-expressing neurons. One group of researchers, 
specialized in metabolism and feeding behavior, found a group of neurons in the lateral 
hypothalamus whose activity was correlated with appetite and eating and called these neurons 
orexin neurons (orexis means appetite; orexin-A and orexin-B subtypes; Sakurai et al., 1998). 
Another group of investigators independently identified these neurons as the pro-hormone pre-
prohypocretin, and its peptide products hypocretin-1 (Hcrt-1) and hypocretin-2 (Hcrt-2; de Lecea 
et al., 1998; Peyron et al., 1998). Since these neurons project to many areas traditionally involved 
in arousal, vigilance and attention (cholinergic neurons of the basal forebrain, locus coeruleus, 
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dopaminergic neurons, reticular formation, amygdala, thalamus and basal ganglia; van den Pool 
et al., 1998) and because these peptides were abnormal in patients with narcolepsy (Nishino et 
al., 2000; van den Pol 2000), they concluded that the orexin system is a key to wake-sleep 
regulation. Intensive research over the past three decades expanded these initially “selective” and 
“specific” roles of orexin/hypocretin to numerous other functions, including regulation of water 
balance and energy, gastrointestinal and cardiovascular system control, neuroendocrine control, 
modulation of sensation and pain, gastric acid secretion and increases gut motility, sexual 
arousal, learning and Parkinson disease. The widespread inputs from numerous structures to the 
hypothalamus can account for the observation why stimulation of the same group of 
hypothalamic neurons can be linked to drinking, eating, knowing, object following, stalking 
attack or defensive behavior, likely determined by the circumstances (Valenstein et al., 1968). 
Brain circuits are rarely dedicated to a particular “function”. Instead, their activity can induce a 
variety of related and overlapping behaviors, depending on the immediate affordances of the 
environment. Ideally, future experiments should include many external, body and brain 
measurements to compare and contrast the deduced correlations and results of perturbations. A 
complementary approach to this acknowledged high complexity of holistic monitoring is to study 
neuronal circuits in “simpler” organism in which the descending control on fundamental circuits 
and neurons is less complex (Marder et al., 2022). 
 
Note 9. Brain temperature also has a profound effect on neurons and their physiological 
interactions. Most epileptic episodes occur prior to wakening, when brain temperature increases 
most steeply. Diurnal changes in of brain temperature is related to the variation of cluster 
headache, and abnormal rhythmicity of brain temperature predicts neurodegeneration and 
dysmenorrhea (Rzechorzek et al., 2022). 

Note 10. Additionally, the hippocampus is privileged in its uptake of several peripherally 
originating messengers via the blood stream (Lathe et al., 2020). Whether via blood-brain or 
blood-CSF-brain transport, the list of compounds capable of reaching hippocampal circuits 
continues to grow and includes corticosterone (McEwen et al., 1997), leptin (personal 
communication P. Kalugin and M. Andermann), IGF-1 (Carro et al., 2000), IGF-2 (Chen et al., 
2011; Stern et al., 2014), Ghrelin (Diano et al., 2006), insulin (Gray et al., 2017b; McNay et al., 
2010; Park et al., 2000), progesterone (Guerra-Araiza et al., 2003, 2002; Kato et al., 1994), 
various cytokines (Banks et al., 1995; Gutierrez et al., 1993), and many peptides (Banks and 
Kastin, 1985).  
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Supplementary Fig. 3. Inspired by (Lathe 2001), the hippocampus expresses a large number of 
receptors for ‘non-canonical’ signaling molecules. Reproduced from Lathte 2001. A modern-day 
version of this figure is the gene distribution atlas by Lein et al., (2007). 
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CONCLUSIONS AND OUTLOOK 
Note 1. A recommended practical step forward is to distinguish between paradigm-independent 
and paradigm-dependent changes in brain correlates in experimental studies. Properties of 
neuronal activity, e.g., spikes, can be described at multiple levels of complexity. The first level is 
a description of their biophysical characteristics, molecular identity, transmitter type, relationship 
to spikes of other neurons (e.g., synchrony) and local field potentials.  This level may also 
include other metrics related to firing patterns, such as interspike interval statistics and 
autocorrelograms. Next, spiking activity can be related to brain states (e.g., non-rapid-eye-
movement [non-REM], REM, awake states and their transitions or a continuous variable 
quantifying these states) and overt behavioral correlates. The latter can include spontaneous 
motor patterns, movement pattern changes, locomotion speed, head turns, whisker movements, 
respiration, heart rate, body temperature, pupil diameter, and other autonomic parameters, and, 
possibly, pH, ion concentration, osmolarity and humoral factors in the body. These first order 
descriptions provide generic features of neuronal activity common to all experimental paradigms 
in the same species and, therefore, are communicable across different experiments and 
laboratories, leading to joint databases and standardized metrics across different laboratories 
(Petersen et al., 2021). Ideally, only after these paradigm-independent features are established, 
should we turn to the relationship between the observed brain parameters and experiment-unique 
manipulations. Because these latter correlations are paradigm-specific and differ across 
laboratories, the first-order analyses can safeguard against inappropriately attributing observed 
neuronal patterns to high-level phenomena, such as learning, perception, or decision making, 
each of which are often linked to overt movement and autonomic changes. 
 
Note 2. The depth and breadth of monitoring body-brain interactions. When studying brains, or 
brains within bodies, it is constructive to conceptualize them as dynamical systems where each 
component is a node within an interconnected graph. These ‘components’ are largely defined by 
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one’s level of interest, and are typically depicted as a neuron, circuit or brain region. In each of 
these cases, however, the connection between nodes almost universally is thought of as synaptic. 
Additionally, the experiments we design to study these systems typically collect two or a few 
modalities (e.g., calcium imaging and stimulus presentation, or spiking activity and behavioral 
tracking).  
This conceptualization and style of experiment has driven a particular type of tool development 
in past decades which we refer to as depth (Machado et al., 2022). That is, our ability to measure 
calcium activity or spiking activity from populations of neurons grows on a roughly exponential 
scale, doubling every ~6 years (Steinmetz et al., 2018; Stevenson, 2020). Ignoring the constraints 
of tissue damage, this would mean that simultaneous spiking activity from ~1 million neurons 
will be recorded in approximately 50 years. While the utility of such datasets have been 
previously discussed (Hasselmo, 2015), such experiments are inherently limited by the breadth 
of observations available. Is this neuron firing because of the stimulus being presented? Or due 
to some other unobserved physiological parameter such as respiration, heart rate, temperature, 
metabolic state, neuromodulatory tone or intrinsic dynamics? 
In contrast to the ever-increasing depth of observability, the breadth of observations typically 
made in a neuroscientific experiment has not progressed in nearly 100 years and remains on 
merely a handful of unique types of signals (Adrian and Zotterman, 1926; Allen et al., 2019; 
Inagaki et al., 2022; Stringer et al., 2019).  
While other forms of biosensing—besides calcium and extracellular action potentials—have a 
rich history (Bergveld, 1970; Clark Jr. and Lyons, 1962; Cremer, 1906; Hughes, 1922; Robinson 
et al., 2003), tool development in this space has seen a renewed interest with the development of 
biosensors for neurotransmitters (Marvin et al., 2018), neuromodulators (Bulumulla and Beyene, 
2022; Wang et al., 2022; Wu et al., 2022), and various other peptides (Wang et al., 2022). 
However, it is critical to highlight that each of these tools affords the addition of a single 
modality, and rarely have been combined to simultaneously measure multiple signals in a single 
experiment. We propose that a tool development program which emphasizes observational 
breadth by engineering the development of multiplexed biosensors will help to unlock new 
understanding the relevance of brain activity in appropriate ecological settings. Such tools will 
allow for a most clear picture of how many different biological signals may be integrated and 
lead to a brain mechanism-based classification of cognitive behaviors (Fig. 5).  
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