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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- In-depth proteomics workflow for profiling paired cerebrospinal fluid (CSF) and serum proteomes.

- Independent multicenter set combined with multiple methods for validation.

- Development of 19 CSF- and 8 serum-protein panels for early of Alzheimer disease (AD) diagnosis.

- Twenty-one CSF and 18 serum proteins dysregulated in different AD stages.

- Groundwork laid for AD blood tests in clinical screening and staging.
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Amyloid-b, tau pathology, and biomarkers of neurodegeneration make up
the core diagnostic biomarkers of Alzheimer disease (AD). However, these
proteins represent only a fraction of the complex biological processes un-
derlying AD, and individuals with other brain diseases in which AD pathology
is a comorbidity also test positive for these diagnostic biomarkers.More AD-
specific early diagnostic and disease staging biomarkers are needed. In this
study, we performed tandemmass tag proteomic analysis of paired cerebro-
spinal fluid (CSF) and serum samples in a discovery cohort comprising 98
participants. Candidate biomarkers were validated by parallel reaction
monitoring–based targeted proteomic assays in an independent multi-
center cohort comprising 288 participants. We quantified 3,238 CSF and
1,702 serum proteins in the discovery cohort, identifying 171 and 860 CSF
proteins and 37 and 323 serum proteins as potential early diagnostic and
staging biomarkers, respectively. In the validation cohort, 58 and 21 CSF pro-
teins, as well as 12 and 18 serum proteins, were verified as early diagnostic
and staging biomarkers, respectively. Separate 19-protein CSF and an
8-protein serum biomarker panels were built by machine learning to accu-
rately classifymild cognitive impairment (MCI) due to AD fromnormal cogni-
tion with areas under the curve of 0.984 and 0.881, respectively. The
19-protein CSF biomarker panel also effectively discriminated patients
with MCI due to AD from patients with other neurodegenerative diseases.
Moreover, we identified 21 CSF and 18 serum stage-associated proteins re-
flecting AD stages. Our findings provide a foundation for developing blood-
based tests for AD screening and staging in clinical practice.
INTRODUCTION
Alzheimer disease (AD) is the most common type of neurodegenerative dis-

ease and is pathologically characterized by the deposition of extracellular amy-
loid-b (Ab) plaques and intracellular neurofibrillary tangles.1 AD patients typically
present with progressive cognitive decline. Extensive efforts have been made to
determine the optimal strategy for diagnosing this devastating disease.2–4 A
research framework defining AD on the basis of Ab deposition, phosphorylated
tau (p-tau), and neurodegeneration was proposed in 2018.5 However, positivity
in these diagnostic biomarkers can also be observed in individuals with other
brain diseases in which AD pathology has been recognized a comorbidity.6

Furthermore, several limitations, such as high cost, insufficient accessibility,
and invasiveness, impede the use of cerebrospinal fluid (CSF) and positron emis-
sion tomography (PET) biomarkers as first-line diagnostic strategies.

Blood testing is advantageous due to its convenience, minimal invasiveness,
and affordability. Recently, several blood-based AD biomarkers, such as the
plasma Ab42/40 ratio, p-tau, neurofilament light polypeptide (NEFL), and glial fi-
brillary acidic protein (GFAP), have been reported.7,8 Notably, plasma tau phos-
ll
phorylated at threonine 217 (p-tau217) could be used to accurately determine
AD and was correlated with Ab and p-tau pathology in the brain.9 Nevertheless,
plasmabiomarkers for Ab and tau pathology are not currently recommended for
use in clinical practice because they remain to be further standardized and vali-
dated.6 In addition, these clinical manifestations lose their correlation with both
Ab and p-tau protein levels as the disease progresses, suggesting that Ab and
p-tau biomarkers are not suitable for staging.10 Converging findings indicate
the presence of many additional pathological mechanisms underlying the path-
ogenesis of AD that are independent of Ab and p-tau pathology.11 Comprehen-
sive research is necessary to identify early diagnostic and staging biomarkers
for AD. We previously used proteomic analyses to identify blood biomarkers
for evaluating the severity of coronavirus disease 2019.12 In recent years, several
mass spectrometry (MS)–based proteomics profiling studies of CSF and
plasma have revealed protein biomarkers and insights into the biological pro-
cesses underlying AD, with minimum sample amounts and high-throughput
workflows.2,13–16 However, early diagnostic and staging blood-based bio-
markers of AD remain incompletely defined.
To systemically identify early diagnostic and staging biomarkers of AD, we per-

formed high-throughput MS-based proteomics analysis in a discovery cohort
with paired CSF and serum samples and validated the results in an independent
multicenter validation cohort.

RESULTS
Study design
The study design is outlined in Figure 1. To explore early diagnostic and stag-

ing biomarkers of AD, we performed tandemmass tag (TMT)–based proteomic
analysis of paired CSF and serum samples in the discovery cohort (Figure 1A;
Table S1). We achieved a robust workflow with high proteome depth, quanti-
fying 3,238 CSF (Figure S1) and 1,702 serum proteins (Figure S2; Table S2).
The ranking of the median abundance of CSF proteins is shown in Figure S3A,
and the identification depth of serum proteins is shown in Figure S3B. After
filtering out proteins with a missing rate higher than 80%, 2,461 CSF proteins
and 1,330 serum proteins remained for subsequent data analysis. The missing
values of the two proteinmatrices were both 0.19. Potential early diagnosis and
staging biomarkers in CSF and serum were determined. Mfuzz analysis was
used to cluster the proteins that were dysregulated during the different stages
of AD.17 Then, the identified specific dysregulated proteins that differed between
the cognitive normal (CN) group andmild cognitive impairment (MCI) due to AD
group, as well as stage-dependent dysregulated proteins, were further validated
in an independent multicenter cohort (Figure 1B). Machine learning models
were built to classify MCI due to AD patients from CN participants. In addition,
a cluster of CSF and serum proteins that were dysregulated in an AD stage–
dependent manner was validated.
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Figure 1. Overview of the study populations and
schematic of the proteomic workflow (A) The work-
flow of the TMT-based proteome for the discovery of
potential early AD diagnostic and staging biomarkers.
Paired CSF and serum samples were collected from
the discovery cohort, comprising patients with AD,
MCI due to AD, HD, and ALS and CN participants. (B)
The workflow of targeted proteomics for validating
the early AD diagnostic and staging biomarkers. CSF
and serum samples were collected from the valida-
tion cohort, comprising AD patients, patients withMCI
due to AD, CN participants, and HD, ALS, and FTD
patients.
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TMT-based MS proteomics reveals proteins significantly altered in MCI
due to AD

To identify the early CSF diagnostic biomarkers of AD, we compared the CSF
proteomes of the MCI due to AD and CN participants in the discovery cohort.
Compared with those of CN participants, the expression levels of 185 CSF pro-
teins were upregulated (p < 0.05, log2 fold change [FC] > 0.25), and those of 5
CSF proteins were downregulated (p < 0.05, log2 FC <�0.25). To improve the
specificity of the biomarkers, dysregulated proteins between CN and amyotro-
phic lateral sclerosis (ALS)/Huntington disease (HD) were excluded. The remain-
ing 171 dysregulated proteins, including 167 with upregulated expression levels
and 4 with downregulated expression levels, were CSF-specific biomarkers for
MCI due to AD and were used for further validation (Figure 2A).

The190significantly dysregulatedCSFproteinswereanalyzedusing ingenuity
pathway analysis (IPA) to identify enriched pathways. IPA showed molecular
changes in the CSF of MCI due to AD patients relative to CN participants, impli-
cating significant dysregulation (�log10 p > 1.3) of insulin growth factor 1
(IGF-1) signaling, dermatan sulfate biosynthesis, chondroitin sulfate biosyn-
thesis, matrix metalloproteases, xenobiotic metabolism/pregnane X receptor
2 The Innovation 5(1): 100544, January 8, 2024
(PXR), the constitutive androstane receptor
(CAR) signaling pathway, heparan sulfate biosyn-
thesis, and others, as shown in Figure 2B.
Notably, we found that several identified path-
wayswere closely related to the extracellularma-
trix (ECM; i.e., dermatan sulfate biosynthesis,
chondroitin sulfate biosynthesis, andmatrixmet-
alloproteases). Our results imply the critical role
of abnormal ECM metabolism in the pathogen-
esis of AD. In addition, several key dysregulated
proteins in the CSF involved in these pathways
are shown in Figure 2C.

To identify the blood-based early diagnostic
biomarkers of AD, we analyzed the paired serum
proteomes in the above participants. We identi-
fied 49 dysregulated proteins (p < 0.05, |log2
FC| > 0.25) between the MCI due to AD group
and CN group. After excluding dysregulated
serum proteins overlapping with the HD and
ALS groups, 37 potential specific serum bio-
markers for MCI due to AD were selected for
further validation (Figure 2D).

In addition, IPA was used to analyze the 49
significantly dysregulated proteins to identify en-
riched pathways. The results showed molecular
differences in the serum between the MCI due
to AD patients and the CN group involving the
following pathways: retinoate biosynthesis; the
human leukocyte antigen-F adjacent transcript
10 cancer signaling pathway, natural killer cell
signaling, the HOX transcript antisense RNA reg-
ulatory pathway, dendritic cell maturation, and
others, as shown in Figure 2E. Several key dysre-
gulated proteins involved in these pathways in
MCI due to AD are shown in Figure 2F.
Verification of differentially expressed proteins in MCI due to AD in the
independent validation cohort
To verify the results of the TMT-based proteomic analysis, a parallel reaction

monitoring (PRM)-based targeted proteomic experiment was performed in an in-
dependent multicenter cohort. The validation cohort comprised 221 participants
with CSF samples and 288 participants with serum samples (Figure 1B;
Table S3). A total of 57 and 12 dysregulated CSF and serum proteins in the
MCI due to AD group were verified, respectively (Table S4). In addition, we con-
ducted real-time PCR to validate the transcription level of the differentially ex-
pressed proteins using the cortexes of 53FAD mice. Two important candidates
(GFAP and GM2A) were selected and verified (Figure S4).
We next explored the possibility of distinguishing between MCI due to AD

and CN based on the dysregulated proteins. We formulated a random for-
est machine learning model using CSF proteomic data from 21 MCI due to
AD and 52 CN participants. To ascertain the smallest number of proteins
required to sufficiently differentiate MCI due to AD from CN, the prioritiza-
tion of dysregulated proteins was explored by machine learning. A panel
was constructed comprising the 19 proteins that were determined as
www.cell.com/the-innovation
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Figure 2. Dysregulated CSF and serum proteins and
pathways in the diagnosis of early AD (A) Dysregu-
lated (p< 0.05, |log2 FC|>0.25) CSF proteins between
MCI due to AD, ALS, and HD patients and CN partici-
pants. (B) The significantly dysregulated pathways
(�log10 p > 1.3) enriched by IPA using 190 dysregu-
lated CSF proteins. (C) Heatmap of key dysregulated
CSF proteins in various associated pathways in pa-
tients relative to CN participants. (D) Dysregulated
(p < 0.05, |log2 FC| >0.25) serum proteins between
MCI due to AD, ALS, and HD patients and CN partici-
pants. (E) The significantly dysregulated pathways
(�log10 p > 1.3) enriched by IPA using 49 dysregu-
lated CSF proteins. (F) Heatmap of key dysregulated
serum proteins in various associated pathways in
patients relative to CN participants.
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CSF early diagnostic biomarkers (Figure 3A). The abundance ranking of the
19 proteins among the identified CSF proteins in this study can be seen in
Figure S3A. We then tested the model on 9 MCI due to AD and 21 CN par-
ticipants. This model demonstrated a high level of accuracy, with an area
under the curve (AUC) of 0.984 in the test set (Figure 3B). The classifier
model had similar accuracy when stratifying by sex, age, or APOE ε4 geno-
type. Moreover, the 19-protein CSF biomarker panel could effectively
discriminate MCI due to AD patients from frontotemporal dementia
(FTD), ALS, and HD patients (Figure S5A).

Most of the selected proteins showed the same expression tendency in the
discovery cohort and validation cohort that were assayed by the TMT and PRM
experiments, respectively (Figure 3C). Notably, four (MGAT2, GM2A, MAN1C1,
and MAN2A2) of the 19 proteins were related to the Golgi and lysosome path-
ways (i.e., function as enzymes or participate in the transport process to the
Golgi). It is well known that pathways related to the Golgi apparatus and lyso-
ll The
somes have critical roles in the pathogenesis
of neurodegenerative diseases such as AD, Par-
kinson disease (PD), and ALS.18 The expression
levels of all four proteins were upregulated
in the MCI due to AD group relative to the CN
group, suggesting that compensatory mec-
hanisms may be initiated during the early stage
of AD to protect against protein misfolding
and aggregation. Among the 19 proteins in
the panel, PCDHGC5 and IGHM are related to
immune function (Figure 3C). IGHM has been
reported to have an inverse correlation
with Ab burden in an AD mouse model.19 Our
data further supported the underlying con-
nections between Ab pathobiology and
immunoglobulins.

Concomitantly, a random forest machine
learning model was constructed based on the
serum proteomic data from 23 participants with
MCI due to AD and 45 CN participants. A panel
consisting of 8 core proteins was selected to
distinguish MCI due to AD from CN (Figure 4A).
The rankingsof theconcentrationsof these8pro-
teins in the blood can be seen in Figure S3B. A
cohort of 8MCI due to ADand 21CNparticipants
was used to test the model, achieving an AUC of
0.881 (Figure 4B). The expression levels of 5
representative proteins with high confidence in
thepanel are shown inboxplots (Figure4C).How-
ever, the ability to discriminate MCI due to AD
from FTD, ALS, and HD was relatively low using
the8-proteinserumbiomarkerpanel (FigureS5B),
which indicates that this analysis needs to be
optimized further.

Subsequently, we proceeded to analyze the

diagnostic efficiency for MCI due to AD based on the levels of serum GFAP
and NEFL detected by commercially available Single Molecular Immunity
Detection kits in a subset of the validation cohort, comprising 41 MCI due to
AD patients, 14 FTD patients, 14 ALS patients, and 31 CN controls
(Table S5). Compared to those of the CN controls, elevated levels of GFAP
and NEFL were found in the sera of patients with ALS and FTD. In addition, pa-
tients with MCI due to AD exhibited increased levels of GFAP (Figure S6A).
Receiver operating characteristic (ROC) curve analysis was used to evaluate
the efficacy of serum GFAP, NEFL, and their combination in distinguishing be-
tween MCI due to AD participants and CN controls. The findings revealed that
serum GFAP achieved an AUC of 0.714, whereas NEFL achieved an AUC of
0.511 (Figure S6B). In contrast to the two established serum biomarkers, our
biomarker panel demonstrated superior diagnostic efficacy, with an AUC of
0.881. In addition, the levels of GFAP and NEFL were insufficient in differenti-
ating patients with MCI due to AD from those with FTD and ALS (Figure S6C).
Innovation 5(1): 100544, January 8, 2024 3
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Figure 3. Differentiation of MCI due to AD and CN subjects by machine learning of CSF proteomic features (A) Top 19 proteins prioritized by random forest analysis ranked by the
mean decrease in accuracy. (B) ROC curve of the random forest model. (C) Expression level change (Z scored original value) of 8 core proteins with significant differences between
patients with MCI due to AD and CN participants in both TMT-based and PRM proteomic analyses. p < 0.05; **p < 0.01; ***p < 0.005.
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Correlations between the levels of core CSF and serum dysregulated
proteins and the CSF levels of Ab42, t-tau, and p-tau181 in patients with
MCI due to AD

We then explored whether the levels of the core dysregulated CSF and serum
proteins in patients with MCI due to AD were correlated with the levels of CSF
Ab42, t-tau, andp-tau181. Interestingly, we found that among the 19 coreCSF early
diagnostic biomarkers, the levels of 2 (CHRD and COL18A1) were correlated with
the levels of CSF Ab42, the levels of 4 others (B3GALNT1, GM2A, SHBG, and
IGHM) were correlated with the levels of CSF p-tau181, and the levels of yet 2
others (MAN2A2 and PCDHGC5) were correlated with the levels of both CSF
Ab42 and p-tau181 (Figure S7). Among the 8 core serum early diagnostic bio-
markers, C4B levels were correlated with CSF Ab42 levels, IGHV3-35 levels
were correlated with CSF t-tau levels, and SERPINA11 levels were correlated
with both CSF t-tau and p-tau181 levels (Figure S7). These results showed that
only a fraction of the core dysregulated proteins we identified, 8/19 in CSF and
3/8 in serum, were associated with Ab and p-tau pathology. This implies that
the progression of AD is influenced by a variety ofmolecular pathways in addition
to Ab and p-tau.

Paired CSF and serum proteomes reveal proteins that are significantly
altered during the progression of AD

To identify AD staging biomarkers, we compared the dysregulated proteins
identified during the different stages of AD, including the MCI due to AD mild
stage (ADM), AD moderate stage (ADMO), and AD severe stage (ADS). A total
of 2,461 identified CSF proteins were clustered using Mfuzz into 8 discrete clus-
ters (Figure S8). Among them, proteins in cluster 7 and cluster 8 showed the
same regulatory trend with disease progression (Figure 5A). The levels of 18
selected significantly dysregulated proteins (ANOVA p < 0.05 in cluster 7,
ANOVA p < 0.01 in cluster 8) are shown in the heatmap in Figure 5B. Network
pathway analysis of the dysregulated proteins revealed several importantmolec-
ular-related pathways, including pathways involving insulin, prolactin, calcium-
4 The Innovation 5(1): 100544, January 8, 2024
dependent protein kinase II, microtubule-associated protein tau (MAPT), and
others, as shown in Figure S9. Several previously recognized AD CSF
biomarkers,20 including GFAP, MAPT, NEFL, and neurogranin (NRGN), were
among them; the levels of these biomarkers are shown by the boxplots in
Figure 5C.
To identify blood-based AD staging biomarkers, we compared the dysregu-

lated proteins in serum samples along the trajectory of AD. A total of 1,330 iden-
tified proteins were clustered using Mfuzz into 8 discrete clusters (Figure S10).
Among them, proteins in cluster 5 and cluster 6 showed the same regulatory
trendwith disease progression (Figure 5D). The levels of 18 selected significantly
dysregulated proteins (ANOVA p< 0.05 in cluster 5 and cluster 6) demonstrating
stage-dependent dysregulation are shown by the heatmap in Figure 5E. Several
important proteins, including insulin, IGHM, PRDX2, and others, were identified by
network pathway analysis, as shown in Figure S11.

Verification of proteins with AD stage–dependent dysregulation in the
validation cohort
The validation cohort comprised 221 participants with CSF samples and 288

participants with serum samples. Regarding the CSF samples, a total of 21 core
proteins with stage-dependent alterations were validated. The expression levels
of 9 of themwere downregulated with disease progression, whereas those of 12
of themwere upregulated (Figure 6A). Remarkably, the expression level of ATRN
was upregulated as the disease progressed. This protein has both membrane-
bound and secreted protein isoforms (Figure 6B). ATRN has been reported to
be differentially regulated in the blood samples of asymptomatic familial AD pa-
tients carrying PSEN1mutations.21 In addition, 2 proteins, 14-3-3 protein epsilon
(YWHAE) and 14-3-3 protein gamma (YWHAG), were upregulated over the dis-
ease progression (Figure 6B). CSF14-3-3 proteins have already been used as sur-
rogate markers of neuronal damage for AD, PD, and ALS but lack specificity.22

Our results are consistent with several recent proteomic studies showing that
YWHAE and YWHAG are promising AD staging biomarkers.13,23
www.cell.com/the-innovation
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Figure 4. Differentiation of MCI due to AD and CN by machine learning of serum proteomic features (A) Top 8 proteins prioritized by random forest analysis ranked by the mean
decrease in accuracy. (B) ROC curve of the random forest model. (C) Expression level change (Z scored original value) of the 5 core proteins with significant differences between
patients with MCI due to AD and CN participants in both TMT-based and PRM proteomic analyses. *p < 0.05; **p < 0.01; ***p < 0.005.
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Regarding the serum samples, a total of 18 core proteins exhibited stage-
dependent alterations. The levels of 5 of them were downregulated, whereas
those of 13 of them were upregulated with disease progression (Figure 6C).
Notably, CFI was upregulated over the course of AD progression (Figure 6D).
CFI is essential for regulating the complement cascade. Complement pathway
hyperactivation has been found in an AD mouse model.24 In addition, PRDX2
was found tobedysregulated in serumduring thedevelopment of AD (Figure 6D).
Interestingly, similar to the results found in CSF, another 14-3-3 protein, YWHAQ,
was found to be dysregulated in serum in the different stages of AD (Figure 6D).
DISCUSSION
In this study, we performed one of themost in-depth proteomic analyses using

paired CSF and serum samples acquired from AD patients. Our proteomic data
mirrored a variety of disease-associated changes in the early stage and develop-
mental trajectory of AD. Furthermore, based on an independent multicenter vali-
dation cohort, wedeveloped a19-proteinCSFpanel and an8-protein serumpanel
for the early diagnosis of ADbymachine learning.We used these panels to estab-
lish a highly accurate model for discriminating participants with MCI due to AD
from CN participants. In addition, we verified 21 CSF and 18 serum core AD
stage-dependent dysregulated proteins.

The leading dysregulated CSF and serummolecules during the early stage of
AD are involved in IGF-1 signaling, ECM dysfunction, immune response path-
ways, lipid metabolism, Golgi and lysosome pathways, and oxidative species
metabolism. Our CSF discovery dataset showed partial overlap with the results
of several recent AD CSF proteomic studies.13,23,25 Notably, one plasma proteo-
mic study developed a 19-protein blood-based panel that could accurately distin-
guish AD patients from healthy controls (AUC = 0.9690–0.9816).26We narrowed
the number of proteins to 8 in our serum-based panel that could accurately
discriminate MCI due to AD from CN (AUC = 0.881), making it more convenient
for clinical application in identifying MCI due to AD.

Our study revealed the differential activation of various biological pathways
throughout the trajectory of AD, with the inflammatory pathway, synapse impair-
ment pathway, and ECM dysfunction pathways emerging as key players. Neuro-
inflammation and related immune changes in the AD brain have been discussed
intensely.27 Our results identified several biomarkers involved in the inflammatory
and immune response pathways that were significantly changed during the tra-
jectory of the disease, including CXCL16, ATRN, CFI, and others. These findings,
which are consistent with those from previous studies,28 supported the growing
evidence that neuroinflammation is an early event in AD and dynamically
ll
changes with disease development. It is well known that the levels of proteins
associated with neuron or synapse degeneration pathways are increased in
the CSF of AD patients.29 Our data uncovered a series of known degeneration-
related biomarkers (tau, NEFL, and NRGN), as well as several novel synapse-
related biomarkers (YWHAE, YWHAG, YWHAQ, NRN1, NPTX2, and NPTXR).
In addition, our study found that the levels of proteins associated with ECM

dysfunction, including COL15A1, PCOLCE, and PVR, were increased in the CSF
and serum in AD. The role of ECM dysfunction in AD has attracted tremendous
attention in recent years.30 It is closely related to blood‒brain barrier breakdown,
whichhasbeenconsideredan early event of cognitive decline inADpatients.31,32

These results are consistentwith several recent proteomic studies performed in
AD patients.33,34

The use of paired CSF and serum proteomics is more conducive to investi-
gating the link between protein alterations in the central and peripheral environ-
ments in AD. Remarkably, proteins involved in the immune response–related,
ECM-related, insulin-related, and synapse impairment pathways were signifi-
cantly altered in both the CSF and serum of AD patients.
This study has several limitations. First, owing to the cross-sectional design of

the study and the relatively small scale of the discovery cohort, further studiesare
necessary to confirm these results in a larger, longitudinal cohort. Second, the
validation study used4 specifically selected cohorts, and itwould bebetter to vali-
date the results in unselected longitudinal populations. Finally, in this study, only
representative neurodegenerative diseases were selected as disease controls.
In conclusion, our study identified an 8-protein serumbiomarker panel that has

comparable power in identifying the early stage of AD to a 19-protein CSF
biomarker panel. Moreover, we identified 21 CSF and 18 serum proteins reflect-
ing different AD stages. Our findings provide a foundation for developing blood-
based tests for clinical AD screening and staging.
MATERIALS AND METHODS
Participants

In the discovery cohort, 98 individualswithpairedCSFand serumsampleswere recruited

from the Second Affiliated Hospital of Zhejiang University School of Medicine between

August 2015 and January 2021 (Tables S1 and S3A). The diagnoses of AD and MCI due

to AD were based on the National Institute on Aging-Alzheimer’s Association (NIA-AA)

AT(N) criteria.5 ALS patients were diagnosed according to the El Escorial criteria for

ALS.35 HD patients were diagnosed by the presence of typical clinical manifestations and

a positive HTT gene genetic test.36 FTD patients were diagnosed according to previous

criteria.37 Patients received neuropsychological assessments, including the Mini-Mental
The Innovation 5(1): 100544, January 8, 2024 5
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Figure 5. Dysregulated CSF and serum proteins as
potential biomarkers for AD staging (A) Two clus-
ters of CSF proteins identified with the Mfuzz analysis
showed the same regulatory trend with disease pro-
gression. (B) Heatmap of the expression levels of the
core dysregulated CSF proteins (ANOVA p < 0.05 in
cluster 7, ANOVA p < 0.01 in cluster 8) in different
stages of AD. (C) Expression level change (Z scored
original value) of 4 recognized AD biomarkers with
significant changes in the different stages of AD. (D)
Two clusters of serum proteins identified with the
Mfuzz analysis showed the same regulatory trend
with disease progression. (E) Heatmap of the
expression levels of the core dysregulated serum
proteins (ANOVA p < 0.05) in different stages of AD.
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State Examination, the Clinical Dementia Rating (CDR), and the Montreal Cognitive Assess-

ment.MeasurementsofCSFbiomarkers (Ab42, tau, andp-tau181) orPittsburghcompoundB

(PET/PIB) PET imaging were also conducted. The AD group was further classified into the

ADM, ADMO, andADS groups according to the CDR. The CNgroup comprised patientswith

other noncentral nervous systemdiseaseswithout dementia and evidence of an underlying

AD pathophysiologic process.

The participants in the validation cohort were recruited from Xuanwu Hospital affiliated

with Capital Medical University, the First and Second Affiliated Hospitals of Zhejiang

University School ofMedicine, and the First Affiliated Hospital of XiamenUniversity. The vali-

dation cohort comprised 221 participants with CSF samples and 288 participants with

serum samples (Tables S2 and S4A). The demographic data are presented in Tables S1

and S2.

ELISAs for measurement of CSF Ab42, t-tau, and p-tau181 levels
CSF Ab42, t-tau, and p-tau181 levels were measured by ELISA kits (Fujirebio, Ghent,

Belgium) according to the manufacturer’s instructions, as described in our previous

study.38

Blood biomarker assessment
Serum GFAP and NEFL were quantified by commercially available Single Molecular Im-

munity Detection kits (Astrabio, R14060 and R14040). All of the measurements were con-

ducted on an AST-Sc-Lite analyzer (Astrabio) and were performed according to the manu-

facturer’s instructions.

Proteome analysis
Immunodepleting was implemented before digestion to increase the depth of the CSF

and serum proteomes. Briefly, 100 and 175 mL of depletion resin (Thermo Scientific) were

used for 100 mL of CSF and 4 mL of serum, respectively.
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TMT-based proteomics analysis was performed as

previously described.12 The detailed procedures are

described in the supplemental information.

Quality control of TMT-based
proteome data

We divided the 98 samples into 7 batches according

to disease type, age, and sex (Table S3A). We randomly

selected one CSF and serum sample from each type of

patient as a biological replicate to control the quality of

the proteome discovery workflow. Our data exhibited a

highdegreeof consistency and reproducibility, withme-

dian coefficients of variation (CVs) for 7 biological repli-

cates below 0.16 (Figures S12A and S12B). Visualiza-

tion of the data obtained from the pooled serum and

CSF peptide samples showed minimal batch effects

(Figures S12C and S12D).

Targeted proteomics analysis
Peptide samples were prepared in the same

way as described in the previous proteomic section,

except that no depletion or TMT labeling was per-

formed. The detailed procedures are described in
the supplemental information. A total of 120 peptides, including 15 common internal

retention time (CiRT) peptides39 (Table S4B), were included in the CSF PRM experiment,

whereas 52 peptides, including 13 CiRT peptides, were included in the serum PRM exper-

iment (Table S4D). CiRT peptides were used for the prediction of retention time to improve

the confidence in target peptide identification.40 The PRM data were manually analyzed

with Skyline41 and ProteomeExpert.42

Quality control of PRM proteome data
We selected 11 CSF samples and 16 serum samples as technical replicates, and theme-

dian CVs were below 0.15 (Figures S13A and S13B). We also prepared pooled CSF and

serum peptide samples to evaluate the reproducibility of the PRM workflow. The Pearson

correlation coefficient (r) of the proteomics data for 8 CSF pooled samples and 10

serum pooled samples was calculated, and all of the median r values were 0.99

(Figures S13C and S13D). We also observed fewer batch effects using the pooled samples

(Figures S13E and S13F).

Statistical analysis and machine learning
For each pair of compared groups, the two-sided unpairedWelch’s t test was conducted

for statistical analysis. Pearson’s rwas calculatedusing the “cor” function in R (version 4.0.2)

with the “pairwise.complete.obs” parameter to handlemissing values.Machine learningwas

carried out using the R package randomForest (version 4.6.14), with some modifications

based on previous work,12 briefly described as follows. The key random forest parameters,

including the mean decrease accuracy cutoff, number of iterations of cross-validation, and

number of trees, were optimized. The input protein features were selected based on the

mean decrease accuracy cutoff. Five-fold cross-validation was performed, and a total of

1,000 and 600 trees were built for the CSF model and the serum model, respectively. The

minimum decreasing mean accuracy of protein features was set to 3 for the CSF model

and 0 for serum features. The mtry values for the CSF and serum models were set to the

square roots of 4 and 2, respectively.
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Figure 6. Verification of AD stage-dependent dysre-
gulated proteins in the validation cohort (A) Heatmap
of the levels of the validated core dysregulated CSF
proteins in different stages of AD. (B) Expression level
change (Z scored original value) of 4 selected CSF
proteins dysregulated over the course of AD pro-
gression. (C) Heatmap of the levels of the validated
core dysregulated serum proteins in different stages
of AD. (D) Expression level change (Z scored original
value) of 4 selected serum proteins dysregulated over
the course of AD progression.
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DATA AND CODE AVAILABILITY
The raw MS data in this study have been deposited to the ProteomeXchange

Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner
repository with the dataset identifier PXD039146.
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Detailed methods  

Enzyme-linked immunosorbent assays (ELISAs) for measurement of CSF Aβ42, t-tau, and p-

tau181 levels 

CSF Aβ42, T-tau, and p-tau181 levels were measured by ELISA Kits (Fujirebio, Ghent, Belgium) 

according to the manufacturer's instructions as described by our previous study.1 Briefly, CSF 

samples, calibrators (CALs), Run Validation Controls (RVC) and all other reagents were thawed 

and allowed to reach room temperature before use. At the beginning of the tests, conjugate working 

solution 1 (75μL for Aβ42 and t-tau, and 25μL for p-tau181) and CSF sample/CAL/RVC (25μL for 

Aβ42 and t-tau, and 75μL for p-tau181) were added to the wells of the antibody-coated plate, and 

adequately mixed by carefully tapping the stripholder. After incubating in an incubator (60 minutes 

at 25°C for Aβ42, 16h at 25°C for t-tau, 16h at 4°C for p-tau), all strips were washed 5 times. Add 

100μL Conjugate working solution 2 to each well, and incubate in an incubator at 25°C (30 minutes 

for Aβ42 and t-tau, 60 minutes for p-tau). After washing each well 5 times, add 100μL substrate 

working solution and incubate for 30 minutes at 25°C in the dark. To stop the reaction, add 50μL 

Stop Solution to each well and tap the stripholder carefully to ensure optimal mixing. Read the 

absorbance at 450 nm and calculate the concentration of Aβ42, t-tau and p-tau181. 

Blood biomarkers assessment 

Serum GFAP and NEFL were quantified by commercial-available Single Molecular Immunity 

Detection kits (Astrabio, R14060 and R14040). All measurements were performed on the AST-Sc-

Lite analyzer (Astrabio) and according to the manufacturer’s instructions. Briefly, 25 μL of serum 

sample was added to an incubation tube, followed by the addition of 25 μL of Reagent 1 which 

contained 0.1 mg/mL of magnetic beads coated with capture antibodies for GFAP and NEFL. The 

mixture was then mixed rapidly and incubated at 40°C for 6 minutes. Afterward, Reagent 2, 

containing detection antibodies labeled with single-molecule imaging fluorophores, was added and 

mixed, and the mixture was incubated at 40°C for 4 minutes. Subsequently, the reaction mixture 

was transferred to a flow-cell with a 2*2 mm (width*height) channel for magnetic beads 

manipulation and imaging. The magnetic beads in the mixture were then absorbed onto the surface 

of the channel in the flow-cell with the assistance of a permanent magnet. The unlabeled 

fluorophores were then eliminated by a gentle washing flow of wash buffer and fluorescent images 

were taken with an integrated fluorescent microscope. The single-molecule signals were analyzed 

by the machine and protein concentrations were calculated with a standard curve prepared in 

advance. 

Untargeted proteome analysis 

Immunodepleting was implemented before digestion to increase the depth of the CSF and serum 

proteomes. Briefly, 100 µL and 175 µL depletion resin (Thermo Scientific, A36372) were mixed 

with 100 µL CSF (1:1 CSF/resin volume ratio) and 4 µL serum (4:175 serum/resin volume ratio), 

respectively, and incubated at room temperature (RT) for 20 min. The mixture was centrifuged at 

1000 × g for 2 min to collect the flow-through, which was concentrated by centrifugation at 12000 



× g for 30 min in 3k MWCO columns with a molecular weight cutoff (MWCO) of 3 kDa (Thermo 

Scientific, Cat # 88512). We then added 6 M urea/2 M thiourea (Sigma-Aldrich, Cat # T8656-500G) 

to the same columns to exchange the buffer system for protein denaturation, and centrifuged at 

12000 g until <50 µL solution remained in the chambers. The protein concentrations of depleted 

CSF and serum samples were determined by a bicinchoninic acid Protein Assay Kit (BCA, Sigma-

Aldrich, BCA1 AND B9643) according to the manufacturer’s instructions. Concentrated depleted 

samples were then reduced by 10 mM tris-2(-carboxyethyl)-phosphine (TCEP, Adamas-beta, Cat # 

61820E) for 40 min at 32 °C, followed by alkylation with 40 mM Iodoacetamide (IAA, Sigma-

Aldrich, Cat # I6125) for 40 min at RT in the dark. The solution of 6 M urea/2 M thiourea, TCEP 

and IAA were prepared with 100 mM TEAB to make sure the reaction system at a pH of 8.5. Then, 

we diluted the system with 150 µL 100mM TEAB to make the final concentration of urea/thiourea 

below 1.5M/0.5M for LysC digestion with 2.5 µg LysC (Hualishi Tech, Cat # HLS LYS002C) for 4 

h in 1st step of digestion. Then, we further diluted the reaction system with 50 µL 100mM TEAB 

and added 2.5 µg trypsin (Hualishi Tech, Cat # HLS TRY001C) for 12 h in 2nd step of digestion. 

Similarly, serum samples were digested with 0.5 µg LysC and 0.625 µg trypsin in the same way as 

CSF samples. After being acidified with trifluoroacetic acid (TFA, Thermo Fisher Scientific, Cat # 

85183) at a 1% final concentration, peptides were then desalted using 2 mg Solaμ HRP columns 

(Thermo Scientific, Cat # 60209-001) and the eluate was dried using a SpeedVac. 

We performed the batch design to equally deposit samples obtained from individuals with 

different diseases in the same batch for CSF and serum in parallel. In this way, we designed seven 

batches, and each batch contained 15 samples and one pooled sample. For serum samples, 7 µg of 

peptide from each sample was labeled with 56 µg of Tandem mass tags (TMT) 16plex reagent 

(Thermo Fisher Scientific™, San Jose, USA, Cat # A44520) according to the manufacturer’s 

instructions. Due to the lower peptide yield of CSF, 5 µg peptide from each CSF sample was labeled 

with 40 µg TMT16plex reagent. After 1 h of incubation at RT, the TMT labeling reaction was 

quenched by hydroxylamine. We utilized TMT16plex-126 to label a pooled serum peptide sample 

of 49 µg and a pooled CSF peptide sample of 35 µg, which were both produced by mixing equal 

amounts of peptide from all the serum or CSF samples, followed by equal division into seven 

batches after labeling quenching, respectively. In this way, 15 labeled samples in the same batch and 

a labeled pool were combined and desalted using C18 columns (Waters, Sep-Pak Vac tC18 1cc, 50 

mg, WAT054960). Fractionation was performed on a Thermo µLtimate Dinex 3000 (Thermo Fisher 

Scientific™, San Jose, USA) equipped with an XBridge Peptide BEH C18 column (300A, 5 μm × 

4.6 mm × 250 mm) (Waters, Milford, MA, USA). Batches were separated using a 60 min gradient 

from 5% to 35% acetonitrile (ACN) in 10 mM ammonia (pH=10.0) at a flow rate of 1 mL/min to 

60 fractions. We further combined the fractions of equal distance (1st and 31st, 2nd and 

32nd, …,30th and 60th) to 30 fractions and used speedvac to dry the samples.  

Dried peptide powder was re-dissolved in 2% ACN/0.1% formic acid (FA, Thermo Fisher 

Scientific, Cat # A117-50). Peptide samples were centrifuged at 15000 g for 15 min and then the 



supernatants were transferred to sample vials, followed by analysis on LC-MS/MS. The MS raw 

data were searched by Proteome Discoverer (Version 2.4.1.15, Thermo Fisher Scientific) against a 

fasta file of Human proteins downloaded from https://www.uniprot.org/ on 7th May 2020, 

containing 20377 reviewed entries. Precursor ion mass tolerance was set to 10 ppm, and product ion 

mass tolerance was set to 0.02 Da. Other parameters are kept as default, including the FDR of 1% 

for PSM level, peptide level and protein level. The target-decoy strategy was setting Automatic, and 

the software checks whether all searches were validated in same mode in the processing step. The 

Grouped abundance ratio of 15 samples to pooled sample in the same batch was selected as the 

intensity of proteins in the protein matrix for the following statistical analysis. 

Quality control of TMT-based proteome data 

We randomly selected one CSF sample and one serum sample from each type of patient as a 

biological replicate, and randomly distributed these seven biological replicates into seven batches 

to control the quality of the proteome discovery workflow. Our data performed a high degree of 

consistency and reproducibility with the median coefficients of variations (CVs) for 7 biological 

replicates all below 0.16 (Figure S11A, B). Visualization of pooled serum and CSF peptide samples 

showed minimal batch effects (Figure S11C, D). 

Targeted proteome analysis 

Peptide samples were prepared in the same way as described in the previous proteomic section 

except that no depletion or TMT labeling was performed. A nanoflow DIONEX UltiMate 3000 

RSLCnano System (Thermo Fisher Scientific™, San Jose, USA) coupled with a Q Exactive HF 

hybrid Quadrupole-Orbitrap (Thermo Fisher Scientific™, San Jose, USA) was applied for the 

parallel reaction monitoring (PRM) experiment. For each PRM acquisition, 0.5 μg of peptides was 

injected. The CSF peptide digests were separated at a flow rate of 300 nL/min (precolumn, 3 µm, 

100 Å, 20 mm*75 µm internal diameter; analytical column, 1.9 µm, 120 Å, 150 mm*75 µm internal 

diameter.) with a 60 min effective gradient (from 10% to 30% buffer B). Buffer A was HPLC-grade 

water containing 2% ACN and 0.1% FA, and buffer B was 98% ACN containing 0.1% FA. The 

serum peptide digests were separated with 30 min effective gradient (from 10% to 30% buffer B). 

The resolution values for the full MS and PRM were 60,000 (at m/z 200) and 30,000 (at m/z 200), 

respectively. The automatic gain control (AGC) target was set to 2e5, and the maximum IT was set 

to 80 ms for PRM setting.  

The PRM data were manually analyzed with Skyline.2 The retention time was predicted by the 

common internal retention time (CiRT) peptides,3 and the isolation time window was set to 5 min. 

The mass analyzer for MS1 and MS/MS was set to “Orbitrap”, with a resolution power value of 

60,000 and 30,000, respectively. We selected the top 6 peptides in terms of abundance for each target 

protein for detection. Based on the preliminary screening results, we selected 1-2 peptides for final 

detection for each protein. The final peptides should meet the following empirical criteria mentioned 

in the previous literature: 4,5 1) accurate mass (mass error for precursors < 10 ppm, for fragments < 

20 ppm), 2) good peak shape of the peak groups, 3) high abundance, 4) retention time within the 



predicted range, 5) matching conditions for the abundance ratio of fragment ions with the library. 

Proteins that do not contain peptides that meet the above conditions are excluded. After selection, a 

total of 120 peptides including 15 CiRT peptides (Table S3) were included in the CSF PRM 

experiment while 52 peptides including 13 CiRT peptides (Table S3) were included in the serum 

PRM experiment. The value of total area fragment was exported as peptide relative quantitative data, 

and then converted to protein quantitative data using ProteomeExpert.6 
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Figure S1. Heatmap of the 3238 CSF proteins quantified by TMT-based LC-MS/MS analysis in the 

discovery cohort. 

 

  



Figure S2. Heatmap of the 1702 quantified serum proteins by TMT-based LC-MS/MS analysis in 

the discovery cohort. 

 

  



Figure S3. The ranking diagrams of CSF and serum proteins. (A) The average intensity of the 3238 

CSF proteins identified by TMT-based proteomics was plotted with rank. All identified CSF proteins 

in this study are in blue for reference. The 19 CSF proteins selected by machine learning model 

were highlighted in red. (B) Concentration range of blood proteins. All identified serum proteins in 

this study are in blue for reference. The 8 serum proteins selected by machine learning model were 

highlighted in red. 

 

  



Figure S4. Validated selected differentially expressed proteins by real-time PCR. The transcription 

levels of the selected differentially expressed proteins (GFAP and GM2A) were evaluated by real-

time PCR using the cortex of 5xFAD mice. The transcription levels of GFAP and GM2A were 

elevated in FAD as compared to wild type (WT) mice, which coincided with the results identified 

by TMT-based LC-MS/MS analysis. p-value: *, < 0.05; **, < 0.01; ***, < 0.005. 

 

 

 

 

 

Figure S5. Evaluation of the protein biomarker panels to discriminate other neurodegenerative 

diseases by uniform manifold approximation and projection (UMAP). (A) The 19-protein CSF 

biomarker panel could well discriminate the MCI from FTD, ALS and HD patients. (B) The ability 

to discriminate the MCI from FTD, ALS and HD was relatively low by the 8-protein serum 

biomarker panel. 

 

  



Figure S6. Evaluation of serum GFAP and NEFL to discriminate MCI due to AD and other 

neurodegenerative disease. (A) The expression level change of serum GFAP and NEFL detected 

by Single Molecular Immunity Detection kits in the CN controls, MCI due to AD, ALS and FTD. 

(B) Receiver operating characteristic (ROC) analysis was utilized to evaluate the efficacy of serum 

GFAP and NEFL in distinguishing between MCI due to AD and CN controls. (C) Evaluation of the 

serum GFAP and NEFL to discriminate other neurodegenerative diseases by uniform manifold 

approximation and projection (UMAP).  

 

 



Figure S7. Correlations of the levels of CSF and serum core dysregulated proteins in MCI with the 

levels of CSF Aβ42, t-tau and p-tau181.  

 
  



Figure S8. Eight clusters of 2461 CSF proteins identified with the Mfuzz analysis. Among them, 

proteins in cluster 7 and cluster 8 showed the same regulatory trend with disease progression. 

 
 
Figure S9. Network pathway analysis of dysregulated CSF proteins during the different stages of 

AD reveals several important molecular pathways. 

 

  



Figure S10. Eight clusters of 1330 serum proteins identified with the Mfuzz analysis. Among them, 

proteins in cluster 5 and cluster 6 showed the same regulatory trend with disease progression.  

 
 

Figure S11. Network pathway analysis of dysregulated serum proteins during the different stages 

of AD reveals several important molecular pathways. 

 

 



Figure S12. Quality control of CSF and serum proteomic data acquired by TMT-based LC-

MS/MS analysis. The coefficient of variation (CV) between the pairing of 7 replicates for A) CSF 

and B) serum samples. Evaluation of batch effects using the pooled C) CSF and D) serum samples. 

 

  



Figure S13. Quality control of PRM proteome data. The CVs of 11 and 16 technical replicates 

in (A) CSF and (B) serum samples, respectively. The Pearson correlation coefficient (r) for (C) 8 

CSF pooled samples and (D) 10 serum pooled samples. Evaluation of batch effect using the pooled 

(E) CSF and (F) serum samples. 
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