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Supplementary Notes 

Supplementary Note 1 
In the following, we provide detailed insights into the different locus findings.  

Locus 1 (Xp22.31): Strongest association was observed for the variant rs139036121 for eGFR in males. 

BUN was not significant. We observed a pronounced sex-interaction and no association in females. 

Thus, this association is male-specific (Figure 3). The variant was nominally significantly associated with 

CKD, UACR and MA but not BUN. The variant is in LD with variants reported by Graham et al., Kanai et 

al. and Sakaue et al.1–3, but here, we demonstrated that the hit is male-specific. The locus is pleiotropic 

with a variety of other GWAS associations including other sex-specific traits such as testosterone and 

male-pattern baldness4,5. Moreover, our eGFR signal colocalizes with a signal of testosterone in males 

(PP(H4)=99%) with opposite effect directions, i.e. the eGFR signal could be driven by a primary 

testosterone effect (Supplementary Data 14). 

The credible set contained 17 variants, none of them with a pronounced CADD score. No eQTLs of 

relevant tissue were in LD and no colocalizations with eQTLs were observed for this locus. The nearest 

candidate is FAM9B, which has no obvious link to kidney function. Of note, FAM9B has an androgen 

response element (ARE) upstream to transcription start side (TSS) (70kB)6. 

Locus 2 (Xp22.13): Strongest association was observed for rs5909184 for eGFR in the overall analysis 

without sex-interaction. The variant is also associated with BUN with opposite effect direction, i.e. 

kidney function is likely. The variant was also found in Graham et al. and Sakaue et al.1,3 The credible 

set contains four variants, where the top-variant already accounts for 90% posterior probability. The 

variant is in the coding region of CDKL5. Moreover, a cis-eQTL signal of CDKL5 in tubulointerstitial 

tissues of the kidney co-localizes with the eGFR signal with opposite effect direction (Figure 5). Thus 

CDKL5 is a plausible candidate gene, which is associated with Rett syndrome with possible implications 

to kidney disease7. 



Locus 3 (Xp11.23): Strongest association was observed for rs72616719 for eGFR in the overall analysis 

without sex-interaction. The variant is also associated with BUN, i.e. its functional relevance to kidney 

is likely. The association was previously described in Sakaue et al.3 The credible set contains 67 SNPs. 

The top-associated variant has the highest PP and also a high CADD score of 12.5. It is a gene-rich 

region. Colocalization with an eQTL of NDUFB11 in muscle-skeletal tissue was observed as well as with 

USP11 and CDK16 in other tissues (Figure 5, Supplementary Data 8). The eQTLs of the latter two 

showed opposite effect direction compared to eGFR. Of note, CDK16 is associated with renal cell 

carcinoma8, while USP11 is related to renal tubular cell senescence and fibrosis9. Thus, both genes are 

plausible candidates. 

Locus 4 / 16 (Xq12): The index variant rs189618857 of this locus was associated with eGFR in males 

only with a strong sex-interaction effect (pIA=1.5x10-3, FDR<5%, Figure 3). BUN was  not significant. The 

variant was not associated with BUN but with CKD and UA, again associations with these traits were 

not present (CKD) or much weaker (UA) in females compared to males. The locus overlaps with locus 

16 of UA association (top-variant rs6625094), although this is due to LD but not colocalization (Table 

2).  

The locus was described for association with serum creatinine and uric acid levels by Sakaue et al.3, 

but here, we demonstrate that it is male-specific. Other GWAS traits associated at this locus comprise 

among others sex hormone-binding globulin levels, male-pattern baldness, fasting insulin, estradiol 

levels with same effect direction and prostate cancer.The top-SNP rs189618857 is in a gene-desert but 

shows scattered support. The credible set of eGFR association comprised 537 variants with strong 

CADD score variants near EDA2R, which is a plausible candidate gene10. Co-localization was detected 

only for an eQTL of OPHN1 in skin. However, LD with eQTLs of EDA2R and AR were observed for this 

locus (Supplementary Data 7). Since AR has upstream estrogene response elements11, this is another 

plausible candidate gene of this locus12. According to Wilson et al., there is also an androgen response 

element 5kB upstream of the TSS6. EDA2R also has an ARE in some distance from the gene-body. Both 

genes were shown to be regulated by the ARE (AR up-regulated, EDA2R down-regulated6). Moreover, 

AR shows significantly higher gene-expression in females while EDA2R shows higher expression in 

males in several tissues13. Thus, we consider both, EDA2R and AR as plausible candidates here. 

Locus 5 (Xq21.1): The locus was associated best in eGFR overall (rs2063579) without sex interactions. 

It was not associated with BUN but with CKD. The locus was also reported by Sakaue et al.3 The credible 

set comprised 233 variants, while the index variant showed a strong deleteriousness estimate 

(CADD=17) and is in proximity to BRWD3. No eQTL colocalizations were observed. The functional 

relationship of this gene with kidney traits needs to be elucidated.  

Locus 6 (Xq22.1): The locus was best associated with eGFR overall (rs1802288) without sex 

interactions. BUN was not associated but CKD and UA. The association with UA becomes significant 

after adjusting for ancestry with MR-MEGA (Supplementary Figure 6, B). No GWAS trait associations 

were described for that locus. The credible set contained only the index variant with a pronounced 

CADD score of 29.9. The SNP is a miss-sense mutation of TSPAN6 (Ala108Thr). No eQTL colocalizations 

were detected. A relationship of this gene with kidney function was not yet described. However, of 

note, another member of the tetraspanin family, namely TSPAN33 located at chromosome 7 was 

proposed as a candidate gene of eGFR association in the study of Graham et al.1 

Locus 7 / 18 (Xq22.1): Highest association was observed for rs3850318 for eGFR in the overall analysis. 

The variant was also associated with BUN, CKD and UA, i.e. this association overlaps with locus 18 of 

UA (rs34884874, colocalization PP(H4)=93%). This association was in LD with associations of creatinine 

and UA as reported in Sakaue et al.3 The credible sets of the top-hits comprised 126 variants. There is 

a high-CADD variant within ARMCX4 (CADD=12). We observed eQTL colocalizations of the eGFR 



respectively UA signals with ARMCX2 in kidney tubulointerstitial tissue with opposite respectively same 

effect direction (PP(H4)=82% respectively 95%, Figure 5) prioritizing this gene. 

Since colocalization analysis between male and female eGFR results at this locus strongly supported 

the hypothesis of different signals (PP(H3)=95%, Supplementary Data 4), we analyzed this 

phenomenon in more detail by looking at the sex-stratified results of eGFR. The top-variant in males 

was rs2858167, which is 62kB away from rs3850318, still the variants are in LD (r2=0.83, Figure 2). The 

SNP did not achieve genome-wide significance in males and no significant sex-interaction was observed 

(pIA=0.32). Conversely, the top-variant in females was rs149995096, which is 460kb away from 

rs3850318 and is not in LD with this variant nor the male top-hit (r2<0.018). Of note, this variant 

achieved genome-wide significance in females while the effect in males was not even nominally 

significant (pIA=5.1x10-4). Thus, we consider this variant an independent female-specific hit of this 

locus. Moreover, this variant was not in LD with other reported GWAS, thus, representing a novel 

finding. CKD but not BUN was associated with this variant. The variant is in the coding sequence of 

DRP2 and the credible set comprising 92 variants also contains high CADD score variants of this gene. 

DRP2 could be a plausible candidate due to its relationship to creatinine via involvement in muscle 

dystrophy14. Since BUN is not significant, this association could be related to muscle mass. Of note, the 

gene has an ARE 17kb downstream of the TSS6 and shows higher expression in females in several 

tissues13. Since there is no evidence of X-inactivation escape of this gene15,16, this gene-expression 

difference is likely caused by different regulation but it is unlikely that this explains the observed eGFR 

association due to lack of colocalization of gene-expression and eGFR signals at this locus 

(Supplementary Data 8). 

Locus 8/19 (Xq22.2): The locus is best associated for eGFR (overall analysis, rs11092455) without sex-

interactions. BUN, CKD and UA were also associated. A physical overlap with locus 19 of UA (overall 

analysis) association (index variant rs34815154) was unclear based on both LD (r2=0.28) and 

colocalization analyses (pp(H3)=45%, pp(H4)=54%). However, both signals are also colocalized with 

eQTLs of TCEAL3 and MORF4L2 in muscle-skeletal, whole blood with the same effect direction and 

other tissues as well (Figure 5, Supplementary Data 8). Moreover, index variants of both loci are in LD 

with a variant reported for UA association in Sakaue et al.3 such that a locus overlap was considered 

likely. The credible set of eGFR associations contained 67 variants, while the index variant already 

carried 63% PP. The nearest gene is MORF4L2 but there are also high CADD score variants near TCEAL3. 

Combined with the colocalization findings, we consider both genes as plausible candidates but their 

role in kidney function is unclear so far.  

Locus 9 (Xq22.3): At this locus, the top variant is rs181497961 showing highest association with eGFR 

in the overall analysis and no sex-interaction. The variant is also associated with BUN and CKD with 

opposite effect directions. Although Graham et al.1 report an eGFR association of rs56121637 about 

600kB away from this variant, we observed no LD with this variant (r2=0.093). However, rs56121637 

was also genome-wide significant in our analysis (p=8.3x10-10). Sveinbjornsson et al.17 also found this 

variant to be associated with creatinine. Both groups proposed RNF128 as the causal gene.  

Conditional analysis revealed that there is another independent variant at this locus, namely 

rs111410539 not in LD with the variants mentioned above (r2<0.1). Due to the small effect allele 

frequency of the variants, the respective credible set were large comprising 408 respectively 1583 

variants. Of note, rs181497961 did not receive the highest PP of its credible set, which was attributed 

to rs111775083 with a higher effect allele frequency of 5.6%. No eQTL colocalizations were detected 

for this locus. The index variant is in the gene-body of MORC4 and CLDN2. Although, several high CADD-

score variants within gene bodies are in the CS (Supplementary Figure 7), we consider the gene CLDN2 

as a highly plausible candidate due to its known role in nephrolithiasis development according to 

OMIM-ID 300520 and the kidney phenotypes of CLDN2 knock-out mouse models18.  



Locus 10 (Xq23): The top-SNP of this locus, rs5942852, is best associated for eGFR (overall analysis) 

showing no sex-interaction. The variant was associated with CKD but not BUN. No correlated GWAS 

hits were found classifying this association as novel finding. The credible set comprises 54 variants. The 

top-variant is near RPS5P7 and there is also a high CADD variant nearby (CADD=12.6). However, this 

gene has no known functional relationship to kidney traits. Although 120kB away, the locus co-localizes 

with an eQTL of ACSL4 with the same effect direction in blood (PP(H4)=98%, Figure 5) and other tissues. 

ACSL4 also known as FACL4 could be a plausible candidate since it was linked to Alport syndrome19. 

Locus 11 (Xq24): EGFR association was highest in the overall analysis for variant rs16275. The SNP is 

also associated with BUN and CKD in our study. The variant is in LD with variants reported in Sakaue et 

al. for association with BUN and eGFR3 and in Graham et al. for association with eGFR1. The credible 

set contains 139 variants. There are several high CADD variants near or in the genes SLC25A5 and 

SLC25A43 including two missense mutations (SLC25A5: Leu111Arg, SLC25A43: Pro334Leu, 

Supplementary Figure 7). Moreover, cis-eQTLs of SLC25A5 co-localize with the eGFR signal with the 

same effect direction in various tissues including kidney tubulointerstitial tissue (Figure 5). Thus, this 

gene is a highly plausible candidate gene of the locus. Of note, the SLC25A5 anti-sense 1 long-non-

coding RNA is associated with renal cancer prognosis20. 

Locus 12 / 20 (Xq25): The top-variant locus rs5931180 was associated with eGFR overall. The variant 

was nominally significant for BUN, i.e. kidney-related function is considered likely. The locus overlaps 

with locus 20 of UA association (top-variant: rs112708523) were we also observed a nominally 

significant sex-interaction with higher effect sizes in males (Figure 3). Of note, in contrast to other 

overlaps, we here observed the same genetic effect directions for eGFR and UA.  

The locus was also found in Sakaue et al.3 for association with creatinine and UA, but here, we 

demonstrated sex-interaction of the UA association. 

The credible set comprised 66 variants for eGFR and 45 variants for UA with a sharp signal related to 

the genes MTND4P24 and DCAF12L1. Strong CADD scores near the pseudogene MTND4P24 were 

observed. No evidence for eQTL colocalizations were detected. DCAF12L1 has an ARE 3kb downstream 

(3’UTR) of the TSS and is higher expressed in males in kidney cortex13, possibly explaining the sex-

differential effect. Therefore, it is considered the likely candidate here. 

Locus 13 (Xq26.2): The top-variant rs5933079 is most strongly associated for eGFR in the overall 

analysis, but the sex-interaction test was significant and the variant was only nominally associated in 

females. The variant was not associated with BUN but with CKD and UA with opposite effect direction 

(Figure 4). The variant was also detected in Sakaue et al.3 for association with serum creatinine, but 

here we suggest sex-differential effects.  

The credible set contains 39 variants including variants with strong deleteriousness scores near 

FRMD7, RAP2C and within MST4, respectively. We observed eQTL colocalizations of FRMD7, RAP2C 

and STK26 in tissues not related to kidney function. FRMD7 is described as a nystagmus-related gene21. 

An FRMD7 knock-out mouse model showed no kidney phenotype22. There are AREs near RAP2C (50kp 

upstream) and MST4 (28kB downstream) while both genes are also found to be down-regulated by 

their AREs6. There is additional kidney-related evidence related to MST423,24. Moreover, MST4 was 

shown to correlate with androgen receptor status in prostate cancer cell lines revealing male-specific 

functionality25. Thus, we propose this gene as the most likely candidate here. 

Locus 14 / 21 (Xq26.3): The strongest association at locus 14 was observed for rs5933443 for eGFR 

(overall analysis) with a significant sex-interaction showing larger effect sizes in females. BUN and UA 

were also associated with opposite effect direction. The locus overlaps with locus 21 showing UA 

associations (rs202138804) which is an indel. This locus was also found by Sakaue et al.3 and Graham 



et al.1 with serum creatinine and eGFR. The credible set of the eGFR index variant comprised 17 

variants with high CADD score variants in the gene-body of PLAC1 (intron modifier). The UA association 

revealed two independent variants (second independent variant rs7056552). CS of these variants 

comprised 73 respectively 163 variants. Respective variants are in the gene-bodies of PLAC1, HPRT1, 

FAM122B and PHF6, but the strongest CADD scores were again near PLAC1. Three of the genes show 

AREs in some distance (PLAC1, HPRT1, FAM122B), two also show estrogene response elements (PLAC1, 

HPRT1) possibly explaining the sex-interaction. No colocalization signals or LD with eQTLs were 

observed in kidney relevant tissues. However, HPRT1 also shows higher expression in females13. HPRT1 

encodes hypoxanthine phosphoribosyltransferase, a central enzyme in the generation of purines such 

as UA. Thus, the biological link to the observed association with UA is closer than the one observed 

with eGFR. Rare loss-of-function variants in HPRT1 are a cause of Lesch-Nyhan Syndrome featuring 

highly elevated levels of UA (OMIM-ID 308000)26. In consequence, HPRT1 is the most plausible 

candidate gene at this locus.  

Locus 15 / 22 (Xq28): The strongest association with eGFR (overall) was found for chr23:152898260:A:C 

and with UA (overall) for rs4328011. The signals share the same causal variant because LD between 

the variants was 1 and PP(H4)=100%. The eGFR top-variant is also associated with BUN with opposite 

effect direction suggesting relevance for kidney function. The variants were in LD with variants 

reported by Graham et al. for eGFR1 and by Sakaue et al. for UA and BUN3.  

The CS of chr23:152898260:A:C contains two variants where the index variant already carried 97% PP. 

For the UA hit, a second independent variant was detected, namely rs111884516. The respective 

credible sets comprised 3 respectively 1456 variants. Credible set variants of the top-variants were in 

proximity to DUSP9, which was also reported by Graham et al.1 and Sakaue et al.3 DUSP9 is related to 

renal cancer27 but also to diabetes28. No eQTL colocalizations in kidney-related tissues was observed. 

But there is LD to a cis-eQTL of another candidate gene SLC6A8, which is a creatine transporter. 

Moreover, the index variants are also in proximity to FAM58A related to STAR syndrome29. Thus, the 

causal gene of this association cannot be considered as clarified.  

Locus 17 (Xq13.1): At this locus, we observed an UA-specific association for rs34687188. This 

association was already observed in Sakaue et al.3 The credible set contained 146 variants, where the 

top-variant already carries 93% PP. The SNP is in the gene-body of PIN4 (intron modifier). The top-

variant is also in LD with eQTLs of PIN4 in non-kidney-related tissues. No eQTL colocalizations were 

observed. PIN4 has no known relationship to kidney function. Other nearby genes comprise CITED1, 

RPS4X and HDAC8. Here, CITED1 could be a plausible candidate30. 
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Supplementary Figures 

 

Supplementary Figure 1 (QQ-Plots and Genomic inflation factors): We present quantile-quantile plots 

and Genomic inflation factors of all traits and groups analysed. SNPs removed during the quality 

filtering process were displayed in red. For gout all SNPs were discarded due to low numbers of studies 

and sample size. SNP numbers are provided in Supplementary Data 3. 

 



Supplementary Figure 2 (Regional association plots of all identified loci): We present regional 

association plots of all 22 identified loci for the respective lead traits and for the analysis groups overall, 

male and female. Note that for locus 7, we have two index variants due to a female-specific signal in 

addition to the signal in the overall analysis.



  



 



 



 



 



 











 



 

 

Supplementary Figure 3 (X-chromosomal heritability of eGFR and UA): We provide estimates of X-

chromosomal heritability of eGFR and UA based on UKBB for the overall analysis and stratified by sex. 

Male estimates were significantly larger than the respective estimates for females.  

  



 

 

Supplementary Figure 4 (Validation of eGFR hits in HUNT study): The 14 eGFR index variants found in 

the overall analysis were analyzed in the HUNT study. One-sided nominal significance was assessed 

and one-side confidence intervals are depicted. Effect directions are consistent throughout and 10 of 

the 14 variants were significant as expected due to limited power (see also Supplementary Data 9). 

 



 

Supplementary Figure 5 (Forest plot of rs4328011): We present the forest plot for variant rs4328011 

(locus 22, Xq28) genome-wide significantly associated with uric acid in our meta-analysis (p=2.0x10-17). 

This variant expressed a strong ethnic heterogeneity estimate in MR-MEGA analysis (pHet-Anc=5.9x10-19) 

possibly due to heterogeneity in allele-frequencies between Europeans (black), Asians (blue) and 

African Americans (green). No bias of effect sizes was observed between ethnicities and MR-MEGA 

association test also achieved genome-wide significance (p=1.2x10-32, see also Supplementary Data 

11).  

 

 

 



 

Supplementary Figure 6 (Forest plots of MR-MEGA findings): Two variants not included in loci identified for UA in our trans-ethnic meta-analysis showed 

genome-wide significance in MR-MEGA analysis of UA. We present the respective forest plots of both variants (sub-figures A and B). Of note, effect sizes tend to 

be positive in Europeans (black) and Asians (blue) but negative in African Americans (green). See Supplementary Data 12 for an annotation of these variants.  



 

Supplementary Figure 7 (Credible sets and missense mutations): For all index variants (N=23) and 

their identified secondary independent variants (N=3), we present respective credible set sizes and 

posterior probabilities of SNPs. Shape of dots correspond to analysis group and phenotype, colour 

coding corresponds to CADD deleteriousness score. RS-IDs of missense mutations and respective 

amino-acid exchanges are provided. 

  



 

Supplementary Figure 8 (Study design): We present the data basis, major analyses and results of our 

study.  

 

 

 

 



 

Supplementary Figure 9 (Comparison of effect estimates between trans-ethnic meta-analysis and 

meta-analysis in Europeans only): Our trans-ethnic meta-analysis is dominated by studies with 

subjects of European ancestry. Comparing the results of the trans-ethnic meta-analysis with those of 

the Europeans-only analysis (77.5% of the sample size for eGFR and 79.7% for uric acid) revealed an 

excellent agreement of effect sizes.  
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