X-chromosome and kidney function: Evidence from a multi-
trait genetic analysis of 908,697 individuals reveals sex-
specific and sex-differential findings in genes regulated by
androgen-response elements
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Supplementary Notes

Supplementary Note 1
In the following, we provide detailed insights into the different locus findings.

Locus 1 (Xp22.31): Strongest association was observed for the variant rs139036121 for eGFR in males.
BUN was not significant. We observed a pronounced sex-interaction and no association in females.
Thus, this association is male-specific (Figure 3). The variant was nominally significantly associated with
CKD, UACR and MA but not BUN. The variant is in LD with variants reported by Graham et al., Kanai et
al. and Sakaue et al.’3, but here, we demonstrated that the hit is male-specific. The locus is pleiotropic
with a variety of other GWAS associations including other sex-specific traits such as testosterone and
male-pattern baldness*>. Moreover, our eGFR signal colocalizes with a signal of testosterone in males
(PP(H4)=99%) with opposite effect directions, i.e. the eGFR signal could be driven by a primary
testosterone effect (Supplementary Data 14).

The credible set contained 17 variants, none of them with a pronounced CADD score. No eQTLs of
relevant tissue were in LD and no colocalizations with eQTLs were observed for this locus. The nearest
candidate is FAM9B, which has no obvious link to kidney function. Of note, FAM9B has an androgen
response element (ARE) upstream to transcription start side (TSS) (70kB)®.

Locus 2 (Xp22.13): Strongest association was observed for rs5909184 for eGFR in the overall analysis
without sex-interaction. The variant is also associated with BUN with opposite effect direction, i.e.
kidney function is likely. The variant was also found in Graham et al. and Sakaue et al.1® The credible
set contains four variants, where the top-variant already accounts for 90% posterior probability. The
variant is in the coding region of CDKL5. Moreover, a cis-eQTL signal of CDKL5 in tubulointerstitial
tissues of the kidney co-localizes with the eGFR signal with opposite effect direction (Figure 5). Thus
CDKL5 is a plausible candidate gene, which is associated with Rett syndrome with possible implications
to kidney disease’.




Locus 3 (Xp11.23): Strongest association was observed for rs72616719 for eGFR in the overall analysis
without sex-interaction. The variant is also associated with BUN, i.e. its functional relevance to kidney
is likely. The association was previously described in Sakaue et al.? The credible set contains 67 SNPs.
The top-associated variant has the highest PP and also a high CADD score of 12.5. It is a gene-rich
region. Colocalization with an eQTL of NDUFB11 in muscle-skeletal tissue was observed as well as with
USP11 and CDK16 in other tissues (Figure 5, Supplementary Data 8). The eQTLs of the latter two
showed opposite effect direction compared to eGFR. Of note, CDK16 is associated with renal cell
carcinoma?®, while USP11 is related to renal tubular cell senescence and fibrosis®. Thus, both genes are
plausible candidates.

Locus 4 / 16 (Xq12): The index variant rs189618857 of this locus was associated with eGFR in males
only with a strong sex-interaction effect (pia=1.5x103, FDR<5%, Figure 3). BUN was not significant. The
variant was not associated with BUN but with CKD and UA, again associations with these traits were
not present (CKD) or much weaker (UA) in females compared to males. The locus overlaps with locus
16 of UA association (top-variant rs6625094), although this is due to LD but not colocalization (Table
2).

The locus was described for association with serum creatinine and uric acid levels by Sakaue et al.3,
but here, we demonstrate that it is male-specific. Other GWAS traits associated at this locus comprise
among others sex hormone-binding globulin levels, male-pattern baldness, fasting insulin, estradiol
levels with same effect direction and prostate cancer.The top-SNP rs189618857 is in a gene-desert but
shows scattered support. The credible set of eGFR association comprised 537 variants with strong
CADD score variants near EDA2R, which is a plausible candidate gene. Co-localization was detected
only for an eQTL of OPHNI1 in skin. However, LD with eQTLs of EDA2R and AR were observed for this
locus (Supplementary Data 7). Since AR has upstream estrogene response elements??, this is another
plausible candidate gene of this locus®?. According to Wilson et al., there is also an androgen response
element 5kB upstream of the TSS®. EDAZ2R also has an ARE in some distance from the gene-body. Both
genes were shown to be regulated by the ARE (AR up-regulated, EDA2R down-regulated®). Moreover,
AR shows significantly higher gene-expression in females while EDA2R shows higher expression in
males in several tissues®. Thus, we consider both, EDA2R and AR as plausible candidates here.

Locus 5 (Xq21.1): The locus was associated best in eGFR overall (rs2063579) without sex interactions.
It was not associated with BUN but with CKD. The locus was also reported by Sakaue et al.3 The credible
set comprised 233 variants, while the index variant showed a strong deleteriousness estimate
(CADD=17) and is in proximity to BRWD3. No eQTL colocalizations were observed. The functional
relationship of this gene with kidney traits needs to be elucidated.

Locus 6 (Xq22.1): The locus was best associated with eGFR overall (rs1802288) without sex
interactions. BUN was not associated but CKD and UA. The association with UA becomes significant
after adjusting for ancestry with MR-MEGA (Supplementary Figure 6, B). No GWAS trait associations
were described for that locus. The credible set contained only the index variant with a pronounced
CADD score of 29.9. The SNP is a miss-sense mutation of TSPAN6 (Ala108Thr). No eQTL colocalizations
were detected. A relationship of this gene with kidney function was not yet described. However, of
note, another member of the tetraspanin family, namely TSPAN33 located at chromosome 7 was
proposed as a candidate gene of eGFR association in the study of Graham et al.!

Locus 7 /18 (Xg22.1): Highest association was observed for rs3850318 for eGFR in the overall analysis.
The variant was also associated with BUN, CKD and UA, i.e. this association overlaps with locus 18 of
UA (rs34884874, colocalization PP(H4)=93%). This association was in LD with associations of creatinine
and UA as reported in Sakaue et al.> The credible sets of the top-hits comprised 126 variants. There is
a high-CADD variant within ARMCX4 (CADD=12). We observed eQTL colocalizations of the eGFR



respectively UA signals with ARMCX2 in kidney tubulointerstitial tissue with opposite respectively same
effect direction (PP(H4)=82% respectively 95%, Figure 5) prioritizing this gene.

Since colocalization analysis between male and female eGFR results at this locus strongly supported
the hypothesis of different signals (PP(H3)=95%, Supplementary Data 4), we analyzed this
phenomenon in more detail by looking at the sex-stratified results of eGFR. The top-variant in males
was rs2858167, which is 62kB away from rs3850318, still the variants are in LD (r>=0.83, Figure 2). The
SNP did not achieve genome-wide significance in males and no significant sex-interaction was observed
(pia=0.32). Conversely, the top-variant in females was rs149995096, which is 460kb away from
rs3850318 and is not in LD with this variant nor the male top-hit (r’<0.018). Of note, this variant
achieved genome-wide significance in females while the effect in males was not even nominally
significant (pia=5.1x10"%). Thus, we consider this variant an independent female-specific hit of this
locus. Moreover, this variant was not in LD with other reported GWAS, thus, representing a novel
finding. CKD but not BUN was associated with this variant. The variant is in the coding sequence of
DRP2 and the credible set comprising 92 variants also contains high CADD score variants of this gene.
DRP2 could be a plausible candidate due to its relationship to creatinine via involvement in muscle
dystrophy!“. Since BUN is not significant, this association could be related to muscle mass. Of note, the
gene has an ARE 17kb downstream of the TSS® and shows higher expression in females in several
tissues®®, Since there is no evidence of X-inactivation escape of this gene'>, this gene-expression
difference is likely caused by different regulation but it is unlikely that this explains the observed eGFR
association due to lack of colocalization of gene-expression and eGFR signals at this locus
(Supplementary Data 8).

Locus 8/19 (Xq22.2): The locus is best associated for eGFR (overall analysis, rs11092455) without sex-
interactions. BUN, CKD and UA were also associated. A physical overlap with locus 19 of UA (overall
analysis) association (index variant rs34815154) was unclear based on both LD (r?=0.28) and
colocalization analyses (pp(H3)=45%, pp(H4)=54%). However, both signals are also colocalized with
eQTLs of TCEAL3 and MORF4L2 in muscle-skeletal, whole blood with the same effect direction and
other tissues as well (Figure 5, Supplementary Data 8). Moreover, index variants of both loci are in LD
with a variant reported for UA association in Sakaue et al.® such that a locus overlap was considered
likely. The credible set of eGFR associations contained 67 variants, while the index variant already
carried 63% PP. The nearest gene is MORF4L2 but there are also high CADD score variants near TCEAL3.
Combined with the colocalization findings, we consider both genes as plausible candidates but their
role in kidney function is unclear so far.

Locus 9 (Xq22.3): At this locus, the top variant is rs181497961 showing highest association with eGFR
in the overall analysis and no sex-interaction. The variant is also associated with BUN and CKD with
opposite effect directions. Although Graham et al.! report an eGFR association of rs56121637 about
600kB away from this variant, we observed no LD with this variant (r>=0.093). However, rs56121637
was also genome-wide significant in our analysis (p=8.3x10°). Sveinbjornsson et al.}” also found this
variant to be associated with creatinine. Both groups proposed RNF128 as the causal gene.

Conditional analysis revealed that there is another independent variant at this locus, namely
rs111410539 not in LD with the variants mentioned above (r’<0.1). Due to the small effect allele
frequency of the variants, the respective credible set were large comprising 408 respectively 1583
variants. Of note, rs181497961 did not receive the highest PP of its credible set, which was attributed
to rs111775083 with a higher effect allele frequency of 5.6%. No eQTL colocalizations were detected
for this locus. The index variant is in the gene-body of MORC4 and CLDNZ2. Although, several high CADD-
score variants within gene bodies are in the CS (Supplementary Figure 7), we consider the gene CLDN2
as a highly plausible candidate due to its known role in nephrolithiasis development according to
OMIM-ID 300520 and the kidney phenotypes of CLDN2 knock-out mouse models?8.



Locus 10 (Xg23): The top-SNP of this locus, rs5942852, is best associated for eGFR (overall analysis)
showing no sex-interaction. The variant was associated with CKD but not BUN. No correlated GWAS
hits were found classifying this association as novel finding. The credible set comprises 54 variants. The
top-variant is near RPS5P7 and there is also a high CADD variant nearby (CADD=12.6). However, this
gene has no known functional relationship to kidney traits. Although 120kB away, the locus co-localizes
with an eQTL of ACSL4 with the same effect direction in blood (PP(H4)=98%, Figure 5) and other tissues.
ACSL4 also known as FACL4 could be a plausible candidate since it was linked to Alport syndrome®.

Locus 11 (Xq24): EGFR association was highest in the overall analysis for variant rs16275. The SNP is
also associated with BUN and CKD in our study. The variant is in LD with variants reported in Sakaue et
al. for association with BUN and eGFR® and in Graham et al. for association with eGFR™. The credible
set contains 139 variants. There are several high CADD variants near or in the genes SLC25A5 and
SLC25A43 including two missense mutations (SLC25A5: LeulllArg, SLC25A43: Pro334leu,
Supplementary Figure 7). Moreover, cis-eQTLs of SLC25A5 co-localize with the eGFR signal with the
same effect direction in various tissues including kidney tubulointerstitial tissue (Figure 5). Thus, this
gene is a highly plausible candidate gene of the locus. Of note, the SLC25A5 anti-sense 1 long-non-
coding RNA is associated with renal cancer prognosis®.

Locus 12 / 20 (Xq25): The top-variant locus rs5931180 was associated with eGFR overall. The variant
was nominally significant for BUN, i.e. kidney-related function is considered likely. The locus overlaps
with locus 20 of UA association (top-variant: rs112708523) were we also observed a nominally
significant sex-interaction with higher effect sizes in males (Figure 3). Of note, in contrast to other
overlaps, we here observed the same genetic effect directions for eGFR and UA.

The locus was also found in Sakaue et al.> for association with creatinine and UA, but here, we
demonstrated sex-interaction of the UA association.

The credible set comprised 66 variants for eGFR and 45 variants for UA with a sharp signal related to
the genes MITND4P24 and DCAF12L1. Strong CADD scores near the pseudogene MTND4P24 were
observed. No evidence for eQTL colocalizations were detected. DCAF12L1 has an ARE 3kb downstream
(3’UTR) of the TSS and is higher expressed in males in kidney cortex'®, possibly explaining the sex-
differential effect. Therefore, it is considered the likely candidate here.

Locus 13 (Xq26.2): The top-variant rs5933079 is most strongly associated for eGFR in the overall
analysis, but the sex-interaction test was significant and the variant was only nominally associated in
females. The variant was not associated with BUN but with CKD and UA with opposite effect direction
(Figure 4). The variant was also detected in Sakaue et al.3 for association with serum creatinine, but
here we suggest sex-differential effects.

The credible set contains 39 variants including variants with strong deleteriousness scores near
FRMDZ7, RAP2C and within MST4, respectively. We observed eQTL colocalizations of FRMD7, RAP2C
and STK26 in tissues not related to kidney function. FRMD7 is described as a nystagmus-related gene?..
An FRMD7 knock-out mouse model showed no kidney phenotype??. There are AREs near RAP2C (50kp
upstream) and MST4 (28kB downstream) while both genes are also found to be down-regulated by
their AREs®. There is additional kidney-related evidence related to MST4%2*. Moreover, MST4 was
shown to correlate with androgen receptor status in prostate cancer cell lines revealing male-specific
functionality?. Thus, we propose this gene as the most likely candidate here.

Locus 14 / 21 (Xq26.3): The strongest association at locus 14 was observed for rs5933443 for eGFR
(overall analysis) with a significant sex-interaction showing larger effect sizes in females. BUN and UA
were also associated with opposite effect direction. The locus overlaps with locus 21 showing UA
associations (rs202138804) which is an indel. This locus was also found by Sakaue et al.® and Graham




et al.! with serum creatinine and eGFR. The credible set of the eGFR index variant comprised 17
variants with high CADD score variants in the gene-body of PLACI (intron modifier). The UA association
revealed two independent variants (second independent variant rs7056552). CS of these variants
comprised 73 respectively 163 variants. Respective variants are in the gene-bodies of PLAC1, HPRT1,
FAM122B and PHF6, but the strongest CADD scores were again near PLAC1. Three of the genes show
AREs in some distance (PLAC1, HPRT1, FAM122B), two also show estrogene response elements (PLACI,
HPRT1) possibly explaining the sex-interaction. No colocalization signals or LD with eQTLs were
observed in kidney relevant tissues. However, HPRT1 also shows higher expression in females'®. HPRT1
encodes hypoxanthine phosphoribosyltransferase, a central enzyme in the generation of purines such
as UA. Thus, the biological link to the observed association with UA is closer than the one observed
with eGFR. Rare loss-of-function variants in HPRT1 are a cause of Lesch-Nyhan Syndrome featuring
highly elevated levels of UA (OMIM-ID 308000)%. In consequence, HPRT1 is the most plausible
candidate gene at this locus.

Locus 15 /22 (Xq28): The strongest association with eGFR (overall) was found for chr23:152898260:A:C
and with UA (overall) for rs4328011. The signals share the same causal variant because LD between
the variants was 1 and PP(H4)=100%. The eGFR top-variant is also associated with BUN with opposite
effect direction suggesting relevance for kidney function. The variants were in LD with variants
reported by Graham et al. for eGFR? and by Sakaue et al. for UA and BUNS3,

The CS of chr23:152898260:A:C contains two variants where the index variant already carried 97% PP.
For the UA hit, a second independent variant was detected, namely rs111884516. The respective
credible sets comprised 3 respectively 1456 variants. Credible set variants of the top-variants were in
proximity to DUSP9, which was also reported by Graham et al.! and Sakaue et al.® DUSP9 is related to
renal cancer? but also to diabetes?®. No eQTL colocalizations in kidney-related tissues was observed.
But there is LD to a cis-eQTL of another candidate gene SLC6AS8, which is a creatine transporter.
Moreover, the index variants are also in proximity to FAM58A related to STAR syndrome?®. Thus, the
causal gene of this association cannot be considered as clarified.

Locus 17 (Xq13.1): At this locus, we observed an UA-specific association for rs34687188. This
association was already observed in Sakaue et al.® The credible set contained 146 variants, where the
top-variant already carries 93% PP. The SNP is in the gene-body of PIN4 (intron modifier). The top-
variant is also in LD with eQTLs of PIN4 in non-kidney-related tissues. No eQTL colocalizations were
observed. PIN4 has no known relationship to kidney function. Other nearby genes comprise CITED1,
RPS4X and HDACS. Here, CITED1 could be a plausible candidate®.
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Supplementary Figure 1 (QQ-Plots and Genomic inflation factors): We present quantile-quantile plots
and Genomic inflation factors of all traits and groups analysed. SNPs removed during the quality
filtering process were displayed in red. For gout all SNPs were discarded due to low numbers of studies
and sample size. SNP numbers are provided in Supplementary Data 3.



Supplementary Figure 2 (Regional association plots of all identified loci): We present regional
association plots of all 22 identified loci for the respective lead traits and for the analysis groups overall,

male and female. Note that for locus 7, we have two index variants due to a female-specific signal in
addition to the signal in the overall analysis.
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locus 7: rs149995096
trait: eGFR_FEMALE: 12: 0.2: MAF:0.18
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locus 9: rs181497961
trait: eGFR_ALL; 12: 0.23; MAF:0.02
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locus 9: rs181497961
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locus 9: rs181497961

trait: eGFR_FEMALE: 12:0.01; MAF: 0.02
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locus 11: rs16275
trait: eGFR_ALL: 12: 0; MAF:0.32
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locus 13: rs5933079
trait: eGFR_ALL: 12: 0: MAF: 0.26
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locus 13: rs5933079
trait: eGFR_MALE: 12: 0; MAF: 0.24

| °
| [08-10] -
O [05-0.8) P=9.39e-13
O [0.1-05)
o [00-01) L
- o
RP1-107017.2 RP1-305B18.3 usP28
. < —
RP11-512H232 FRMDT RP3-382L0.1
. - *
HDGFP1 MST4 HS85T2
. - —
R2AF1P RNASSP514 MBNL3
RP1-107017.3 RAP2C RP3-368H7 1
: o< <
T T T T T
130,751,326 131,143,954 131,536,562 131,929,210 132,321,838
Chromosome 23 (bp)
. locus 14: rs12382607
trait: e GFR_MALE: [2: 0.07; MAF: 0.32
a v L
| [08-10]
O [05-08)
O [0.1-05)
o [0.0-0.1) =
1o na
MIR10B2CDC160 MIRRE0 FAM122C FAMI27AINCO0833
- > - > <
MIRABE BP3 ACODMBRST FAM1228 FAM1276P11-BRI3H865(
> () - < > <
Lol HPRMIR542 RPSTP12 CXorfed LINCODDENori48
. . > > < <
MIRSBE2 PHFB MIR456E1 21P133 HMGB3P3! NCRP21-85L215
. < > < < <
MIR20BF11-355K238.1 MIR450A1 PLACT MOGPD FAMEPFB1-85L216
. > ) L 3 < <
T T T T T
133,297,249 133,551,595 133,805,942 134,060,288 134,314,634

Chromosome 23 (bp)

48

40

32

24

42

35

28

21

Recombination rate (cM/Mb)

Recombination rate (cM/Mb)

104

7.8

5.2

-log10(Observed p)

26

22

176

132

838

-log10(Observed p)

44

locus 13: rs2064650
trait: eGFR_FEMALE: 12: 0: MAF: 0.18
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locus 15: chr23_ 152898260
trait: eGFR_ALL: 1Z: 0; MAF:0.39
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locus 17: rs111964770
trait: UA_FEMALE; 12: 0.04; MAF: 0.07
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frait: UA_ALL; 12: 0; MAF:0.37

r -
| [0.5-1.0] @ P=1.728-08
o [05-08)
O [01-05) [} o
o [0.0-0.1) og Fo) o o -
O NA 8eg o o o
11-522L3.6 RAB40AL RP4-635G12.1 BEX2 RAB40A MORF4L2
. > < < - <
[-sxaaat LLOXNCO1-221F22 TCEALS NGFRAP1 RPS-1055C14 6
> < > <
piesE2me NXF3 LLOXNCO1-177EMEBPS TCEAL1 PLP1
- < > > >
HTNDEESE BEX1 TCEBLBXNCD1-105G4.3 TCEALZ TMEMZ
> < < . Y
FTND4P22 LLOXNCO1-T3E8.1 BEX4 TCEALT TCEAL4 GLRA4
> > > > » o+
T T T T T
102,052,032 102,302,032 102,552,032 102,802,032 103,052,032
Chromosome 23 (bp)
 locus 20: rs112708523
trait: UA_ALL: 12: 0.28. MAF: 0.4
p
= [08-10] @ P=3.03e-14 B
o [05-08) °
O [01-05) °
o [0.0-0.1) L
- o nNa Oo.
]
i ) B
MTND4P24
>
MTND4LP1
.
RP11-10B2.1 CXorfa4
> >
DCAF1212 RP11-375A20.1
<
DCAF12L1
L4
T T T T T
125,102,218 125,352 218 125,602,218 125,852,218 126,102,218

Chromosome 23 (bp)

42

35

28

21

60

50

40

30

20

Recombination rate (cM/Mb)

Recombination rate (cM/Mb)

6.4

48

32

-log10(Observed p)

1.2

84

56

-log10(Observed p)

28

locus 19: rs73258039
trait: UA MALE: 12: 0.1; MAF: 0.04
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locus 19: rs5987675
trait: UA_FEMALE; 12: 0.31; MAF: 0.07
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trait: UA MALE; 12: 0.4: MAF: 0.28
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trait: UA_FEMALE; 12: 0; MAF: 0.04
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Supplementary Figure 3 (X-chromosomal heritability of eGFR and UA): We provide estimates of X-
chromosomal heritability of eGFR and UA based on UKBB for the overall analysis and stratified by sex.
Male estimates were significantly larger than the respective estimates for females.
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Supplementary Figure 4 (Validation of eGFR hits in HUNT study): The 14 eGFR index variants found in
the overall analysis were analyzed in the HUNT study. One-sided nominal significance was assessed
and one-side confidence intervals are depicted. Effect directions are consistent throughout and 10 of
the 14 variants were significant as expected due to limited power (see also Supplementary Data 9).
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Supplementary Figure 5 (Forest plot of rs4328011): We present the forest plot for variant rs4328011
(locus 22, Xq28) genome-wide significantly associated with uric acid in our meta-analysis (p=2.0x10").
This variant expressed a strong ethnic heterogeneity estimate in MR-MEGA analysis (Pret-anc=5.9x10"
possibly due to heterogeneity in allele-frequencies between Europeans (black), Asians (blue) and
African Americans (green). No bias of effect sizes was observed between ethnicities and MR-MEGA
association test also achieved genome-wide significance (p=1.2x1032, see also Supplementary Data
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Supplementary Figure 6 (Forest plots of MR-MEGA findings): Two variants not included in loci identified for UA in our trans-ethnic meta-analysis showed
genome-wide significance in MR-MEGA analysis of UA. We present the respective forest plots of both variants (sub-figures A and B). Of note, effect sizes tend to
be positive in Europeans (black) and Asians (blue) but negative in African Americans (green). See Supplementary Data 12 for an annotation of these variants.
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Supplementary Figure 7 (Credible sets and missense mutations): For all index variants (N=23) and
their identified secondary independent variants (N=3), we present respective credible set sizes and
posterior probabilities of SNPs. Shape of dots correspond to analysis group and phenotype, colour
coding corresponds to CADD deleteriousness score. RS-IDs of missense mutations and respective
amino-acid exchanges are provided.
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Supplementary Figure 8 (Study design): We present the data basis, major analyses and results of our

study.
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Supplementary Figure 9 (Comparison of effect estimates between trans-ethnic meta-analysis and
meta-analysis in Europeans only): Our trans-ethnic meta-analysis is dominated by studies with
subjects of European ancestry. Comparing the results of the trans-ethnic meta-analysis with those of
the Europeans-only analysis (77.5% of the sample size for eGFR and 79.7% for uric acid) revealed an
excellent agreement of effect sizes.
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