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Referees’ reports, first round of review 
Reviewer #1: In this manuscript, Hodonsky et al describes an expression quantitative trait loci 
(eQTL) and splicing QTL (sQTL) study employing bulk RNA-seq on human coronary artery tissues. 
Subsequently, QTLs were colocalized with coronary artery disease GWAS and CAD-related risk 
factors, resulting in a prioritized list of eGenes for further characterization. Given other QTL 
studies on coronary artery tissues (eg. GTEx, STARNET), the novelty of this study appears to be 
the use of a genetically diverse set of samples broadly representing the American population, on 
the presumption that this would lead to the discovery of novel gene targets. This is an interesting 
manuscript at a time when human population genetics is moving toward requiring more genetic 
diversity, but the authors should further describe the benefits of such efforts beyond 
generalizable comments. Generally, some details found in figure legends and methods should be 
mentioned in-text for readability. 
 
Minor comments: 
 
1) "With regard to local-ancestry-adjusted analyses, 337 eGenes were identified that did not 
exceed a FDR of 5% in the overall mixQTL analysis, demonstrating the merit of incorporating 
multiple approaches in a diverse study sample with genetic admixture." 
 
This is couched as an advantage for using multiple approaches. Is there an evaluation for 
potential errors arising from different methods? Is there benchmarking? 
 
2) "Using mixQTL, 54 eGenes with lead SNPs monomorphic in one or more 1000G 
superpopulations were identified…" 
 
It would be beneficial to plot a distribution of monomorphic eGenes in the populations for a 
sense of the value of genetic diversity. 
 
3) "We additionally employed FastPaintor to fine-map associations with epigenomic annotations 
and relevant GWAS." 
 
Which epigenomics annotations and why? 
 
4) For the "sensitivity analysis in European-ancestry subsample" section, the conclusion appears 
to be that a larger sample size provides more statistical power, which does not seem to fit the 
topic sentence. Instead, the authors could randomly downsample the original set to n=87 whilst 
keeping the proportions of different ancestries constant. This might allow conclusions on the 
usefulness of having an inclusive study. 
 
5) Is the WGS data re-imputed after liftover to hg38 to capture variants that might be lost? 
 
6) For annotations of eQTL and sQTL with snpEff and Annovar, what was done for predictions 
that were contrasting to each other? 
 
7) How was the study's summary statistics incorporated with the 1000G GWAS summary 
statistics in the SMR analysis? Was this through a meta-analysis? If so, please describe in more 
detail about the parameters and tools used. 
 
 
 
Reviewer #2: Non-European populations remain underrepresented in large scale genetic studies 
(GWAS, molecular QTL), including for highly prevalent diseases like coronary artery disease. 
Beyond addressing concerns of health equity, increasing diversity of these studies will increase 
power to detect independent associations and dissect variant contributions at individual loci. To 
address this gap, Hodonsky and co-authors present an e- and sQTL resource derived from study 
of coronary arteries from 138 ancestrally diverse American donors. In addition to replicating 
previous associations, the authors discover novel eQTLs, including at known GWAS loci. This is 



 

 

enabled, in part, by use of paired approaches to examine both haplotype-specific and ancestry-
specific associations. This work represents an expansive resource to complement existing 
findings reported via STARNET and GTEx. Overall, the manuscript is informative and will be 
highly useful to researchers. I think there are a few areas you could expand on to enhance 
overall utility and biological insights that can be gained from this dataset. 
 
1. How representative were ancestries within diagnostic categories? This wasn't clear from the 
donor characteristics table. I'm empathetic to the challenges of acquiring tissue across 
ancestries, but it would be a worthwhile clarification to include, if possible. 
2. The results presented here rely on bulk RNA profiling. With this in mind, do you expect tissue 
heterogeneity across diagnostic categories and do you predict that would have an appreciable 
effect on eQTL/sQTL detection? 
3. The splicing results presented are interesting, but I think they could be expanded further. 
a. Could you examine the single-cell data included here (or public datasets) to determine 
whether either of the two genes presented in Figure 5 are uniquely expressed in any specific cell 
types within the coronary artery? 
b. Does the effect size of your sQTLs correlate with predicted variant effects (e.g., protein LOF 
variants, high scores from other variant effect predictors)? 
c. Are sQTLs enriched in any other functional categories beyond open chromatin sites? Other 
histone modifications, TF motifs esp. for RNA binding proteins, etc. 
4. Establishing best practices for multi-ancestry studies is an area of growing interest and 
appreciation, but there's still not a clear path for how these studies should be performed. I think 
more information/justification about the methods used in this study (specifically fine-mapping 
and colocalization) would be helpful for others who are interested in applying similar approaches 
with samples from diverse ancestries. 
5. Minor note: please update your Figure S2 legend text to describe panel b. 
 

Authors’ response to the first round of review 
Response to Reviewers 
Below we provide a point-by-point response to the Reviewers’ comments. Our responses are in 
blue text, with changes to the text provided in quotes. To support our responses, we also 
provide new data within the document, and cite references at the end of the document. 
 
Reviewer #1 
In this manuscript, Hodonsky et al describes an expression quantitative trait loci (eQTL) and 
splicing QTL (sQTL) study employing bulk RNA-seq on human coronary artery tissues. 
Subsequently, QTLs were colocalized with coronary artery disease GWAS and CAD-related risk 
factors, resulting in a prioritized list of eGenes for further characterization. Given other QTL 
studies on coronary artery tissues (eg. GTEx, STARNET), the novelty of this study appears to 
be the use of a genetically diverse set of samples broadly representing the American 
population, on the presumption that this would lead to the discovery of novel gene targets. This 
is an interesting manuscript at a time when human population genetics is moving toward 
requiring more genetic diversity, but the authors should further describe the benefits of such 
efforts beyond generalizable comments. Generally, some details found in figure legends and 
methods should be mentioned in-text for readability. 
 
We thank the reviewer for taking the time to thoroughly read and provide comments on our 
manuscript. We have revised the results and discussion sections in several places (described in 
detail below) to be more specific about the benefits of both our study population and 
methodological approach, including additional citations as necessary. We have further clarified 
the limitations of publicly available reference datasets, which overrepresent genetically 
homogeneous populations, inhibiting both discovery and generalization in a genomics field 
dedicated to promoting health equity. Additionally, we have expanded on the ways in which 
increasing representation in these resources will improve both statistical power to discover 
globally low-frequent or rare variants, as well as ancestry-specific associations that are relevant 
to global populations. In particular, we have added the following text to the discussion section 
which has not been reproduced in the comments below: 
 



 

 

“Nonetheless, our inclusive study design increased statistical power in both our diverse 
downsampled subset and overall study population compared to a genetically homogeneous 
European-ancestry-only subset. This is significant given the predominantly European genetic 
architecture of GTEx and published GWAS—while these resources have been crucial for 
genomics discovery to date, work highlighting the limitations of genetically restricted samples 
and technologies developed based on those samples points to the necessity of new, more 
expansive approaches. This also aligns with current appeals in basic science and public health 
to promote equitable research benefiting all populations, rather than studies that may extend the 
health disparity gap” 
 
Please see below for additional responses to individual minor comments, along with relevant 
citations. 
 
Minor comments: 
1) "With regard to local-ancestry-adjusted analyses, 337 eGenes were identified that did not 
exceed a FDR of 5% in the overall mixQTL analysis, demonstrating the merit of incorporating 
multiple approaches in a diverse study sample with genetic admixture." 
This is couched as an advantage for using multiple approaches. Is there an evaluation for 
potential errors arising from different methods? Is there benchmarking? 
 
With the expansion of multi-ancestry studies of gene regulation, there is an increasing need to 
develop more appropriate methods than those applied to homogeneous populations. The 
approach we applied here is beneficial compared to using a single method for two reasons: 1) 
there is not a clear ‘gold standard’ approach for using any particular method in a genetically 
diverse sample of restricted size, so the number of “true” coronary eQTLs at any disease stage 
is unknown, and a stringent significance threshold can improve ability to detect likely 
true-positives for which one approach is comparatively better powered; 2) the tools and 
resources required for running mixQTL (phasing RNAseq data in particular) may not be broadly 
available so comparing multiple options is ideal to provide potential expectations for researchers 
looking to maximize available resources. We applied a 5% minor allele frequency (MAF) 
threshold across the total study population to minimize false-positive findings due to population 
stratification, while acknowledging future studies could identify low frequency variants (1-5% 
MAF) in one or more ancestries. 
 
We have added information about the LA analysis results (the 337 genes which were either not 
evaluated or not reported as significant in mixQTL) in the Results sections (under headings 
“Local-ancestry-adjusted and ancestry-specific eQTLs” and “Colocalization of eQTLs”). We have 
also incorporated LA colocalization results into the shared coloc figure (now Figures S4a) with 
the downsampled sensitivity analyses referenced below in a response to comment (4), and 
added Table S13 to the supplement. Specifically, the following two paragraphs: 
“Among the genes with no eQTLs exceeding genome-wide-significance in the mixQTL were 
several interesting genes with sub-significant associations, including VPS37B (Vacuolar Protein 
Sorting-Associated Protein 37B). VPS37B is involved in endosomal protein binding activity, and 
the genomic region has been associated with CAD-relevant traits including adiponectin levels, 
BMI, and cholesterol traits. MixQTL and LA methods resulted in the same lead variant, 
rs897392, in the intron of neighboring gene HIP1R, which exhibits modest to strong LD with 
reported arterial eQTLs for VPS37B (Table S11) as well as different expression between CAD 
cases and controls in multiple tissues in the STARNET study population. rs897392 had a 
mixQTL adjusted p-value of 0.14, meaning VPS37B would not be considered an eGene using 
this method alone, despite evidence favoring genetic regulation of this gene in cardiac tissues.” 
 
And 
 
“Among LA eGenes, colocalization was limited to 27 associations, but four of these were not 
eGenes in mixQTL and a further three were mixQTL eGenes that did not colocalize to any GWAS trait 
(Table S14, Figure S4). Of particular interest is ANAPC13, a component of an 
anaphase-associated E3 ubiquitin ligase for which the LA eQTL (led by rs9809619, 
pLA=2.3E-6) colocalized to the MVP CAD association signal, but did not meet the threshold for 
colocalization (PPH4 ≥0.8) for any trait in mixQTL. Rs9809619 is in close proximity to and 



 

 

exhibits near-perfect LD globally with the lead mixQTL variant, rs4367113 (pmixQTL=1.6E-5, 
Table S11), across 1000 Genomes populations. LA adjustment resulted in lower p-values for 
ANAPC13-associated variants compared to mixQTL (Figure S4), showing the benefit of 
complementary approaches for a locus with similar associations but different significance 
between methods.” 
 
With regard to potential errors, we refer to Liang, et al1, for assessments of false-positives in 
simulations utilizing mixQTL. Using mixQTL, a 29% power increase was demonstrated in GTEx 
compared to standard regression-based methods, and Type I error is well controlled, as shown 
in figure 2 from their manuscript, reproduced below. Compared to their simulations, our study 
population is most similar to the top row of panels and we could be expected to identify 
approximately 80% of true associations with an allelic fold change ≥1.5 with a Type I error falling 
between ~3.5 and 9% using mixQTL, well within acceptable ranges in the field. 
 

 
 
Text of Liang, et al, figure legend: “Fig. 2. QTL mapping performance for mixQTL and 
approaches based on either total reads (trcQTL) or allele-specific reads (ascQTL) on simulated 
data. Each panel presents the results for two relative abundances of the gene, θ, and three 
sample sizes. a Type I error (y-axis) at a 5% significance level across methods (x-axis) are 
shown. The dashed line represents the desired error rate under the null hypothesis. The error 
bar indicates the 95% confidence interval of the estimated error rate from 200 replicates. b 
Power (y-axis) at a 5% significance level across methods under a range of true aFC values (x-axis) 
are shown. Power is defined as the fraction of eQTLs passing the significance 
threshold.” 
 
With regard to false positives in the local ancestry adjusted analyses, previous work has 
suggested that adjustment for local ancestry reduces Type I error in studies with genetically 
heterogeneous populations.2,3 Potential population stratification leading to associations with 
rare, ancestry-specific variants should be further mitigated by the inclusion of only sample-wide 
≥5% MAF variants in the analyses. This is supported in part by the fact that we identify fewer 
ancestry-specific (or rather single-ancestry-monomorphic) associations using LA compared to 
mixQTL (17 vs 54 eGenes). While this specific approach has not been applied to eQTL 
analyses to date, there is evidence supporting our approach in a recently published 
multi-ancestry analysis in GTEx 4 as well as GBMI efforts 5. These consortia recommend local 
ancestry inference on a broader scale to improve global and ancestry-specific association 



 

 

detection in globally representative populations based on findings from the aforementioned 
references by Zhong, et al and Qin, et al. 
 
2) "Using mixQTL, 54 eGenes with lead SNPs monomorphic in one or more 1000G 
superpopulations were identified…" 
 
It would be beneficial to plot a distribution of monomorphic eGenes in the populations for a 
sense of the value of genetic diversity. 
 
Thank you for this suggestion. We have generated the following figure to demonstrate the 
differences in allele frequency by 1000G ancestry as well as the overall AF in our study 
population for these 54 lead variants (highlighting discovery eGenes in red font), added it to 
Figure S2d, and referenced it in the text. 
 

 
3) "We additionally employed FastPaintor to fine-map associations with epigenomic annotations 
and relevant GWAS." 
 
Which epigenomics annotations and why? 
 
Thank you for pointing out this omission from the results. Published eQTL studies in tissues 
affected by common complex diseases support using epigenetic marks representing chromatin 
accessibility as well as enhancer activity or repression for refining eQTL associations and 
prioritizing candidate causal variants.6–10 Coronary artery epigenetic data are limited, so we 
utilized available options representing (as much as possible) gene repression, activation, 
transcription, and chromatin-contact-based enhancer activity. We have updated both the results 
and the methods to reflect the specific annotations and clarified our reasoning as follows: 
 
Methods 
 
“We evaluated four annotations based on gene repression, activation, transcription, and 
chromatin-contact-based enhancer activity: CTCF only, H3K4me3 only, and H3K4me3 / 
H3K27Ac combined. To do this, we included ENCODE binary SNP annotations for chromatin 
accessibility (CTCF, H3K27ac, and H3K4me3 in coronary artery tissue from one 53 yo female). 
To apply enriched enhancer regulatory activity in coronary artery tissue, we also used the 
activity-by-contact model (ABC; 
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction). ABC scores were obtained 
from previous H3K27ac HiChIP and ATAC data in HCASMC and coronary artery from our 



 

 

previous work are publicly available (see “Data and Code Availability”).” 
 
Results 
 
“Including prior functional annotations in relevant tissues can refine association signals and 
prioritize variants and candidate cis-regulatory mechanisms. Therefore, we employed 
FastPaintor to fine-map associations with epigenomic annotations (ENCODE coronary artery 
H3Kme3 and H3K27Ac marks and activity-by-contact scores for human coronary artery SMCs) 
as well as BP and CAD GWAS, which both exhibited strong evidence of colocalization.” 
 
4) For the "sensitivity analysis in European-ancestry subsample" section, the conclusion 
appears to be that a larger sample size provides more statistical power, which does not seem to 
fit the topic sentence. Instead, the authors could randomly downsample the original set to n=87 
whilst keeping the proportions of different ancestries constant. This might allow conclusions on 
the usefulness of having an inclusive study. 
 
Thank you for this useful suggestion, we agree that directly comparing similarly sized samples 
would better portray both the ostensible benefits of inclusive study samples, as well as the 
increased discovery with increased sample size across ancestries. To address this, we followed 
the reviewer’s suggestion and downsampled randomly within each ancestry group to 
approximately 63% of the total study to achieve a diverse sample of 80 individuals (this was 
correctly noted in the supplement and methods but unfortunately reported as 87 [a typo] in the 
manuscript, which we have changed), then re-ran mixQTL and performed colocalization and 
generalization analyses within this subset to directly compare to the European-ancestry-only 
subset. 
 
Our findings indicate that an inclusive study design outweighs the potential for limiting 
ancestry-specific low-frequency variants when compared to exclusively subsetting to a highly 
homogeneous population such as European-ancestry individuals. In comparison to 1,311 
eGenes (210 discovery) in the European-restricted subset, we identified 1,469 eGenes (395 
discovery) in a proportionally representative subset of the total study. Among 
combined-study-population eGenes, 1,043 were also eGenes in the diverse subset (median 
minor AF of lead eQTL 30%, 295 not in the Euro dataset) compared to 1,033 in the 
European-only subset (median minor AF of lead eQTL 29%, 285 not in the diverse subset). 
Generalization was improved for the diverse subset (1,074 generalized eGenes compared to 
983 in the Euro-only sample), despite the genetic ancestry of published arterial eQTL datasets 
being overwhelmingly of European origin. We expand on these findings in the results in 
comparison to the European-ancestry-only findings, and have added a description of this subset 
derivation in the corresponding Methods section. 
 
Results 
 
“We also assessed whether our inclusive study design affected discovery, colocalization, and 
fine-mapping by restricting our sample to European-ancestry individuals (n=80), as well as a 
random subset of 80 members approximating the representation of the genetic ancestry of the 
total sample. In the European-ancestry-only subset, we identified 1,311 eGenes (16% discovery 
eGenes; 79% eGenes in the combined analysis), compared to 1,469 eGenes in the genetically 
diverse subset (27% discovery, 71% present in combined analysis, Figure S8, Tables S18A,B). 
With regard to generalization of published arterial eQTLs, 983 and 1,074 eGenes in the 
European-only and representative subsets respectively also had eQTLs in a GTEx or STARNET 
arterial tissue, and directional consistency with GTEx coronary was over 90% (Figure S8, 
Tables S19A,B). Compared to the overall sample, less than half the number of eGenes from 
either subset colocalized to relevant GWAS traits–fewer than would be expected if colocalization 
were linearly correlated with sample size (Figure S4, Tables S20A,B). The reduction in 
associations across all analyses in the European-only subset compared to the genetically 
diverse subset reinforces the benefits of methodological approaches designed to maximize 
study sample size and diverse genetic ancestry representation.” 
 
Methods 



 

 

 
We have updated the Methods section to incorporate the above information as follows, in a new 
subsection entitled “Sensitivity analyses in European-ancestry-specific and ancestrally 
proportional sample subsets”: 
 
“Most statistical fine-mapping methods and publicly available genomics references continue to 
over-represent ancestrally homogeneous European-ancestry populations. To evaluate whether 
discovery or replication could be improved in a genetically homogeneous study sample despite 
a meaningful decrease in sample size, we performed mixQTL and downstream analyses in 
subsets of our sample restricted either to individuals with 100% European ancestry (n=80) or an 
80-person subset of the total study population randomly selected within each 
majority-assigned-ancestry group. Regression, generalization, and colocalization were 
performed within both subsets as described above for the combined sample.” 
With regard to figures and tables, we have added summary information about the diverse 
subset findings to Tables 1 and S2; added Supplemental Tables S17B, S18B, and S19B for 
lead variants, generalization, and colocalization of the diverse subset respectively; and added 
three Supplemental Figures (new Figures S4a and S8a-c, copied below) comparing the 
findings from the separate 80-person subsets to each other as well as to the overall study 
population results (coloc plot includes local ancestry results as referenced above in response to 
comment 2). 
 
 
 
 

 
 



 

 

 



 

 

 
 
 
Finally, we also uploaded summary statistics from this new subset analysis to Zenodo in 
combination with the previously reported summary statistics. 
(new version DOI: 10.5281/zenodo.7992146) 
 
5) Is the WGS data re-imputed after liftover to hg38 to capture variants that might be lost? 
 
Re-imputation of low-pass WGS was necessary in our case because the original VCFs received 
from Gencove were not phased, which is required for all analyses. No additional variants were 
captured, rather the re-imputation was solely a function of our phasing & imputation pipeline. We 
have clarified this in the methods as follows: 
“Because phasing was necessary for downstream analyses, samples were phased and 
subsequently re-imputed to 1000G phase 3 b37 reference panel using Beagle with impute=true 
and gp=true options. No additional variants had been imputed at the conclusion of this process.” 
 
6) For annotations of eQTL and sQTL with snpEff and Annovar, what was done for predictions 
that were contrasting to each other? 
 
In order to maximize interpretability, we performed a comparison of our Annovar and SnpEff 
annotations and have provided the results here, but given restricted annotation categorizations 
presenting solely SnpEff in the revised manuscript. Based on the results of our fine-mapping 
and the understanding that lead eQTLs are often proxy variants rather than the causal SNP, we 
have additionally run SnpEff with the relevant Gencode v32 reference annotation on all variants 
included in any Paintor credible set. These results are presented as four additional columns in 
Tables S15A/B, representing the assigned primary and secondary annotations by SnpEff, the 
name of the transcript affected, and the sequence change for each respective gene-variant pair. 
We have similarly presented the SnpEff annotations for all available lead sQTLs in a new 
supplementary table (now Table S22). 
 
7) How was the study's summary statistics incorporated with the 1000G GWAS summary 
statistics in the SMR analysis? Was this through a meta-analysis? If so, please describe in more 
detail about the parameters and tools used. 
 
We have attempted to clarify this analysis in both the methods and results section to provide 
additional context. The functionality of SMR does not support comparing more than two studies, 
therefore we compared each relevant GWAS with our eQTL associations in individual analyses 
and combined the results for presentation in the supplement. The results have been revised as 
follows: 
 
“We further assessed the possibility that GWAS associations overlapping our eQTL associations 
were putatively mediated by genetically regulated gene expression using summarized 
Mendelian randomization (SMR). Given LD-reliant methodologic restrictions for both coloc and 
SMR, as expected we identified fewer associations but notable overlap between the two 
methods (25 overlapping signals and 18 unique to SMR, Table S13).” 
 
Additionally we have revised the methods to add information about the relevant thresholds and 
parameters used: 
 
“Due to the complexity and low informativeness likely in LD generated from our genetically 
diverse but modestly sized sample, we generated bed files in Plink using 1000G EUR 
population (excluding Finnish samples due to genetic distinction of that population, which was 
not represented in our samples) as our LD reference. We then performed SMR 
(https://yanglab.westlake.edu.cn/software/smr) using mixQTL results and GWAS summary 
statistics from CAD and BP traits included in colocalization analyses. We were not able to 
evaluate Japanese CAD GWAS due to the large number of variants with allele frequency 
differences >30% between the GWAS study populations and ours. Options included a minor 
allele frequency threshold of 0.01, a 1Mb window surrounding the most significant eQTL per 



 

 

locus, and a maximum mixQTL p-value of 5E-06 required for variant inclusion.” 
 
Reviewer #2 
Non-European populations remain underrepresented in large scale genetic studies (GWAS, 
molecular QTL), including for highly prevalent diseases like coronary artery disease. Beyond 
addressing concerns of health equity, increasing diversity of these studies will increase power to 
detect independent associations and dissect variant contributions at individual loci. To address 
this gap, Hodonsky and co-authors present an e- and sQTL resource derived from study of 
coronary arteries from 138 ancestrally diverse American donors. In addition to replicating 
previous associations, the authors discover novel eQTLs, including at known GWAS loci. This is 
enabled, in part, by use of paired approaches to examine both haplotype-specific and 
ancestry-specific associations. This work represents an expansive resource to complement 
existing findings reported via STARNET and GTEx. Overall, the manuscript is informative and 
will be highly useful to researchers. I think there are a few areas you could expand on to 
enhance overall utility and biological insights that can be gained from this dataset. 
 
1. How representative were ancestries within diagnostic categories? This wasn't clear from the 
donor characteristics table. I'm empathetic to the challenges of acquiring tissue across 
ancestries, but it would be a worthwhile clarification to include, if possible. 
 
We agree with the reviewer that this is indeed pertinent for interpreting potential stratification of 
results by ancestry/diagnosis information given healthy equity issues such as differences in 
access to care, different ages at diagnosis, and differential recommendations for treatment 
course by race and ethnic group, which often correlate to genetic ancestry. 
We have revised the relevant sentence in the results as follows to clarify this information: 
“Majority inferred ancestry groups were represented across diagnoses, but only European and 
South Asian genetic ancestries were represented in all primary diagnostic categories (Figure 
1E, Table S1).” 
 
We have also updated Figure 1E as shown below to visually portray the distribution of majority 
assigned ancestry by diagnostic category, which is more informative than coloring according to 
explant/donor status. While differences do exist, most ancestries are represented in most 
categories (specifically rejected donor hearts, which are most likely to represent “healthy” or 



 

 

 
 
“normal” tissue samples compared to transplant recipients), suggesting our sample is not 
particularly biased toward ancestry-specific representation in one diagnostic category. 
 
2. The results presented here rely on bulk RNA profiling. With this in mind, do you expect tissue 
heterogeneity across diagnostic categories and do you predict that would have an appreciable 
effect on eQTL/sQTL detection? 
 
This is an excellent point, and we acknowledge that sample composition heterogeneity by 
disease status as well as diagnostic categories is likely in our study sample, in particular given 
the difficulties inherent in isolating RNA from samples with highly calcified lesions/advanced 
disease. Incorporating cell-type-proportion estimates is expected to improve precision of QTL 
associations–to this end, we are contributing these results to a STARNET manuscript 



 

 

incorporating cell-type-proportion estimates for multiple human arterial tissue types from our 
coronary arteries as well as STARNET arterial tissues using deconvolution via CibersortX with a 
meta-analyzed arterial reference generated in our lab11. Based on preliminary findings from 
these analyses (Ma, et al, in preparation, figure below), we see an increase in eGene discovery 
using standard regression methods as well as discernable differences between samples 
collected in living vs deceased study participants when calculating proportions for five major cell 
types (EC, SMC, Macrophage, fibroblast, and T/NK cells; see unpublished preliminary figure 
below, from left to right in each box plot is STARNET aortic root, UVA aortic root [insufficient 
sample size to include in our eQTL study], UVA coronary artery, STARNET mammary artery, 
and GTEx coronary artery). 
 
We have also added the following text to the limitations paragraph in the discussion: 
 
“Additionally, we acknowledge that both sample quality and disease status may affect 
interindividual cell-type proportions and therefore eQTL detection. Adjusting for estimated cell 
type proportions using single-cell reference based deconvolution may improve discovery across 
tissues and complement cell-type-specific QTL studies.” 
 

 
Unfortunately, while adjusting for cell-type proportions generated from single-cell data may 
prove informative for identifying eQTLs when phenotype-representative references were 
available, this would not be expected to be equally applicable to sQTL identification unless 
splicing differences were also affected by total gene expression across cell types. (We discuss 
this further in the response to the following comment.) As it stands, there is no 
splicing/isoform-specific expression reference dataset to apply for deconvolution in this way. The 
availability of such a resource would certainly be a boon to the atherosclerosis research 
community moving forward. 
 
3. The splicing results presented are interesting, but I think they could be expanded further. 
 
a. Could you examine the single-cell data included here (or public datasets) to determine 
whether either of the two genes presented in Figure 5 are uniquely expressed in any specific 
cell types within the coronary artery? 
 
Since isoform differences are not captured in short-read data (nor well represented in published 
arterial datasets), the interpretation of our findings is limited to overall gene expression. While 



 

 

isoform-specific changes cannot be identified in our study, there is utility for future functional 
characterization in ascertaining whether genetically regulated isoform switching is more likely to 
be impactful in specific cell types. We have added the following text to the Results section 
entitled “Generalization and colocalization of lead sQTLs” to expand on this idea: 
 
“Tissue-specific differences in isoform proportion cannot necessarily be detected with bulk 
sequencing, implicating potentially distinct regulatory mechanisms for splicing compared to 
overall expression. Therefore, we first directly compared the gene sets represented by eQTLs 
and sQTLs. Only modest overlap was observed (297 eGenes were also sGenes, 23 of which 
shared the same lead variant, Table S23), suggesting that splicing analyses likely represent 
unique disease-relevant pathways compared to overall expression. Among 71 sGenes with lead 
sQTLs reported to have splicing functions in SnpEff, 59 have no eQTLs, with 5 having no 
expression variants exceeding even nominal significance (Table S23). This difference is further 
exemplified by differences in cell-type-specificity in our scRNAseq reference dataset: while 
nearly all cell-type-specific (score >0.7 as described in methods) reference genes were eGenes 
(408 of 411 total), only 37 sGenes (of 83 total) exhibited cell-type specificity.” 
 
To visualize the distribution of these genes despite lacking significant cell type specificity, we 
generated UMAP plots for TOR1AIP1 and ULK3 as well as study-specific scRNA expression 
from human studies available in Plaqview.12–14 Both genes are broadly expressed, with modest 
evidence of higher expression of TOR1AIP1 in mural cells and pericytes. 
 
In summary, long-read expression data or single-cell Isoseq15 will be essential for 
comprehensively addressing these questions, particularly in precious tissues such as coronary 
artery which do not have large sample sizes or publicly available references, as well as cell 
types present in lower proportions in these tissues.16 To comprehensively portray our results 
insofar as we are able, we have added the UMAPs below to the supplement (Figures S9b,c), 
presented the dot plots for the reviewer’s consideration (L to R: Alsaigh, et al; Hu, et al; and Wirka, et 
al), updated the results section to include the aforementioned data, and extended the 
discussion paragraph referring to these two genes in the context of limitations of available 
references as described above. 
 
 
 
 
 
 



 

 

 
 
b. Does the effect size of your sQTLs correlate with predicted variant effects (e.g., protein LOF 
variants, high scores from other variant effect predictors)? 
 
While we did perform limited fine-mapping in the sQTL dataset, it is much more complex to 
evaluate in Paintor, for example, compared to total gene expression, so we limited functional 
annotation to the lead sQTLs, which are expected to be proxies for the causal variant and may 
therefore not proportionally represent the functional categories of the true causal variant or 
variants at each association signal. However, given that we would indeed expect effect size for 
PSI to vary according to its causal mechanism, we agree that it is important to clarify this 
relationship using the available data. While effect size was not correlated with broadly defined 
variant category (pANOVA=0.62), there was a very strong association with p-value 
(pANOVA=3.65E-11), suggesting that even low-effect-magnitude sQTLs (which could be 
simplistically interpreted as small differences in isoform-specific expression) may play a role in 
physiology. We have generated the plot below and incorporated it into Figure S9a, and provide 
the effect vs variant annotation plot for your review. 
 
 
 



 

 

 
c. Are sQTLs enriched in any other functional categories beyond open chromatin sites? Other 
histone modifications, TF motifs esp. for RNA binding proteins, etc. 
 
Keeping in mind the caveat of lead sQTLs being potential proxies for causal SNPs, we have 
evaluated several additional functional categories for these variants in sGenes. First, we 
evaluated overlap between lead sQTLs and H3K27 acetylation marks from ChIP-seq in 
HCASMCs as well as coronary, aorta, and liver tissue from one individual in ENCODE, and 
H3K4me3 in coronary in the same individual. We generated the following UpSet plot to visualize 
these results, replacing the SnpEff annotation plot in Figure 5b from the original manuscript, 
which is now Supplemental Figure S8a: 



 

 

 
We agree that it would be interesting to evaluate the enrichment for other functional categories 
such as RNA binding proteins. However these data are currently not available in coronary artery 
or other human artery tissues or cells, and analysis of available data in non-adherent cells (e.g. 
K562) would likely not provide reliable information. We also acknowledge that fully addressing 
this question would require long-read sequencing to capture isoform specificity, which would 
improve functional characterization for in vitro or in vivo disease modeling. As shown in the 
UMAP plots, we are not able to separate out cell type specificity for the sGenes, suggesting that 
single-cell isoform sequencing is required. While this remains an important question, we feel 
that additional sequencing data are ultimately required and this remains outside the scope of the 
current work. 
 
4. Establishing best practices for multi-ancestry studies is an area of growing interest and 
appreciation, but there's still not a clear path for how these studies should be performed. I think 
more information/justification about the methods used in this study (specifically fine-mapping 
and colocalization) would be helpful for others who are interested in applying similar approaches 
with samples from diverse ancestries. 
 
Thank you for your comment. We agree that there are limited standards or best practices for 
performing these studies. It is a difficult path to forge given that inclusively designed studies 
often suffer from a lack of publicly available resources and there may be minimal motivation to 
improve representation within reference datasets when the majority of association studies are 
performed in genetically homogeneous populations already represented by those resources. We 
hope this will change with the increasing number of multi-ancestry GWAS publications. 
Our intent regarding colocalization and fine-mapping was to maximize our findings in a sample 
that does have strong representation from European ancestry, while calling for improved 
methods development and study design to maximize discovery and generalizability of findings 
to global populations. With the recent accumulation of non-European genetic associations and 
reference datasets, we anticipate an increased justification for utilizing local ancestry within 
these expression analyses. As discussed in the response to Reviewer 1 above, benchmarking 
of these methods is warranted given differences in sample sizes and access to computational 
resources, which will promote true discoveries and minimize type I errors. The experimental 



 

 

design and accompanying scripts described in this manuscript provide a foundation for future 
adoption of more scalable tools, such as FLARE or machine-learning-based methods for fast, 
accurate local ancestry inference.17,1817,18 We have added the following text to the discussion 
section to encourage both maximally inclusive study design and increased representation in 
future implementations of public references: 
 
“Nonetheless, our inclusive study design increased statistical power in both our diverse 
downsampled subset and overall study population compared to a genetically homogeneous 
European-ancestry-only subset. This is significant given the predominantly European genetic 
architecture of GTEx and published GWAS—while these resources have been crucial for 
genomics discovery to date, work highlighting the limitations of genetically restricted samples 
and technologies developed based on those samples points to the necessity of new, more 
expansive approaches. This also aligns with current appeals in basic science and public health 
to promote equitable research benefiting all populations, rather than studies that may extend the 
health disparity gap. 
 
We have also added the following text to the discussion: 
 
“With the generation of new eQTL datasets from admixed populations, establishing best 
practices such as minimizing LD mismatch and using local ancestry estimates are needed to 
improve data standards, integration, and replication efforts.”5,19 
 
5. Minor note: please update your Figure S2 legend text to describe panel b. 
 
Thank you for identifying this omission; we have updated it in the legend for Figure S2. 
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Referees’ reports, second round of review 
Reviewer #1: All previous points adequately addressed 
 
 
Reviewer #2: Overall, the authors have satisfactorily responded to previous comments, which 
has significantly improved the quality of this manuscript. By including new analyses and added 
clarification in the text, utility to the broader community has been made much clearer. In 
particular, added information about how to select tools for analysis in populations with 
significant genetic admixture is timely and the sensitivity analyses provide helpful context, both 
in contrast to other similar study designs and for considering the use of diverse ancestries in 
genetic studies. 
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