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1. Stimulus Selection 
 

We obtained the majority stimuli from https://konklab.fas.harvard.edu/#. We further 
collected images through Google search while following the examples provided in the 
aforementioned image collection. Two objects always belonged to the same class and had the 
same use as to minimize the influence of semantic differences. Rather, their differences were 
in configuration of features and changes in colours or patterns. This choice was made to not 
change the nature of the lure stimuli vis-à-vis that of the target.  

To ensure that items were distinguishable, yet similar, each target-lure pair was rated 
by an independent cohort. This cohort consisted of 25 younger adults with a mean age of 24 
years (ranging from 20 to 32), a mean of 15 years in education (ranging from 13 to 18 years), 
and a female-male ratio of 15/10. Participants were asked how perceptually similar the two 
exemplars appeared to them on a scale of 1 (lower levels of perceptual similarity) to 5 (higher 
levels of perceptual similarity). They were told that a rating of 1 corresponds to objects which 
share a few features but still have several distinct features, whereas a rating of 5 refers to 
objects being almost identical and being only distinguishable based on minute details. The 
aim was to prevent the use of stimuli which were so similar as to result in a floor effect for 
the majority of participants. We therefore excluded all objects with a mean rating above 4. 
An example of stimulus pairs and their respective ratings and inclusion decisions can be 
found in Figure S1. 

Based on these ratings, object pairs were randomly allocated to the short- or long-
term task while ensuring that overall target-lure similarity was matched between the two task 
formats. There was no significant difference in similarity ratings of objects used in the STM 
and LTM task, respectively (p<.05; mean STM: 2.42±.57; mean LTM: 2.57±.45). 
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Figure S1. Examples of target-lure stimulus pairs for the mnemonic discrimination task and their 
subjective similarity ratings derived from an independent cohort of younger adults. Labels on the images 
of the bottles in the upper panel were obscured due to copyright restrictions. 
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2. Bayesian Mixture Modelling 
 
2.1 Modelling procedure 
 

The three models fit to the data had the following assumptions (Figure S2A): 

1) Model 1 assumes that participants always remember the (approximate) location of all 

presented items and may simply vary with respect to the trial-by-trial distance 

between target and responses. In this case, their responses could best be modelled by 

using a circular Gaussian (von Mises) distribution, the full-width half-maximum of 

which represents the precision of a subject’s responses. 

2) Model 2 assumes that participants may recall the location of the target item for some 

trials with varying degrees of error but in other trials may forget the location of the 

target object entirely, resorting to guessing (Bays et al., 2011; Zhang & Luck, 2008). 

In this case, responses can best be characterised in terms of a uniform distribution 

reflecting random guesses and by a von Mises distribution reflecting the precision of 

remembered trials. Prior studies in both young and older adults have shown that this 

model best captures memory responses at longer delays in tasks comparable to the 

current paradigm (Korkki et al., 2020a; Richter et al., 2016a). 

3) Model 3 assumes that in addition to random guesses and correct recalls, participants 

also mistake the location of a non-target item in the same studied display for that of 

the target item. In this case they would place the probe object where another object 

had previously been presented, committing a binding error. Misbinding can be 

modelled by von Mises distributions centred at the location of one of the two non-

target items. 
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Figure S2. Tested models and results from the mixture modelling approach. A. Proposed models to capture 
location memory performance. B. Posterior distributions obtained from the Bayesian model fitting procedure for 
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each age group on short-term and long-term memory data, respectively. Dotted lines represent the upper and 
lower credible values and the red dot denoted MAP represents the maximum a posteriori estimate which is 
taken as the final metric to represent the two model components. C. Standard mixture models best fit 
localisation error responses, which are here shown across all participants from each of the three age groups, 
respectively, and by precision memory task (short- vs. long-term). Final chosen model parameters correspond to 
the respective MAP values from B. 
 

A model selection procedure using Deviance Information Criterion favoured Model 2, 

the standard mixture model, for long-term memory localisation errors and Model 3, the swap 

model, for short-term memory data (Table S1). However, diagnostic plots showed poor 

convergence of the swap model (Figure S3) and this model was a poor fit for 56 participants. 

The average probability of swap errors across participants was 5%, amounting to three 

misbinding trials across the whole task. We deemed this small number of trials as 

insufficiently informative to investigate age effects on short-term memory in our task. To 

date, studies that identified swap models as a better fit for working memory data have used 

abstract stimuli such as fractals and shapes (Bays et al., 2009; Peich et al., 2013; Pertzov et 

al., 2015). To our knowledge the only other study on short-term memory modelling which 

used real-world object stimuli did not find significant instances of misbinding errors even 

though their study included significantly more trials (120) than the current task (75) and was 

therefore better suited to detect whether misbinding errors made a meaningful contribution to 

age effects in their short-term memory task (Korkki et al., 2020b). Given that our study most 

closely follows their methods, we conducted all further analyses on model estimates derived 

from the Standard Mixture Model including a uniform and a von Mises distribution. The 

Bayesian approach determines a probability distribution for each model parameter, showing 

which parameters could reasonably describe the response data. The posterior distribution for 

estimates of retrieval success and precision shown in Figure S2B is found using a Markov 

Chain Monte Carlo algorithm and shows the interval of credible values to describe a given 

model parameter. The maximum a posteriori estimate (the peak of the posterior distribution) 

is the best estimate for retrieval success and precision, respectively. Figure S2C shows the 

best fitting model for each age group. We also obtained measures of retrieval success and 

precision for each subject using the same procedure. 
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Table S1. Overview of model selection parameters. 
Model comparison STM DIC STM winning model LTM DIC LTM winning model 
No guessing model – 
Standard model 
 

-4380.13 
 

Standard model -2659.51 Standard model 

Swap model – Standard 
model 

-621.21 
 

Swap model 1.12 
 

Standard model 

Note. Values show the difference in the Deviance Information Criterion obtained from the Bayesian modelling 
procedure fitting three candidate models to the target-response error data collapsed across all trials. Negative 
values favour the left-hand model in the equation. 
 
A. Across all participants        B. Younger adults 

 
C. Middle-aged adults       D. Older adults 

  
Figure S3. Poor convergence for swap model across all participants and each age group. 
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2.2.Group-based model comparisons 
 
We compared age groups using mixture modelling across all individuals from the young, 

middle-aged and older adult groups, respectively. We did so by contrasting the posterior 

distributions of model estimates derived from the Bayesian modelling approach and 

computing the total overlap between posterior distributions from different age groups. This 

was done with the overlapping package in R (Pastore, 2018). Figure S2B and Table S2 show 

the details of the posterior distributions by age group and model component, marking the 

MAP estimate and the 95% credible interval to illustrate the degree of overlap between 

distributions. 

 
Table S2. Summary of model parameters obtained from Bayesian modelling across all trials from a given 
age group. 

Task Age Group Measure MAP 
Estimate 

Lower 
Credible 

Upper 
Credible 

Comparison % 
overlap 

STM Young guessing .13 .11 .15 Middle ~0 
Old ~0 

 Young SD 14.07 13.53 14.66 Middle 0 
Old 0 

 Middle guessing .19 .17 .21 Young ~0 
Old ~0 

 Middle SD 16.43 15.89 16.99 Young 0 
Old 0 

 Old guessing .25 .23 .27 Young ~0 
Middle ~0 

 Old SD 20.08 19.32 20.85 Young 0 
Middle 0 

LTM Young guessing .28 .25 .30 Middle .38 
Old .02 

 Young SD 15.65 14.99 16.47 Middle 0 
Old 0 

 Middle guessing .26 .24 .28 Young .38 
Old ~0 

 Middle SD 19.41 18.53 20.18 Young 0 
Old ~0 

 Old guessing .33 .31 .35 Young .02 
Middle ~0 

 Old SD 22.19 21.20 23.33 Young 0 
Middle ~0 

 

2.3 Controlling for retrieval success 

Finally, we conducted a sensitivity analysis to determine whether age effects on precision 

were still present when controlling for retrieval success. For the LTM task, the younger 

adults still had higher precision than middle-aged adults (𝛽=.787, 95% CI [.361, 1.213], 
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t(121)=3.66, p<.001, d=.67), but the older two groups did not perform significantly different 

from one another (𝛽=-.315, 95% CI [-.693, .063], t(121)=-1.648, p=.102, d=-.30). For the 

STM task, younger adults had significantly higher memory precision than middle-aged adults 

(𝛽=.546, 95% CI [.131, .960], t(123)=2.61, p=.010, d=.47), who in turn outperformed older 

adults (𝛽=-.575, 95% CI [-.929, -.222], t(123)=-3.22, p=.002, d=-.58). 

 

2.4 Alternative estimation of memory precision 

To further ensure that the differences in our findings for mean localisation error and k in 

the LTM task did not reflect errors in the model estimates, we conducted a sensitivity 

analysis where an approximation of memory precision was calculated without relying on 

mixture modelling based on single-subject data (Cooper & Ritchey, 2019; Korkki et al., 

2020b; Richter et al., 2016b). This analysis required the identification of correctly retrieved 

trials on the basis of mixture model components derived from modelling across all trials from 

all participants in our sample. Using the CO16_fit function from 

https://bayslab.com/toolbox/, we obtained the trial-by-trial probability of a given trial 

stemming from the uniform and the von Mises distribution, respectively. We determined 

which response-to-target distance corresponded to a 5% chance of belonging to the von 

Mises distribution and used this distance as cut-off to identify guess trials. We then took the 

average of the guessing cut-offs across all permutations (67° for LTM; 62° for STM) to 

classify each trial as forgotten or remembered. Retrieval success was then computed as the 

proportion of trials where the target-response distance was equal to or smaller than the 

derived cut-off of 67°. The standard deviation of localisation errors across all correctly 

remembered trials for a given participant was used as the alternative measure of imprecision, 

where larger values reflect poorer precision. When using this alternative memory fidelity 

metric, the difference between young and middle-aged participants approached significance 

(𝛽=.377, 95% CI [-.060, .814], p=.091, d=.31), while that between younger and older adults 

was highly significant (𝛽=.878, 95% CI [.443, 1.314], p=.22, p<.001, d=4.61). For the STM 

task, younger adults had greater memory precision than both middle-aged (𝛽=.567, 95% CI 

[.175, .958], p=.005, d=.51) and older adults (𝛽=1.36, 95% CI [.968, 1.747], p=.22, p<.001, 

d=7.96). These findings suggest that a model-informed measure of precision is still remains 

more sensitive to subtle declines in memory precision compared to analogue measure of 

memory errors. Importantly, estimating single-subject mixture model parameters is the most 
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powerful method to uncover these age-related changes in memory fidelity, as shown in the 

results of the main manuscript. 

3. Exploratory Analyses Post-Review 
 

3.1 Effects of target-lure similarity 

It has previously been shown that age effects may vary as a function of target-lure 

similarity such that both low and particularly high degrees of feature overlap result in 

reduced age effects (Stark et al., 2013; Yassa et al., 2011). We therefore conducted a trial-by-

trial analysis in a mixed linear model to test for such an age by similarity interaction. We 

classified objects into low (<2), moderate (>=2 and <3), and high (>=3) target-lure similarity 

bins. The model showed a main effect of age group (F(2, 148)=12.20, p<.001), with younger 

adults outperforming middle-aged adults (b=.04, SE=.01, t(171)=2.77, p=.006) and middle-

aged adults outperforming older adults (b=-0.06, SE=.01, t(172)=-4.57, p<.001). Trial-wise 

Forced Choice performance was associated with target-lure similarity (F(2, 147)=13.29, 

p<.001). However, performance differences between age groups depended on target-lure 

similarity (F(4, 18623)=3.25 p=.011), suggesting that age differences are most apparent in 

the moderate condition. This may likely be due to a ceiling effect in the low similarity 

condition in the young group. Although it could be possible that the difficulty level of the 

high similarity condition led to younger adults declining to a level more similar to the two 

older groups, it is important to note that there were significantly fewer trials available for 

both the low and the high condition (fewer than 15 in each task) given that our task was not 

designed to probe the effect of target-similarity differences. As a result, we likely have 

insufficient statistical power to conclude that there were no longer age differences among the 

highest target-lure similarity trials and in fact there is a pattern of lower performance with 

increasing age. 
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Figure S4. Estimated marginal means for the interaction effect between target-lure similarity and age 

group for a linear mixed model with Forced Choice mnemonic discrimination accuracy as outcome. 
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4. Comparison of all cognitive measures 
 

 
Abbreviations. LTM: long-term memory. MA: middle-aged adults. NP: neuropsychological tests. OA: older adults. pT: retrieval success. STM: short-term 

memory. YA: younger adults. 

 



 13 

B 

 
Figure S5. Summary of age effects across all cognitive measures ranked by Pearson’s r (for the 
continuous age effect) and Cohen’s d (for age group effects) obtained from a bootstrapping procedure 
with 10,000 samples. A. Overview of age effects with confidence intervals and coloured by cognitive 
domain. B. Correlation plots for the continuous age effect ordered by effect size with colours representing 
the size of the effect. The largest effects were found for cognitive tasks that measured perceptual and 
mnemonic representational quality. Effect sizes were obtained after removing extreme outliers with 
absolute scores larger than z±3. ACE: Addenbrookes Cognitive Examination.  



 14 

5. Associations between precision, retrieval success and mean error 
 

Figure S6 provides an overview of Pearson correlation coefficients between all memory 

measures for object-location binding. Correlations between retrieval success and precision 

were small to moderate. For mean absolute error, the plot suggests stronger associations 

between both measures of retrieval success with mean localisation error compared to the 

association between precision and localisation error. The differences in the strength of the 

association between mean localisation error and the two mixture model components 

demonstrated in the main manuscript (see Steiger’s z-test: Diedenhofen & Musch, 2015; 

Steiger, 1980) may explain why only the κ measure could uncover reduced memory 

performance in middle-aged compared to younger adults in the LTM task.  

 
Figure S6. Correlations between different performance measures for object-location binding. 
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6. Details of Model Selection for Individual Differences in Memory Fidelity 
 
Table S3. Regression models for short-term mnemonic discrimination. 

 
Table S4. Regression models for long-term mnemonic discrimination. 
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Table S5. Regression models for short-term memory retrieval success. 

 
 
Table S6. Regression models for long-term memory retrieval success. 
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Table S7. Regression models for short-term memory precision. 

 
 
Table S8. Regression models for long-term memory precision. 
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