Cell Reports Physical Science, Volume 4

Supplemental information

Rapid and accurate detection of herpes simplex

virus type 2 using a low-cost

electrochemical biosensor

Lucas F. de Lima, André L. Ferreira, Sita Awasthi, Marcelo D.T. Torres, Harvey M. Friedman, Gary H. Cohen, William R. de Araujo, and Cesar de la Fuente-Nunez

Cell Reports Physical Science, Volume 4

Supplemental information

Rapid and accurate detection of herpes simplex

virus type 2 using a low-cost

electrochemical biosensor

Lucas F. de Lima, André L. Ferreira, Sita Awasthi, Marcelo D.T. Torres, Harvey M. Friedman, Gary H. Cohen, William R. de Araujo, and Cesar de la Fuente-Nunez

Figure S1: Normalized analytical curves plotted to calculate the limit of detection using the fourparameter logistic 4PL method. A) Dose-response curve obtained by normalizing RCT values extracted from Nyquist plots as a function of the logarithm of the gD2 concentration. B) Dose-response curve obtained from normalized RCT values extracted from Nyquist plots as a function of the logarithm of the HSV-2 viral loads. The EIS measurements were carried out in triplicate in 5.0 mmol L⁻¹ [Fe(CN)₆]^{-3/-4} and a 0.1 mol L⁻¹ KCI solution applying the open circuit potential at a frequency range of 1×10^5 Hz to 0.1 Hz and using an amplitude of 10 mV. All measurements were recorded using 10 µL of gD2 or HSV-2 samples (ranging from 1×10^0 PFU mL⁻¹ to 1×10^7 PFU mL⁻¹) and incubated for 5 minutes on the biosensor surface. The error bars correspond to the standard deviation.

Figure S2: Effect of pH on the analytical response of the nectin-1 biosensor. Experiments were performed in DMEM medium with pH values adjusted to 7.1, 7.4, and 7.7. The dose-response curves were recorded in triplicate at a concentration ranging from $1 \times 10^{\circ}$ to 1×10^{5} PFU mL⁻¹. The HSV-2 sample at pH= 7.1, 7.4, and 7.0 presented analytical sensitivity values of 0.212 ± 0.008 , 0.263 ± 0.003 , and 0.207 ± 0.008 , respectively. The EIS analyses were recorded in a medium containing 5.0 mmol L⁻¹ [Fe(CN)₆]^{-3/-4} and 0.1 mol L⁻¹ KCI solution at a frequency ranging from 1×10^{5} Hz to 0.1 Hz and 10 mV of amplitude. Ten µL of each HSV-2 sample was incubated on the biosensor surface for 5 minutes before each EIS measurement. The error bars correspond to the standard deviation.

Figure S3: Reproducibility study. Analytical response ((Z-Z0)/Z0) obtained for 6 different biosensors (from different fabrication batches) when incubated with 1×10^{-9} g mL⁻¹ of gD2 prepared in 0.1 mol L⁻¹ PBS (pH = 7.4) for 5 minutes. A relative standard deviation (RSD) of 5.12%, indicative of excellent reproducibility, was obtained to assess the fabrication and functionalization method. The error bars correspond to the standard deviation.

Figure S4: Stability assays. Biosensor stability at different temperatures was assessed by extracting the analytical sensitivity parameters from dose-response curves recorded in triplicate. Electrodes were stored for 7 days at: 25 °C (black circles), -20 °C (red circles), and 4 °C (blue circles). The sensitivity values were obtained by analytical curves at concentrations of gD2 ranging from 1×10^{-12} g mL⁻¹ to 1×10^{-10} g mL⁻¹. All experiments were performed in triplicate (3 different biosensors) in 5.0 mmol L⁻¹ [Fe(CN)₆]^{-3/-4} prepared in 0.1 mol L⁻¹ KCI medium at a frequency window between 1×10^5 Hz and 0.1 Hz and 10 mV of amplitude. A volume of 10 µL of HSV-2 was used in each case, and samples were incubated for 5 minutes on the surface of the biosensor prior to conducting EIS measurements. The error bars correspond to the standard deviation.

Figure S5: Selectivity study of the biosensor. Cross-reactivity assays were performed to assess the selectivity of the biosensor for HSV-2 as opposed to other viruses. The following viruses were used in our studies: H1N1 strain A/California, MHV – mouse hepatitis virus, Influenza B – B/Colorado, H3N2 – A/ Nicaragua, SARS-CoV-2, and HSV-2 – herpes simplex virus-2. All viruses were at concentrations of 10^5 PFU mL⁻¹ except for MHV, which was at 10^8 PFU mL⁻¹. Experiments were recorded using 5.0 mmol L⁻¹ [Fe(CN)₆]^{-3/-4} in 0.1 mol L⁻¹ KCI medium at a frequency range between 1×10^5 Hz and 0.1 Hz and an amplitude of 10 mV. Ten µL of each viral sample was deposited on the WE and incubated for 5 minutes prior to performing EIS measurements. The error bars correspond to the standard deviation.