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Supplementary Note 

  

1. SEIRV compartment model for COVID-19 transmission dynamics 

We constructed a compartmental model based on a deterministic system of nonlinear differential 

equations that considers vaccination. The architecture of the SEIRV is shown in Figure 1.  

Let 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) and 𝑉(𝑡) be the number of susceptible, exposed, infectious, recovered 

and vaccinated individuals at time 𝑡. Define the parameters as follows. 

Λ: the new birth and new residents per unit of time, 

𝛽: transmission rate divided by the total population 𝑁, 

𝛼: vaccination rate, 

𝜇: natural death rate, 

𝛾: incubation rate by which the exposed individual develops symptoms, 

𝛿: the probability of the recovery or death due to COVID-19, 

𝜎: vaccine inefficiency. 

Now we define a set of nonlinear ordinary differential equations as a mathematic model for the 

transmission dynamics of COVID-19: 

 !"($)
!$

= Λ − 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛼𝑆(𝑡) − 𝜇𝑆(𝑡) ,  (S1) 

 !&($)
!$

= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛾𝐸(𝑡) + 𝜎𝛽𝐼(𝑡)𝑉(𝑡) − 𝜇𝐸(𝑡),		 (S2)	

	 !'($)
!$

= 𝛾𝐸(𝑡) − 𝛿𝐼(𝑡) − 𝜇𝐼(𝑡),	 (S3)	

	 !(($)
!$

= 𝛿𝐼(𝑡) − 𝜇𝑅(𝑡),		 (S4)	



	 !)($)
!$

= 𝛼𝑆(𝑡) − 𝜎𝛽𝐼(𝑡)𝑉(𝑡) − 𝜇𝑉(𝑡).		 (S5)	

Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡) be the total population size.   

2. Non-negativity and boundedness of the solutions 

In this section we show the non-negativity and boundedness of the solutions of the nonlinear 

differential equations (S1-S5). Assume that all initial values are non-negative. Since Λ ≥ 0, it 

follows from equation (S1) that 

 !"
!$
≥ −(𝛽𝐼(𝑡) + 𝛼 + 𝜇)𝑆(𝑡),  (S6) 

which implies that 

 𝑆(𝑡) ≥ 𝑆(0)𝑒*∫ (,'(-)./.0)!-!
" ≥ 0 . (S7) 

By the similar arguments, we can show that all 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) and 𝑉(𝑡) are non-negative. For 

example, using equation (S5) and (S7), we obtain 

 !)
!$
≥ −(𝜎𝛽𝐼(𝑡) + 𝜇)𝑉(𝑡)   

                 ≥ 𝑉(0)𝑒*∫ (1,'(-).0)!-
!
" ≥ 0 . 

Summarizing equations (S1-S5), we obtain 

 !2
!$
= Λ − 𝜇𝑁(𝑡) .  (S8) 

Solving equation (S8) for 𝑁(𝑡), we obtain 

 𝑁(𝑡) = 3
0
+ ?𝑁(0) − 3

0
@ 𝑒*0$ .  (S9) 

We assume that 𝑁(0) ≤ 3
0
, so we obtain 𝑁(𝑡) is bounded by 3

0
  for all 𝑡, 

 𝑁(𝑡) ≤ 3
0
 .  (S10) 



Equation (S10) indicates that all variables 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡), 𝑉(𝑡) are in the region Ω: 

 Ω = {𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝑉(𝑡)|0 ≤ 𝑁(𝑡) ≤ 3
0
} .  (S11) 

3. Steady state analysis of COVID-19 transmission dynamical systems 

Steady state of a dynamic system is the state that will not change without external excitation. 

Steady state analysis includes the basic reproduction number, critical epidemic equilibrium points, 

and endemic equilibrium points of the COVID-19 model. 

3.1 Reproduction number 

     Assume that the compartments are divided into two sets. The first set contains infected 

individuals (𝐸, 𝐼) . The second set consists of remaining individuals (𝑆, 𝑅, 𝑉) . Let 𝑋(𝑡) =

H𝑥4(𝑡)𝑥5(𝑡)
J = H𝐸(𝑡)𝐼(𝑡) J .  

Define 

 !6#($)
!$

= 𝐹7(𝑋) − 𝑉7(𝑋), 𝑖 = 1, 2,  (S12) 

where 𝐹7(𝑋) is the rate of appearance of new infections in compartment 𝑖 and 𝑉7(𝑋) includes the 

rate of transitions between compartment 𝑖 and other infected compartments. 

Recall that 

 !6
!$
= N

!&
!$
!'
!$

O = P−
(𝛾 + 𝜇)𝐸(𝑡) + 𝛽Q𝑆(𝑡) + 𝜎𝑉(𝑡)R𝐼(𝑡)

𝛾𝐸(𝑡) − (𝛿 + 𝜇)𝐼(𝑡)
S .  (S13) 

The rate of appearance of new infections in compartment 𝐸 is 𝛽Q𝑆(𝑡) + 𝜎𝑉(𝑡)R𝐼(𝑡) and the rate 

of appearance of new infections in compartment 𝐼(𝑡) is zero. The rate of transitions between 

compartment 𝐸(𝑡) and other infected compartments is −(𝛾 + 𝜇)𝐸(𝑡) and the rate of transitions 



between compartment 𝐼(𝑡) and other infected compartments includes 𝛾𝐸(𝑡) − (𝛿 + 𝜇)𝐼(𝑡). Thus, 

equation (S13) can be written as 

 !8
!$
= H𝛽Q𝑆(𝑡) + 𝜎𝑉(𝑡)R𝐼(𝑡)

0
J − H

(𝛾 + 𝜇)𝐸(𝑡)
−𝛾𝐸(𝑡) + (𝛿 + 𝜇)𝐼(𝑡)J = 𝐹(𝑋) − 𝑉(𝑋) . (S14) 

Let 

 𝐹′(𝑋) = U9:(8)
98$

V and 𝑉′(𝑋) = U9)(6)
98$

V. 

Then, using equation (S14), we obtain 

 𝐹′(𝑋) = H0 𝛽Q𝑆(𝑡) + 𝜎𝑉(𝑡)R
0 0

J ,  (S15) 

 𝑉′(𝑋) = H
(𝛾 + 𝜇) 0
−𝛾 (𝛿 + 𝜇)J , 𝑉′

*4(𝑋) = 4
(;.0)(<.0)

H𝛿 + 𝜇 0
𝛾 𝛾 + 𝜇J .  (S16) 

Using next generation matrix method (van den Driessche 2017) to calculate the basic reproduction 

number 𝑅=, we first calculate  

 𝐹′(𝑋)𝑉′*4(𝑋) = 4
(;.0)(<.0)

H𝛾𝛽Q𝑆(𝑡) + 𝜎𝑉(𝑡)R (𝛾 + 𝜇)𝛽Q𝑆(𝑡) + 𝜎𝑉(𝑡)R
0 0

J .  (S17) 

It is easy to see that the eigenvalues of the matrix 𝐹′(𝑋)𝑉′*4(𝑋) are given by 

 𝜆4 =
;,>"($).1)($)?
(;.0)(<.0)

	 , 𝜆5 = 0 . 

The basic reproduction number 𝑅= is defined as the spectral radius of the next-generation matrix 

𝐹′(𝑋)𝑉′*4(𝑋): 

 𝑅= =
;,>"($).1)($)?
(;.0)(<.0)

 . (S18) 

3. 2. Critical Point and equilibrium of COVID-19 dynamic systems 



Critical transition of COVID-19 dynamic systems occurs when restrictions on travel, social 

gathering and meeting, open of school, mandatory wearing of masks are lifted or poorly adhered 

to, new variants with strong transmission rates, successfully invade. COVID-19 dynamic system 

has multiple stable equilibrium points. There must also be unstable equilibrium points between the 

stable points in the COVID-19 transmission dynamics. Multistability determines the trend of 

COVID-19 transmission dynamics and provide information on designing public health 

intervention measures to eradicate CIVID-19 outbreaks. In this section we apply the Jacobian 

matrix-based linear stability analysis to continuous-time nonlinear dynamical systems. For 

convenience of discussion, nonlinear differential equations (S1-S5) is rewritten as: 

 !6
!$
= 𝑓(𝑥) .  (S19) 

A critical point of the system is a point (𝑥∗) such that: 

 𝑓(𝑥∗) = 0 .  (S20) 

In other words, a constant solution 𝑥∗ at a critical point satisfies both !6∗
!$
= 0 and 𝑓(𝑥∗) = 0 and 

hence 

 !6∗
!$
= 𝑓(𝑥∗)  

The solution that begins with critical point 𝑥∗ and then just stays at the critical point 𝑥∗. Therefore, 

the critical point 𝑥∗ is also called an equilibrium solution. The critical point (equilibrium) can be 

found by setting the left sides of differential equations (S1-S5) to be zero. Therefore, the critical 

points of COVID-19 dynamic system are defined by the following five algebraic equations. 

 Λ − 𝛽𝑆∗𝐼∗ − (𝛼 + 𝜇)𝑆∗ = 0,  (S21) 

 𝛽𝑆∗𝐼∗ + 𝜎𝛽𝐼∗𝑉∗ − (𝛾 + 𝜇)𝐸∗ = 0 ,  (S22) 



 𝛾𝐸∗ − (𝛿 + 𝜇)𝐼∗ = 0 ,  (S23) 

 𝛿𝐼∗ − 𝜇𝑅∗ = 0 ,  (S24) 

 𝛼𝑆∗ − 𝜎𝛽𝐼∗𝑉∗ − 𝜇𝑉∗ = 0.  (S25) 

Now we find critical points by solving equations (S21-S25).  

Solving equation (S23) yields 

 𝐸∗ =
<.0
;
𝐼∗.  (S26) 

Substituting equation (S26) into equation (S22), we obtain 𝛽𝑆∗𝐼∗ + 𝜎𝛽𝐼∗𝑉∗ − (𝛾 + 𝜇)
<.0
;
𝐼∗ = 0, 

which is reduced to 

 𝐼∗ ?𝛽𝑆∗ + 	𝜎𝛽𝑉∗ −
(;.0)(<.0)

;
@ = 0.  (S27) 

Solving equation (S27), we obtain two solutions: 

(1) 𝐼∗ = 0,   (S28) 

(2) 𝐼∗ ≠ 0, 𝛽𝑆∗ + 	𝜎𝛽𝑉∗ −
(;.0)(<.0)

;
= 0.   (S29) 

Since the number of new cases 𝐼∗ determines the disease status, 𝐼∗ = 0 indicates the disease-free, 

and hence critical point 𝐼∗ = 0 is called disease-free critical point or disease free equilibrium. The 

second critical point defined in equation (S29) is called the endemic critical point or equilibrium. 

In scenario (1), we obtain  

𝐸∗ = 0  (equation S26), 𝑅∗ = 0  (equation S24), 𝑆∗ =
3

/.0
 (equation S21), and 𝑉∗ =

/3
0(/.0)

 

(equations S21 and S25). In summary, the disease-free critical point is 

 𝐼∗ = 0, 𝐸∗ = 0, 𝑅∗ = 0, 𝑆∗ =
3

/.0
, 𝑉∗ =

/3
0(/.0)

 , 𝑅= =
;,3(0./1)

0(;.0)(<.0)(/.0)
.  (S30) 



Now we discuss scenario (2) 𝐼∗ ≠ 0. 

Let  

 𝑎 = 1(;.0)(<.0),&

0
  

 𝑏 = (;.0)(<.0),
;0

[𝜇 + (𝛼 + 𝜇)𝜎] − 31,&

0
  

 𝑐 = (;.0)(<.0)(/.0)
;

+ 𝛽[Λ𝜎 − Λ − /.0
0
Λ]  

 𝑑 = (Λ − µ)(𝛼 + 𝜇) , 

 𝐹(Λ, µ, δ, γ, β, α, σ) = a𝐼A + 𝑏𝐼5 + 𝑐𝐼 + 𝑑 . 

The parameters are estimated by minimizing 

 min
3,C,D,E,F,G,H

𝐹(Λ, µ, δ, γ, β, α, σ)5. 

Solving equation (S21), we obtain 

 𝑆∗ =
3

/.0.,'∗
 . (S31) 

Substituting equation (S31) into equation (S25) yields 

 𝑉∗ =
/

0.1,'∗
𝑆∗ =

/3
(0.1,'∗)(/.0.,'∗)

 .  (S32) 

Solving equation (S23) yields 

 𝐸∗ =
<.0
;
𝐼∗ . (S33) 

Solving equation (S24) yields 

 𝑅∗ =
<
0
𝐼∗ .  (S34) 

Substituting equations (S32-S34) into equation (S22) yields 



 𝑎𝐼∗5 + 𝑏𝐼∗ + 𝑐 = 0 ,  (S35) 

where 

 𝑎 = (;.0)(<.0)1,&

;
 ,  (S36) 

 𝑏 = (;.0)(<.0)[0,.(/.0)1,]
;

− 𝜎𝛽5Λ , (S37) 

 𝑐 = 0(;.0)(<.0)(/.0)
;

− 𝛽Λ(𝜇 + 𝛼𝜎) . (S38) 

Solving quadratic equation (S35) for 𝐼∗, we obtain 

 𝐼∗ =
*K±√K&*NOP

5O
 . (S39) 

Since 𝐼∗ ≥ 0, then we obtain the equilibrium point: 

 𝐼∗ =
*K.√K&*NOP

5O
 , (S40) 

where 𝑐 < 0.  

If we assume that natural death rate 𝜇 is zero, then we obtain 

 𝑎 = 𝛿𝜎𝛽5, 𝑏 = 𝜎𝛽(𝛼𝛿 − 𝛽Λ) , 𝑐 = −𝛼𝛽𝜎Λ. (S41) 

Substituting equation (S41) into equation (S40), we obtain 

 𝐼∗ =
3
<
 . (S42) 

After 𝐼∗ is found, we can obtain 

 𝑆∗ =
3

/.0.,'∗
 (from equation S21), 

 𝑉∗ =
/3

(0.1,'∗)(/.0.,'∗)
 (from equation S32), 

 𝐸∗ =
<.0
;
𝐼∗ (from equation S23), 



 𝑅∗ =
<
0
𝐼∗ (from equation S24) (S43) 

In summary, we obtain two equilibrium points: 

(1) Disease free critical (equilibrium) point: 

 𝐼∗ = 0, 𝐸∗ = 0, 𝑅∗ = 0, 𝑆∗ =
3

/.0
, 𝑉∗ =

/3
0(/.0)

, 𝑅=
QRSS = ;,3(0./1)

0(;.0)(<.0)(/.0)
. (S44) 

(2) Endemic critical (equilibrium) point: 

 𝐼∗ =
*K.√K&*NOP

5O
 ,  

 𝑎 = (;.0)(<.0)1,&

;
, 𝑏 = (;.0)(<.0)[0,.(/.0)1,]

;
− 𝜎𝛽5Λ,	 

 𝑐 = 0(;.0)(<.0)(/.0)
;

− 𝛽Λ(𝜇 + 𝛼𝜎) , 

 𝑆∗ =
3

/.0.,'∗
, 𝑉∗ =

/3
(0.1,'∗)(/.0.,'∗)

, 𝐸∗ =
<.0
;
𝐼∗, 𝑅∗ =

<
0
𝐼∗ .  

 𝑅=ST! =
;,3

(;.0)(<.0)(/.0.,'∗)
U1 + /1

(0.1,'∗)
V (S45)  

3.3. Classification of Critical Points    

Stability analysis for the general nonlinear dynamic systems is complicated. In this paper, we will 

focus on isolated critical point and almost linear systems. If there is only critical point in its 

neighborhood, then this critical point is called an isolated critical point. A system is called almost 

linear at a critical point if the Jacobian matrix of linearized system at an isolated critical point is 

invertible. Let 𝑥∗ be an isolated critical point. Assume that the Jacobian matrix of the nonlinear 

dynamic system (S19) is invertible. Consider almost linear system of the nonlinear system at the 

isolated critical point: 

 !6
!$
≈ 9Q

96$
l
6U6∗

(𝑥 − 𝑥∗).  (S46) 



Denote the Jacobian matrix at the critical point 𝑥∗ as 𝐽 = 9Q
96$

l
6U6∗

. Using equations (S1-S5), we 

obtain 

 𝐽 =

⎣
⎢
⎢
⎢
⎡−𝜀4 0 −𝛽𝑆∗ 0 0
𝛽𝐼∗ −𝜀5 𝛽(𝑆∗ + 𝜎𝑉∗) 0 𝜎𝛽𝐼∗
0
0
𝛼

𝛾
0
0

−𝜀A
𝛿

−𝜎𝛽𝑉∗

0
−𝜇
0

0
0
−𝜀N ⎦

⎥
⎥
⎥
⎤

 , (S47) 

where 

 𝜀4 = 𝛼 + 𝜇 + 𝛽𝐼∗, 𝜀5 = 𝛾 + 𝜇, 𝜀A = 𝛿 + 𝜇 and 𝜀N = 𝜇 + 𝜎𝛽𝐼∗.  (S48) 

Once the Jacobian matrix is calculated, we then calculate its eigenvalues and classify the critical 

points. We first consider disease-free critical point. 

3.3.1 Disease-free critical point 

Substituting equation (S44) into equation (S48), we obtain 

 𝜀4= = 𝛼 + 𝜇, 𝜀5 = 𝛾 + 𝜇, 𝜀A = 𝛿 + 𝜇 and 𝜀N= = 𝜇. (S49) 

Again, substituting equation (S49) into equation (S47) yields the Jacobian matrix at the disease-

fee critical point: 

 𝐽= =

⎣
⎢
⎢
⎢
⎡−𝜀4

= 0 −𝛽𝑆∗ 0 0
0 −𝜀5 𝛽(𝑆∗ + 𝜎𝑉∗) 0 0
0
0
𝛼

𝛾
0
0

−𝜀A
𝛿

−𝜎𝛽𝑉∗

0
−𝜇
0

0
0
−𝜀N= ⎦

⎥
⎥
⎥
⎤

 . (S50) 

Its characteristic polynomial is given by 

 |𝜆𝐼 − 𝐽=| = (𝜆 + 𝜀4=)(𝜆 + 𝜇)(𝜆 + 𝜀N=)[(𝜆 + 𝜀5)(𝜆 + 𝜀A) − 𝛾𝛽(𝑆∗ + 𝜎𝑉∗)] . (S51) 

Using equation (S18), we obtain 



 𝛾𝛽(𝑆∗ + 𝜎𝑉∗) = 𝜀5𝜀A𝑅=,  (S52) 

where 𝑅= is the basic reproduction number. 

Substituting equation (S52) into equation (S51) yields 

 |𝜆𝐼 − 𝐽=| = (𝜆 + 𝜀4=)(𝜆 + 𝜇)(𝜆 + 𝜀N=)[𝜆5 + (𝜀5 + 𝜀A)𝜆 + (1 − 𝑅=)𝜀5𝜀A]. (S53) 

The solutions to characteristic equation (S53) are 

 𝜆4 = −𝜀4= = −(𝛼 + 𝜇), (S54) 

 𝜆5 =
*(V&.V').W(V&*V')&.NV&V"("

5
= *(;.<.50).W(;*<)&.N(;.0)(<.0)("

5
 , (S55) 

 𝜆A =
*(V&.V')*W(V&*V')&.NV&V"("

5
= *(;.<.50)*W(;*<)&.N(;.0)(<.0)("

5
 , (S56) 

 𝜆N = 𝜆X = −𝜀N= = −𝜇. (S57) 

Eigenvalues 𝜆4,	𝜆A, 𝜆N and 𝜆X are negative. Now we investigate 𝜆5. When 𝑅= < 1, then 

 (𝛾 − 𝛿)5 + 4(𝛾 + 𝜇)(𝛿 + 𝜇)𝑅= < (𝛾 − 𝛿)5 + 4(𝛾 + 𝜇)(𝛿 + 𝜇)	 

                                    = (𝛾 + 𝛿 + 2𝜇)5. (S58)  

Using equation (S58), we obtain  

u(𝛾 − 𝛿)5 + 4(𝛾 + 𝜇)(𝛿 + 𝜇)𝑅= < 𝛾 + 𝛿 + 2𝜇, which implies that 

 −(𝛾 + 𝛿 + 2𝜇) + u(𝛾 − 𝛿)5 + 4(𝛾 + 𝜇)(𝛿 + 𝜇)𝑅= < 0. 

Therefore, 𝜆5 is negative. In other words, when 𝑅= < 1, then all solutions are negative, the system 

is locally asymptotically stable. By the similar arguments, when 𝑅= = 1, then 𝜆5 = 0 the system 

is unstable. When 𝑅= > 1, then 𝜆5 > 0. The system is unstable.  

Therefore, the disease-free critical point can be classified as three cases:  

(1) when 𝑅= < 1, the disease-free critical point is classified as a asymptotically stable node;  



(2) when 𝑅= = 1, the disease-free critical point is classified as an unstable node; and  

(3) when 𝑅= > 1, the disease-free critical point is classified as an unstable saddle point.  

3.3.2 Endemic equilibrium point 

Recall from the Jacobian matrix in equation (S47) that under the endemic equilibrium point 

condition, we have 𝐼∗ ≠ 0, which implies 

𝜀4 = 𝛼 + 𝜇 + 𝛽𝐼∗, 𝜀5 = 𝛾 + 𝜇, 𝜀A = 𝛿 + 𝜇 and 𝜀N = 𝜇 + 𝜎𝛽𝐼∗. Thus,  

 𝐽∗ =

⎣
⎢
⎢
⎢
⎡−𝜀4 0 −𝛽𝑆∗ 0 0
𝛽𝐼∗ −𝜀5 𝛽(𝑆∗ + 𝜎𝑉∗) 0 𝜎𝛽𝐼∗
0
0
𝛼

𝛾
0
0

−𝜀A
𝛿

−𝜎𝛽𝑉∗

0
−𝜇
0

0
0
−𝜀N ⎦

⎥
⎥
⎥
⎤

 . (S59)  

Its characteristic polynomial is 

 |𝜆𝐼 − 𝐽∗| = (𝜆 + 𝜇){(𝜆 + 𝜀N)[(𝜆 + 𝜀4)(𝜆 + 𝜀5)(𝜆 + 𝜀A) + 𝛾𝛽[𝛽𝐼∗𝑆∗ − (𝜆 + 𝜀4)((𝑆∗ + 𝜎𝑉∗)]  

                   +𝛾𝛽5[(𝜆 + 𝜀4)𝜎5𝐼∗𝑉∗ + 𝛼𝜎𝐼∗𝑆∗]} ,  (S60)  

Or 

|𝜆𝐼 − 𝐽∗| = (𝜆 + 𝜇){𝜆N + (𝜀4 + 𝜀5 + 𝜀A + 𝜀N)𝜆A + [𝜀N(𝜀4 + 𝜀5 + 𝜀A) + 𝜀4(𝜀5 + 𝜀A) + 𝜀5𝜀A  

 −𝛾𝛽(𝑆∗ + 𝜎𝑉∗)]𝜆5 + [𝜀5𝜀A𝜀N + 𝜀4(𝜀5𝜀A + 𝜀5𝜀N + 𝜀A𝜀N) − 𝛾𝛽(𝜀4 + 𝜀N)(𝑆∗ + 𝜎𝑉∗) + 	𝛾𝛽5𝑆∗𝐼∗ +

𝛾𝛽5𝜎5𝑉∗]𝜆	 + 𝜀4𝜀5𝜀A𝜀N − 𝛾𝛽(𝑆∗ + 𝜎𝑉∗)𝜀4𝜀N + 𝛾𝜎5𝛽5𝜀4𝐼∗𝑉∗ + 𝛾𝛽5𝜀N𝐼∗𝑆∗ + 	𝛼𝛾𝜎𝛽5𝐼∗𝑆∗}. (S61) 

Using equations (S45) and (S59), we obtain 

 𝛾𝛽(𝑆∗ + 𝜎𝑉∗) = 𝜀5𝜀A𝑅=ST!,  (S62) 

where 

 𝑅=ST! =
;,3

(;.0)(<.0)(/.0.,'∗)
[1 + /H

(0.1,'∗)
]. (S63) 



Again, substituting equation (S62) into equation (S60) yields 

|𝜆𝐼 − 𝐽∗| = (𝜆 + 𝜇)(𝜆 + 𝜀N){(𝜆 + 𝜀4)[(𝜆 + 𝜀5)(𝜆 + 𝜀A) − 𝜀5𝜀A𝑅=ST! + 𝛾𝛽5𝜎5𝐼∗𝑉∗] 

+𝛾𝛽5(1 + 𝛼𝜎)𝐼∗𝑆∗	}.  (S64) 

It follows from equation (S64) that the positive solution to characteristic equation (S64) comes 

from the equation 

 (𝜆 + 𝜀4)[(𝜆 + 𝜀5)(𝜆 + 𝜀A) − 𝜀5𝜀A𝑅=ST! + 𝛾𝛽5𝜎5𝐼∗𝑉∗] + 𝛾𝛽5(1 + 𝛼𝜎)𝐼∗𝑆∗ = 0.       (S65)  

Considering that when dynamic system reaches stationary status, number of new cases 𝐼∗ is small. 

Thus, equation (S65) can be reduced to 

 (𝜆 + 𝜀4)[(𝜆 + 𝜀5)(𝜆 + 𝜀A) − 𝜀5𝜀A𝑅=ST!] = 0.  (S66) 

Equation (S66) can be further reduced to 

 𝜆A + 𝑎4𝜆5 + 𝑎5𝜆 + 𝑎A = 0,  (S67) 

where 𝑎4 = 𝜀4 + 𝜀5 + 𝜀A, 𝑎5 = 𝜀4𝜀5 + 𝜀4𝜀A + 𝜀5𝜀A − 𝜀5𝜀A𝑅=ST! , 𝑎A = 𝜀4𝜀5𝜀AQ1 − 𝑅=ST!R.  

Using Routh-Hurwitz stability criterion, we obtain that all roots in characteristic equation (S67)  

have negative real parts if and only if  

 𝐻4 = 𝑎4 > 0,𝐻5 = l
𝑎4 𝑎A
1 𝑎5l = 𝑎4𝑎5 − 𝑎A > 0,𝐻A = x

𝑎4 𝑎A 0
1 𝑎5 0
0 𝑎4 𝑎A

x 𝑎A(𝑎4𝑎5 − 𝑎A) > 0 . (S68) 

After some algebra, we can obtain from equation (S67) that 

 𝐻4 = 𝜀4 + 𝜀5 + 𝜀A ,  (S69) 

 𝐻5 = (𝜀4 + 𝜀5 + 𝜀A)(𝜀4𝜀5 + 𝜀4𝜀A) + (𝜀5 + 𝜀A)𝜀5𝜀AQ1 − 𝑅=ST!R ,  (S70) 

 𝐻A = 𝜀4𝜀5𝜀AQ1 − 𝑅=ST!R𝐻5 .  (S71) 

Recall that  



 𝜀4 = 𝛼 + 𝜇 + 𝛽𝐼∗, 𝜀5 = 𝛾 + 𝜇, 𝜀A = 𝛿 + 𝜇 , 

which implies 

 𝐻4 > 0	for all cases. (S72) 

It is clear that if 𝑅=ST! < 1 then 

 𝐻5 > 0	, 𝐻A > 0 . 

Using Routh-Hurwitz stability criterion, we obtain that all roots in characteristic equation (S67)  

have negative real parts. Therefore, if 𝑅=ST! < 1 then the endemic equilibrium point is stable. 

Next we consider 𝑅=ST! = 1. In this case, we have 𝑎A = 0 , which implies that  

 𝐻A = 0 

and Routh-Hurwitz stability criterion is violated. Thus, the endemic equilibrium point is unstable. 

Finally, we consider 𝑅=ST! > 1. The condition  

 𝑅=ST! > 1  

Implies that 

 𝑎A = 𝜀4𝜀5𝜀AQ1 − 𝑅=ST!R < 0. (S73) 

Since 𝐻A = 𝜀4𝜀5𝜀AQ1 − 𝑅=ST!R𝐻5 , which implies that 𝐻5 and 𝐻A have opposite sign. Therefore, if 

𝑅=ST! > 1 then again Routh-Hurwitz stability criterion is violated and the endemic equilibrium 

point is unstable. 

Therefore, in summary, the endemic equilibrium point can be classified as three cases:  

(1) when 𝑅=ST! < 1, the endemic equilibrium point is classified as a asymptotically stable node;  

(2) when 𝑅=ST! = 1, the endemic equilibrium point is classified as an unstable node; and  



(3) when 𝑅=ST! > 1, the endemic equilibrium point is classified as an unstable saddle point.  
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Figure S1. Three steady state periods (April – July, 2021; March – May, 2022; and September – 
November, 2022) are selected from January 12, 2021 to December 12, 2022. Three periods are 
represented in red, green and blue colors. 
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Figure S2. Impact of simultaneously changing changing parameters α (vaccination rate) and
σ (vaccine inefficiency) while keeping the current values of other parameters unchanged on the 
stability of COVID-19 dynamics in the steady periods (September – November 2022) across 
50 states in the US. Vertical axis represented α and horizontal axis represented σ.  



Figure S3. Impact of simultaneously changing changing parameters γ (incubation rate) and
δ (probability of recovery or death) while keeping the current values of other parameters unchanged 
on the stability of COVID-19 dynamics in the steady periods (September – November 2022) across 
50 states in the US. Vertical axis represented γ and horizontal axis represented δ.  
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Figure S4. Impact of simultaneously changing changing parameters γ (incubation rate) and
β (transmission rate) while keeping the current values of other parameters unchanged on the 
stability of COVID-19 dynamics in the steady periods (September – November 2022) across 
50 states in the US. Vertical axis represented γ and horizontal axis represented β.  
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Figure S5. Impact of simultaneously changing changing parameters β (transmission rate) and
δ (probability of recovery or death) while keeping the current values of other parameters unchanged
on the stability of COVID-19 dynamics in the steady periods (September – November 2022) across 
50 states in the US. Vertical axis represented β and horizontal axis represented δ.  
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Figure S6. Impact of simultaneously changing parameters β (transmission rate), γ (incubation rate) 
and δ (probability of recovery or death) while keeping the current values of other parameters unchanged
on the stability of COVID-19 dynamics in the steady periods (September – November 2022). Axis  x 

 represented parameter  β,  axis  y  represented  parameter  δ  and  axis  z represented parameter γ. 
 (A)  MI,  the state with the largest stability region,  (B)  KS,  the state with the second largest stability
 region, (C) NE, the state with the smallest stability region, and (D) WA, the state with the second 
 smallest stability region.    



Table S1. The largest eigenvalue at the endemic equilibrium points in three 
steady periods across 50 states in the US. 
 

 state 𝑵 𝝀𝟒 

 	 April - July, 
2021 

March - May, 
2022 

September - November, 
2022 

AK  733,391  1.56E-01 6.10E-02 1.90E-01 
AL  5,024,279  1.71E-01 1.17E-01 1.12E-01 
AR  3,011,524  1.22E-01 2.61E-01 6.73E-02 
AZ  7,151,502  1.35E-01 6.94E-02 1.36E-01 
CA 39,538,223  2.11E-01 1.18E-01 1.55E-01 
CO  5,773,714  1.36E-01 6.24E-02 9.90E-02 
CT  3,605,944  1.32E-01 1.53E-01 1.10E-01 
DE  989,948  2.41E-01 1.00E-01 9.05E-02 
FL 21,538,187  1.29E-01 1.41E-01 1.36E-01 
GA 10,711,908  9.10E-02 1.11E-01 1.80E-01 
HI  1,455,271  1.85E-01 1.05E-01 1.62E-01 
IA  3,190,369  1.72E-01 1.59E-01 1.74E-01 
ID  1,839,106  1.19E-01 1.86E-01 1.11E-01 
IL 12,812,508  8.04E-02 1.36E-01 1.24E-01 
IN  6,785,528  9.64E-02 3.55E-01 1.46E-01 
KS  2,937,880  1.66E-01 1.57E-01 1.86E-02 
KY  4,505,836  1.83E-01 9.89E-02 8.74E-02 
LA  4,657,757  8.99E-02 2.25E-01 1.66E-01 
MA  7,029,917  1.90E-01 7.80E-02 7.56E-02 
MD  6,177,224  1.78E-01 3.46E-01 1.00E-01 
ME  1,362,359  2.96E-01 9.65E-02 1.42E-01 
MI 10,077,331  3.05E-01 2.14E-01 5.51E-02 
MN  5,706,494  2.36E-01 1.84E-01 9.80E-02 
MO  6,154,913  5.65E-02 2.22E-01 1.50E-01 
MS  2,961,279  1.35E-01 2.10E-01 1.40E-01 
MT  1,084,225  1.33E-01 2.96E-01 9.10E-02 
NC 10,439,388  1.10E-01 8.09E-02 6.41E-02 
ND  779,094  2.02E-01 2.29E-01 7.88E-02 
NE  1,961,504  2.20E-01 2.11E-01 2.56E-01 
NH  1,377,529  2.73E-01 1.41E-01 1.59E-01 
NJ  9,288,994  2.75E-01 1.26E-01 7.17E-02 
NM  2,117,522  1.80E-01 2.01E-01 8.91E-02 



NV  3,104,614  5.38E-02 1.87E-01 2.70E-01 
NY 20,201,249  2.23E-01 1.75E-01 5.63E-02 
OH 11,799,448  1.84E-01 2.50E-01 8.04E-02 
OK  3,959,353  1.73E-01 1.27E-01 1.24E-01 
OR  4,237,256  2.36E-01 1.33E-01 1.20E-01 
PA 13,002,700  2.99E-01 3.09E-01 1.13E-01 
PR  3,285,874  1.78E-01 1.08E-01 5.07E-02 
RI  1,097,379  6.73E-02 8.17E-02 6.55E-02 
SC  5,118,425  1.40E-01 2.51E-01 1.21E-01 
SD  886,667  2.08E-01 2.25E-01 9.39E-02 
TN  6,910,840  1.38E-01 2.35E-01 8.61E-02 
TX 29,145,505  1.15E-01 2.99E-02 2.14E-01 
UT  3,271,616  9.34E-02 2.78E-01 1.31E-01 
VA  8,631,393  1.72E-01 8.09E-02 1.18E-01 
VT  643,077  1.44E-01 6.34E-02 1.18E-01 
WA  7,705,281  1.78E-01 6.34E-02 1.30E-01 
WI  5,893,718  1.52E-01 1.43E-01 7.52E-02 
WV  1,793,716  2.29E-01 2.19E-01 8.74E-02 
WY  576,851  1.86E-02 2.22E-01 1.05E-01 

 
 
  



Table S2. The reproduction number at the endemic equilibrium point in three 
steady periods across 50 states in the US. 
 

 state 𝑵 𝑹𝟎𝒆𝒏𝒅 

 	 April - July, 
2021 

March - May, 
2022 

September - November, 
2022 

AK  733,391  1.4882 1.2717 1.6087 
AL  5,024,279  1.6356 1.4859 1.4873 
AR  3,011,524  1.3871 1.5872 0.7592 
AZ  7,151,502  1.2515 1.4992 1.1714 
CA 39,538,223  3.2000 1.4639 1.1679 
CO  5,773,714  1.4619 0.9392 1.2262 
CT  3,605,944  1.6514 1.1172 1.4204 
DE  989,948  2.3482 1.4158 0.9796 
FL 21,538,187  1.6243 1.3346 1.6129 
GA 10,711,908  1.4301 1.3906 1.4375 
HI  1,455,271  1.5330 1.2221 1.3806 
IA  3,190,369  1.4979 2.3558 1.0906 
ID  1,839,106  1.2902 1.5004 1.1492 
IL 12,812,508  1.1010 1.2427 1.0303 
IN  6,785,528  1.4808 2.0483 1.3011 
KS  2,937,880  1.6181 1.5825 0.8463 
KY  4,505,836  1.5401 1.1988 0.9389 
LA  4,657,757  1.2269 1.5380 1.7963 
MA  7,029,917  2.4008 1.0846 0.7365 
MD  6,177,224  1.8112 1.4433 1.1016 
ME  1,362,359  2.2400 1.4987 1.1074 
MI 10,077,331  2.5159 1.2283 0.9385 
MN  5,706,494  2.1400 1.6076 1.0471 
MO  6,154,913  1.3783 1.3245 1.1722 
MS  2,961,279  1.3353 1.7490 2.5765 
MT  1,084,225  1.3814 1.9140 1.2367 
NC 10,439,388  1.5884 0.8518 0.9769 
ND  779,094  1.8152 1.6852 0.9715 
NE  1,961,504  2.4089 2.8713 2.4377 
NH  1,377,529  2.1694 1.1846 1.1882 
NJ  9,288,994  1.8680 1.1596 1.0438 
NM  2,117,522  1.2206 1.2357 1.0108 



NV  3,104,614  0.9301 1.3862 1.5088 
NY 20,201,249  1.8802 1.3264 0.9069 
OH 11,799,448  1.6439 2.0173 0.8531 
OK  3,959,353  1.6449 1.9003 1.0150 
OR  4,237,256  1.4383 1.1184 1.0886 
PA 13,002,700  2.4117 1.3496 0.9778 
PR  3,285,874  4.1541 1.1200 0.9633 
RI  1,097,379  1.2908 1.2471 0.8438 
SC  5,118,425  1.5699 2.0826 1.0259 
SD  886,667  1.7168 1.6564 0.9446 
TN  6,910,840  1.6918 2.0071 0.9094 
TX 29,145,505  1.2565 0.8002 1.5579 
UT  3,271,616  1.2628 1.8566 1.4559 
VA  8,631,393  2.3099 1.0337 0.8755 
VT  643,077  1.7794 1.5289 1.1950 
WA  7,705,281  1.4924 0.7499 0.9286 
WI  5,893,718  1.5690 1.6867 0.9044 
WV  1,793,716  1.8349 1.4470 0.8511 
WY  576,851  0.7828 2.0850 0.9964 

 


