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Supplementary Fig. 1 | Tuning to unimanual and bimanual movement is intermixed within electrodes 
and has no clear somatotopic pattern. a Participant T5’s MRI-derived brain anatomy and 
microelectrode array locations. Microelectrode array locations were determined by co-registration of post-
operative computed tomography (CT) images with preoperative MRI images. b The strength of each 
electrodes’ tuning to right or left hand movement during unimanual and bimanual movement contexts is 
indicated with a shaded color (darker colors indicate more tuning). Tuning strength was quantified as the 
fraction of total firing rate variance accounted for by changes in firing rate due to the movement conditions 
(unimanual/bimanual). Small white circles indicate electrodes that had no significant tuning to that 
movement context as governed by a 1-way ANOVA. Broad spatial tuning to all movement categories can 
be seen across all arrays. c Bar plots indicate the number of electrodes that were significantly tuned to 
each movement context as computed in (a). Results show greater preference for right hand tuning across 
both movement contexts. d Ratio of unimanual tuning strength between the right and left hand. Tuning 
strength was computed using an unbiased estimate of neural distance between tuning coefficient vectors. 
The right hand had almost twice as strong tuning than the left hand. e Pie chart summarizes the number 
of electrodes that had statistically significant tuning to each possible number of movement sets (from 0 to 
4).  
 
 
 
 
 
 
 



 

 
Supplementary Fig. 2 | Offline unimanual and bimanual decoding. a Distributions of decoded velocity 
magnitudes during unimanual movement (related to Fig. 3a,b). The feed forward neural network (FFN) was 
able to decode higher velocity magnitudes than the linear decoder. Removal of the laterality dimension 
resulted in less decoded velocities near 0 for the FFN, indicating more cursor jitter without laterality 
information. b Offline single-bin decoding on bimanual data. Neural activity was binned (20-ms bins) and 
truncated to 400 ms movement windows (300-700 ms after go cue). Linear ridge regression (RR) and a 
densely connected FFN (single layer, 512 units) were trained, using 5-fold cross-validation, to decode left 
and right cursor velocities. Sample 8 s snippets of decoded x-direction velocity traces are shown. c Each 
bar indicates the offline decoding performance (Pearson correlation coefficient) for the RR and FFN 
decoders across the x- and y-direction velocity dimensions. Generally, right hand decoding accuracy was 
higher than left hand decoding accuracy during bimanual movement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Fig. 3 | Diagram of the RNN architecture. a We used a single-layer RNN with 512 gated 
recurrent units (GRUs; ℎ!) to transform neural firing rates (𝑥!) binned in 20 ms to continuous cursor 
velocities (𝑣!) and discrete movement signals (𝑒!). The 𝑣! vector describes the x- and y-direction velocities 
for the right (first two dimensions) and left (last two dimensions) cursors at that moment in time (𝑡), and 𝑒!  
is a one-hot vector (only one dimension is high at any given time) which codes for the type of movement 
that the RNN detects (unimanual right, unimanual left, bimanual, or no movement) at that time point. Note 
that we used a day-specific affine transform on the input firing rate vector 𝑥! to account for day-to-day 
changes in neural activity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Fig. 4 | Decoding simulated data with a simple Gaussian noise model. a Using a 
functional signal-to-noise ratio (fSNR; see Methods) metric, we quantify single-bin and window-average 
decoding performance on real data (top row) and simulated data (bottom row). The simulated data was 
created using a simple Gaussian noise model (using the left covariance matrix in b) which assumes 
independence between firing rates across time bins for any given electrode channel. Decoders were built 
using cross-validated linear regression on 20-ms binned data in the movement window from 300 to 700 
ms after the go cue of each trial. The single-bin decoders were calibrated on each 20-ms bin of data, 
whereas the window-average decoders were calibrated on the averaged activity within the 400-ms 
window. Each dot represents the decoded x- and y-direction velocity in either each 20-ms time bin (left 
column) or each 400-ms window of a trial (right column). The color of each dot corresponds to the true 
target direction of movement indicated by the keys in the upper right of each panel. In this example, the 
simulated data was generated to match the single-bin fSNR of real unimanual right hand movement data 
(2.03). Notice that although the single-bin fSNRs of both the real and simulated datasets match, the 
window-average fSNRs differ quite significantly. b The simple gaussian model on the left assumes 
independent noise, whereas the covariance matrix on the right assumes correlated noise across time bins. 
σ is the standard deviation, and ρ is the correlation coefficient. c In order to match the window-average 
fSNR, one could use the correlated noise model and sweep the covariance parameters until a window-
average fSNR is met. The scatter plots indicate the single-bin and window-average fSNRs of synthetic 
datasets created by sweeping a range of both σ and ρ parameters in the Gaussian model with correlated 
noise. Black stars indicate the real data’s single-bin and window-average fSNR as seen in panel a. Both 
plots are identical except for the way in which the points are colored. The plot on the left is colored 
according to the ρ value, and the plot on the right is colored by the σ value. Notice that the correlated 
noise (ρ parameter) mainly affects the window-average fSNR and the single-bin SNR is mainly affected by 
the standard deviation parameter σ. With our focus on single-bin decoding, the simple Gaussian noise 
model was sufficient when generating synthetic datasets. 
 
 
 
 
 
 
 
 
 
 
 



 

X-direction  UniL-BiL UniR-UniL BiR-BiL 

UniR-BiR 7.82 x 10-10 4.89 x 10-40 2.39 x 10-11 

UniL-BiL  3.4 x 10-21 0.05 

UniR-UniL   1.04 x 10-12 

 

Y-direction UniL-BiL UniR-UniL BiR-BiL 

UniR-BiR 3.3 x 10-9 9.32 x 10-27 4.0 x 10-16 

UniL-BiL  0.76 3.28 x 10-6 

UniR-UniL   8.51 x 10-13 

Supplemental Table 1 | Two-sample T-tests for significance between tuning correlations. These p-
values correspond to the bar plots in Figure 2c. Bolded entries indicate significance as any value below 
0.01. BiH denotes H hand during the bimanual context, and UniH denotes H hand during the unimanual 
context. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplemental Table 2 | List of data collection sessions with participant T5.  
 

Date Session 
# 

Trial 
day 

Description Figure / 
Movie 

06.02.2021 320 1750 Cued unimanual and bimanual hand movement Fig 1B-C 
SFig 1B,C,E 

06.04.2021 321 1752 Cued unimanual and bimanual hand movement 
(pilot data used to initially calibrate RNNs for 
closed-loop) 

Fig 5A-C 

06.23.2021 324 1771 Cued unimanual and bimanual hand movement 
(pilot data used to initially calibrate RNNs for 
closed-loop) 

Fig 5A-C 

06.28.2021 325 1776 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 2B-D  
Fig 5A 
SFig 1D 

06.30.2021 326 1778 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 2B-D  
Fig 5A 
SMovie 1 

07.12.2021 329 1790 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 5A 

07.14.2021 330 1792 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control 

Fig 2B-D  
Fig 5A 

09.13.2021 336 1853 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (RNN vs. linear 
regression) 

Fig 5C 

09.15.2021 337 1855 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (RNN vs. linear 
regression), ‘Unimanual task’ variant 

Fig 5C 
SMovie 3 

09.27.2021 340 1867 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (augmented vs. 
non-augmented training data) 

Fig 4E      
 

09.29.2021 341 1869 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (augmented vs. 
non-augmented training data) 

Fig 4D - E 
SMovie 4 

10.11.2021 344 1881 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (sequential 
unimanual vs. simultaneous bimanual strategy) 

Fig 2B-D  
Fig 5A-B 

10.13.2021 345 1883 Cued unimanual and bimanual hand movement, 
closed-loop two-cursor control (sequential 
unimanual vs. simultaneous bimanual strategy) 

Fig 2B-D  
Fig 5A-B 
Fig 3A-C 
SMovie 2 
SFig 2A-C 



 

Supplemental Movie 1 | Simultaneous bimanual control of two cursors via RNN decoding. In this 
movie, participant T5 uses a BCI to control two cursors in real-time to targets on a computer monitor. An 
RNN converts neural activity into velocities for both cursors at each timestep. On each trial, one of three 
movement types are cued randomly: (1) bimanual (simultaneous movement of both cursors), (2) unimanual 
right (only right cursor movement), or (3) unimanual left (only left cursor movement). Each trial begins with 
a ‘prepare’ segment (of random duration) where lines connect each cursor to its intended target. T5 
prepares to move during this segment but does not attempt movement until the lines disappear, indicating 
the ‘go’ cue. Successful target acquisition occurs when both cursors simultaneously dwell within their 
designated target (illuminates blue) for an uninterrupted period of 0.5 s. A trial times out at a maximum of 
10 s. The RNN decoder is enabled at all times. This experiment block was recorded during a performance 
evaluation session reported in Figure 5a (trial day 1778). 

Supplemental Movie 2 | Sequential unimanual movement vs. simultaneous bimanual movement. The 
same as Supplemental Movie 1, except T5 uses two different movement strategies: (1) sequential 
unimanual (moving one cursor at a time), and (2) simultaneous bimanual (moving both cursors 
simultaneously). A separate RNN decoder is used for each movement strategy. The RNN used for the 
simultaneous bimanual strategy is trained normally (just like in supplemental video 1) with both unimanual 
and bimanual data. The RNN used for the sequential unimanual strategy is trained only with unimanual 
trials. Both experiment blocks were recorded during a performance evaluation session reported in Figure 
5b (trial day 1883). 

Supplemental Movie 3 | RNN vs. linear decoder for two-cursor control. The same as Supplemental 
Movie 1, except with only unimanual trials. An RNN decoder is compared to a linear decoder for online 
control of two cursors. This task was limited to unimanual trials to focus on the differences between 
decoders. Both experiment blocks were recorded during a performance evaluation session reported in 
Figure 5c (trial day 1855). 

Supplemental Movie 4 | Online two-cursor control with raw and temporally altered training data. 
Same as Supplemental Movie 1, except with only unimanual trials. During this task, one cursor is cued on 
any given trial where the other cursor stays ‘locked’ in place. This version of the task was used to focus 
on the differences between decoders. One decoder was trained with raw training data and the other 
decoder was trained with temporally altered training data. Both experiment blocks were recorded during 
a performance evaluation session reported in Figure 4e (trial day 1869). 


