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Supplementary materials 

 

Comparing three-dimensional and two-dimensional deep-learning, radiomics, 

and fusion models for predicting occult lymph node metastasis in laryngeal 

squamous cell carcinoma based on CT imaging: a multicentre, retrospective, 

diagnostic study 

Supplementary Methods 

1. Treatment protocols and clinical information  

In our study cohorts, patients underwent laryngeal surgery and END based on the expert consensus 

guidelines established in China.1 In summary, the recommended approach for neck dissection was as 

follows: (1) Elective neck dissection should encompass at least neck level II-III. (2) For supraglottic 

carcinoma, ipsilateral neck dissection was recommended if the primary tumor did not extend beyond the 

midline of the larynx. (3) Bilateral neck dissection was indicated when primary lesions extended beyond 

the midline in supraglottic carcinoma cases. (4) In early-stage glottic cancer (T1-2), prophylactic neck 

dissection was generally not necessary. (5) For cases of T3-4 glottic cancer, the decision to perform 

bilateral or unilateral dissection was based on the midline invasion.  

We collected demographic and clinical characteristics, such as gender, age, primary site, clinical T 

stage, tumor grade, and pathological lymph node status. While the radiomics and deep learning 

approaches are valuable, it may overlook macroscopic alterations present throughout the entire tumor 

region and information adjacent to the tumor boundary. To address this limitation, we developed a set of 

radiological features for comprehensive tumor evaluation. These features include 

paraglottic/preepiglottic spaces invasion, cartilage invasion, maximum tumor diameter (cm), and tumor 

enhancement pattern. Figure S7 provides visual representations of these features. 

2. CT parameters of different Centres 

Qilu centre: 

CT scancer: multidetector row CT system (Discovery CT750HD, GE Healthcare); Parameters: tube 

voltage of 120 kVp, tube current of 250–400 mAs, and slice thickness of 0.625 mm. Contrast medium: 

The patients were injected intravenously with 1.5 ml/kg contrast medium (Ultravist 370, Bayer Schering 

Pharma) into the antecubital vein at a rate of 3.0 ml/s via an automated power injector.  

Huaxi centre： 

CT sanner: Somatom Definition AS+ and Somatom Definition Flash; Parameters: tube voltage of 

120 kV, tube current of 200-210 mA, and slice thickness of 2.0 mm; Contrast medium: An anionic 

contrast medium (Iohexol 350 mg/ml; GE Healthcare, Chicago, IL), administered at a dose of 1.5 mL/kg 

body weight, was injected intravenously using a power injector at a rate of 3 mL/s.  

PKUPH centre: 

CT scancer: Philips iCT 256; Philips Medical Systems, Best, Netherlands; Parameters:  tube 

voltage of 120 kVp, tube current of 100–370 mAs, slice thickness = 1.0 mm. Contrast medium: The 

patients were injected intravenously with 1.5 ml/kg contrast medium (Ultravist 370, Bayer Schering 

Pharma) into the antecubital vein at a rate of 2.5 ml/s via a power injector (Missouri XD2001, Ulrich 

GmbH&Co, Buchbrunnenweg, Ulm, Germany).  
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QFS centre： 

CT scancer: multidetector row CT system (Discovery CT750HD, GE Healthcare); Parameters: tube 

voltage of 120 kVp, automatic tube current, and slice thickness of 1.0 mm. Contrast medium: Intravenous 

60−120 mL (1.5 mL/kg) contrast agent (iopamidol injection, 37g/100ml; Shanghai Bracco Sine 

Pharmaceutical Industry, Shanghai, China) was managed with an injection rate of 3.0 mL/s.  

3. Radiomics feature extraction 

This study utilized the majority of default parameter settings provided by the PyRadiomics package. 

A fixed bin number of 64 was used for image discretization. The aggregation method for feature 

extraction can be found in Supplementary Table S3. We applied feature transformation using eight 

different filters, namely LoG (Laplacian of Gaussian), Wavelet, LBP3D (Local Binary Patterns in 3D), 

Exponential, Square, SquareRoot, Logarithm, and Gradient. These filters help in extracting additional 

information from the radiological images. 

4. Data normalization of image preprocessing 

In our study, we normalized the test data using the training parameters. Specifically, we employed 

the default ImageNet mean-subtraction method to normalize the images for 2D DCNN. For 3D DCNN, 

all images were normalized using min-max normalization to ensure accurate and reliable model 

evaluation. For radiomics model, the radiomics features were normalized using z-score method. 

5. Five-fold cross-validation in model construction 

The 5-fold cross-validation was performed on the training set (n=300, Qilu Hospital). We utilized 

the Grid search algorithm to optimize the hyperparameters of the model by analyzing the results obtained 

from the 5-fold cross-validation. This enabled us to identify the best model parameters. Once the optimal 

parameters were determined, we applied them to train the model using the entire training set. The trained 

model was then evaluated on the internal and external test sets. The following outlines the procedures 

for conducting 5-fold cross-validation.  

1) Data Preparation: Initially, we collected data from various faculties and institutions. However, for 

the purpose of 5-fold cross-validation, we only choose the training set (n=300) from Qilu Hospital. 

2) 5-Fold Cross-Validation: We performed 5-fold cross-validation on this unified dataset as follows: 

⚫ We divided the dataset into five equal-sized, non-overlapping subsets (folds). 

⚫ During each fold, four subsets were used for training, and the remaining one subset was used 

for validation. 

⚫ We repeated this process five times, with each fold serving as the validation set once while 

the others were used for training. 

⚫ This allowed us to train and validate the model five times, each time with a different partition 

of the data. 

3) Model Parameter Tuning: After each fold of cross-validation, we obtained model performance 

metrics. We utilized these metrics, such as accuracy or other relevant criteria, to fine-tune the 
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algorithm's hyperparameters using a Grid Search algorithm. This process helped us find the best 

set of hyperparameters for our model. 

4) Final Model Training: Once the hyperparameters were optimized using cross-validation, we 

applied the selected model configuration, including the optimized hyperparameters, to train the 

model on the entire training set.  

6.  The interpretation of parameters in convolutional neural networks 

Learning Rate: In a convolutional neural network (CNN), the learning rate is a hyperparameter that 

determines the step size at which the model’s parameters are updated during the training process. It 

controls the speed and magnitude of the parameter updates, influencing how quickly the model adapts to 

the training data.  

L2 Regularization: L2 regularization, also known as weight decay, is a technique used in CNNs to 

prevent overfitting. It involves adding a regularization term to the loss function that penalizes large 

parameter values. This regularization term encourages the model to have smaller parameter values, 

effectively simplifying the model and reducing its sensitivity to individual data points. By including L2 

regularization, the CNN becomes more robust and generalizes better to unseen data. 

Batch Size: In CNNs, the training data is divided into smaller batches during the training process. 

The batch size refers to the number of samples that are processed together before updating the model’s 

parameters. When training with a larger batch size, more samples are processed simultaneously, which 

can lead to faster training as it takes advantage of parallelization. However, larger batch sizes may require 

more memory and can result in slower convergence or poorer generalization. Conversely, smaller batch 

sizes may take longer to train but can result in better convergence and generalization as they offer more 

frequent parameter updates and increased model variability. 
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7. Configuration file for Pyradiomics  

imageType: 

  Original: {} 

  LoG: 

    sigma: [1.0, 2.0, 3.0]  # If you include sigma values >5, remember to also increase the padDistance. 

  Wavelet: {} 

  LBP3D: {} 

  Exponential: {} 

  Square: {} 

  SquareRoot: {} 

  Logarithm: {} 

  Gradient: {} 

 

featureClass: 

  shape: 

  firstorder: 

  glcm:  # Disable SumAverage by specifying all other GLCM features available 

    - 'Autocorrelation' 

    - 'JointAverage' 

    - 'ClusterProminence' 

    - 'ClusterShade' 

    - 'ClusterTendency' 

    - 'Contrast' 

    - 'Correlation' 

    - 'DifferenceAverage' 

    - 'DifferenceEntropy' 

    - 'DifferenceVariance' 

    - 'JointEnergy' 

    - 'JointEntropy' 

    - 'Imc1' 

    - 'Imc2' 

    - 'Idm' 

    - 'Idmn' 

    - 'Id' 

    - 'Idn' 

    - 'InverseVariance' 

    - 'MaximumProbability' 

    - 'SumEntropy' 

    - 'SumSquares' 

  glrlm: 

  glszm: 

  gldm: 

  ngtdm: 

setting: 

  # Normalization: 

  # most likely not needed, CT gray values reflect absolute world values (HU) and should be comparable between scanners. 

  # If analyzing using different scanners / vendors, check if the extracted features are correlated to the scanner used. 

  # If so, consider enabling normalization by uncommenting settings below: 

  #normalize: true 

  #normalizeScale: 500  # This allows you to use more or less the same bin width. 

 

  # Resampling: 

  # Usual spacing for CT is often close to 1 or 2 mm, if very large slice thickness is used, 

  # increase the resampled spacing. 

  # On a side note: increasing the resampled spacing forces PyRadiomics to look at more coarse textures, which may or 

  # may not increase accuracy and stability of your extracted features. 

  interpolator: 'sitkBSpline' 

  resampledPixelSpacing: [1, 1, 1] 

  padDistance: 10  # Extra padding for large sigma valued LoG filtered images 

   

  # Mask validation: 

  # correctMask and geometryTolerance are not needed, as both image and mask are resampled, if you expect very small 

  # masks, consider to enable a size constraint by uncommenting settings below: 

  #minimumROIDimensions: 2 

  #minimumROISize: 50 

 

  # Image discretization: 
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  # The ideal number of bins is somewhere in the order of 16-128 bins. A possible way to define a good binwidt is to 

  # extract firstorder:Range from the dataset to analyse, and choose a binwidth so, that range/binwidth remains approximately 

  # in this range of bins. 

  binCount: 64 

 

  # first order specific settings: 

  # This amount is added to the gray level intensity in features Energy, Total Energy and RMS, this is to prevent negative values.  

  # If using CT data, or data normalized with mean 0, consider setting this parameter to a fixed value (e.g. 2000) that ensures non-

negative numbers in the image. 

  voxelArrayShift: 1000  

   

  # Misc: 

  # default label value. Labels can also be defined in the call to featureextractor.execute, as a commandline argument, 

  # or in a column "Label" in the input csv (batchprocessing) 

  label: 1 
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Supplementary Figures 

Figure S1. Key radiomics and deep learning (DL) features after LASSO regression. Weight visualization 

of radiomics features (A), three-dimensional (3D) DL features (B), and two-dimensional (2D) DL 

features (C) after LASSO selection. Green boxes indicate the top 2D and 3D DL features. 
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Figure S2. Discriminative ability analysis for radiomics and deep learning (DL) features. T-distributed 

stochastic neighbour embedding (t-SNE) visualizations for the radiomics features, two-dimensional (2D) 

and three-dimensional (3D) DL features in the training set (A), internal test set (B), and the external test 

2 (C). Each dot represents a patient. Blue dots indicate patients with lymph node metastasis (LNM), and 

red dots indicate patients without LNM. 
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Figure S3. Clustering analysis for key radiomics and deep learning (DL) features. Hierarchical clustering 

heatmap for key radiomics features, top two-dimensional (2D) DL features, and top three-dimensional 

(3D) DL features in the training set (A), internal test set (B), and external test set 2 (C). The x-axis 

represents the IDs of radiomics and DL features, and the y-axis represents patients. Patients belong to 

the same cluster (adjacent rows) share similar features in the Euclidean space. The status of lymph node 

metastasis (LNM) is displayed on the white-green bar located on the left side next to the y-axis. 
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Figure S4. Performances for occult lymph node metastasis (LNM) prediction. Calibration curves for the 

DLRad_DB model, three-dimensional (3D) deep learning (DL) model, two-dimensional (2D) DL model, 

radiomics model, and clinical model in the training set (A), internal test set (B), external test set 1 (C), 

and the external test set 2 (D). (E) Decision curve analysis for each model in the external test set 1. 
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Figure S5. Comparisons of the receiver-operating characteristic (ROC) curves of the predictive models 

in different T stages. AUC indicates area under the curve; DL indicates deep learning; 2D, two-

dimensional, and 3D, three-dimensional. P was calculated through the Delong test. 
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Figure S6. Comparisons of the receiver-operating characteristic (ROC) curves of the predictive models 

in different primary site. AUC indicates area under the curve; DL indicates deep learning; 2D, two-

dimensional, and 3D, three-dimensional. P was calculated through the Delong test. 
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Figure S7. Radiological features of laryngeal squamous cell carcinoma. Paraglottic space invasion (A) 

or not (E); Preepiglottic space invasion (B) or not (F); cartilage invasion (C) or not (G); enhancement 

pattern: inhomogeneous enhancement (D) or homogeneous enhancement(H).
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Supplementary Tables 

Table S1. Regional distribution of metastatic lymph nodes in the training and internal test sets (Qilu 

Centre) and external test set 1 (Huaxi Centre and PKUPH Centre) 

 Laterality and levels II II-III II-IV III-IV 

Qilu Centre 

(pN+, n=157) 

Ipsilateral, n 46 68 29 3 

Bilateral, n 0 11 0 0 

Huaxi and 

PKUPH 

Centres 

(pN+, n=42) 

Ipsilateral, n 11 21 8 0 

Bilateral, n 0 2 0 0 

Abbreviations: pN+: pathological lymph node positive; n represents number of patients. 
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Table S2. Descriptions of the key radiomics features  

Feature ID Feature description 

Rad_1 original_shape_LeastAxisLength 

Rad_2 lbp_3D_m1_gldm_LargeDependenceLowGrayLevelEmphasis 

Rad_3 wavelet_LLL_glcm_ld 

Rad_4 lbp_3D_m2_glszm_SizeZoneNonUniformity 

Rad_5 lbp_3D_k_glszm_SmallAreaLowGrayLevelEmphasis 

Rad_6 wavelet_LLH_firstorder_Maximum 

Rad_7 wavelet LHL firstorder Kurtosis 

Rad_8 lbp_3D_m1_glcm_DifferenceVariance 

Rad_9 wavelet_HLL_ngtdm_Complexity 

Rad_10 lbp_3D_m1_glcm_ClusterShade 

Rad_11 lbp_3D_m2_firstorder_Skewness 

Rad_12 wavelet_LHL_gldm_SmallDependenceHighGrayLevelEmphasis 

Rad_13 squareroot_glrlm_HighGrayLevelEmphsis 

Rad_14 lbp_3D_m2_glszm_SmallAreaEmphsis 

Rad_15 squareroot_gldm_HighGrayLevelEmphasis 

Rad_16 log sigma 2.0 mm 3D glszm largeAreaEmphasis 

Rad_17 wavelet LHH glm RunVariance 

Rad_18 wavelet_HHL_girlm_ShortRunEmphasis 

Rad_19 wavelet_HHH_firstorder_InterquartileRange 

Rad_20 original_shape_Sphericity 

Rad_21 wavelet_LLL_firstorder_Skewness 
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Table S3. Feature aggregation methods 

Feature family Aggregation methods 

IS, IH 3D (calculated over the volume) 

GLCM, GLRLM 3D: mrg (merged 3D directions) 

GLSZM, NGTDM, NGLDM 3D (calculated from single 3D matrix) 

Note: The term definition refers to the IBSI protocol.2 
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