Science Advances

Supplementary Materials for

Hox genes control homocercal caudal fin development and evolution

Nicolás Cumplido et al.

Corresponding author: Nicolás Cumplido, nicump@gmail.com

Sci. Adv. **10**, eadj5991 (2024) DOI: 10.1126/sciadv.adj5991

The PDF file includes:

Supplementary Text Figs. S1 to S8 Tables S1 to S3 Legends for movies S1 and S2 References

Other Supplementary Material for this manuscript includes the following:

Movies S1 and S2

Supplementary Text

Expression patterns of zebrafish hox13 genes

Tail.—At 1 dpf, all six *hox13* paralogs were expressed in the tail bud, with varying anterior limits of expression. The *hoxc* paralogs *c13a* and *c13b*, had the broadest expression domains, which extended more anteriorly. Particularly, *c13a* expression extended into the fin fold. The *hoxa* and *b* paralogs, *a13a*, *a13b* and *b13a*, showed similar and more posterior expression domains, while the *hoxd* paralog, *hoxd13a*, was confined to the posterior tip of the tail.

At 2 dpf, all *hox13* genes, except for *d13a*, were expressed in the tail with distinct expression patterns either in the mesenchyme around the notochord, the fin fold and/or the neural tube (Fig. S1). The *hoxc* paralogs had broader expression domains that overlapped both *hoxa* paralogs and the *b13a* gene expression, while the expression patterns of *hoxa* paralogs versus *b13a* did not overlap and were confined to either the anterior or posterior portion of the tail, respectively (Fig. S1). Overall, the *b13a*, *c13a*, and *c13b* paralogs had strong labeling in the tail, while the expression of *a13a* and *a13b* paralogs was considerably fainter compared to their expression in the pectoral buds.

By 3 dpf, expression of only the a13b, b13a, c13a and c13b genes was detected in the tail, with varying expression domains (Fig. S2). In the ventroposterior portion of the notochord, a13b had the most anterior expression, followed by *hoxc* paralogs and then b13a. Dorsally, the most anterior domain was observed in *hoxc* paralogs, followed by b13a and a13b. At 4 dpf, a13b, b13a and c13a genes were detected, with the expression of a13b much fainter compared to its expression in the pectoral fins. Additionally, when considering the PU/U boundary (black arrow, Fig. S2) ventral expression of a13b was located at the PU/U boundary, while c13a was also expressed at this boundary but reaching almost the middle portion of the ural region. Conversely, b13a was expressed in the posterior end of the ural region. Dorsally, all these genes were expressed in the preural region, with the b13a gene expressed also in the dorsal portion of the ural region.

Between 1 and 3 dpf, the expression patterns of the two *hoxc13* ohnologs, *c13a* and *c13b* were highly similar, but *c13a* expression persisted longer than *c13b* expression (Figs. S1, S2), as previously reported (*26*).

Pectoral fins. —Consistent with previous studies (32, 34), we detected expression of *hoxa* and *hoxd* paralogs in the pectoral fin at 2, 3 and 4 dpf. At 2 dpf, these genes were expressed at the distal mesenchyme of the pectoral fin bud, with d13a expression confined to its posterior region (Fig. S1). At 3 dpf, a13a lost its proximal mesenchymal expression, and instead was expressed only in the distal fin fold (34), resembling the pattern observed in the posterior portion of the tail between 1 and 2 dpf (Fig. S1). We did not detect expression of b13a or any of the *hoxc* paralogs in the pectoral fin at any time point.

Proctodeum/Cloaca. —The proctodeum or embryonic cloaca is an ectodermal derivative that invaginates and fuses with the hindgut to form the anus. As previously reported, a13b (96) and d13a (97) were expressed in this region, as well as a13a, suggesting a *hoxa/d* expression pattern in this tissue. Similar to the tail and pectoral fin, d13a expression was located more posteriorly than other *hox13* paralogues.

Pronephric duct. —The pronephric duct is a component of the embryonic urogenital duct that arises from the lateral plate mesoderm. It consists of two bilateral ducts located dorso-lateral to the gut, which eventually terminate at the urogenital pore. Previous studies have shown that a13b is expressed in this region (96), and our findings confirm this expression from 1– to 4–dpf (Figs. S1, S2A). We also observed the expression of c13b in the same region, which persisted from 1 to 3 dpf (Figs. S1, S2A).

1.5 Hindgut. — The hindgut is the most posterior section of the digestive tract that fuses during embryonic development with the proctodeum, creating a functional gastrointestinal tube. Previous studies in zebrafish have only reported the expression of a13a in this region (96). We observed a13a expression in the most posterior portion of the hindgut at 1 dpf. Additionally, we report a previously unobserved expression of c13a in this region, extending further anteriorly (Fig. S1). Between 2 and 4 dpf, we observed strong *in situ* labeling of a13a, b13a and c13a in the hindgut, with transient inclusion of a13b at 3 dpf (Fig. S2A). Hence, the hoxa, b and c expressions in the hindgut resembled the activation of the same genes during tail development (Fig. S2).

2. List of characters, their coding, and comments

Character 1. Number of preural vertebrae: more than six [0]; six or less [1].

Comments—Original character.

Character 2. Ural region in adults including: more than two ural centra (polyural condition) [0]; commonly two (or less) ural centra (diural condition) [1]

Comments—The diural caudal skeleton was proposed as a synapomorphy of teleosts by Patterson (98). For further explanation on this character and the homology problems involved see Schultze and Arratia (4, 7, 73), Wiley et al. (82) and Cumplido et al. (40). Character 127 in Arratia (45) and 147 in Arratia (44).

Character 3. Ural neural arches modified as uroneurals: ural neural arches unmodified [0]; all or some of the last ural neural arches modified as uroneurals [1]

Comments—Modified from Arratia (43). This character has been consistently used in systematic studies of teleosts. See for instance: Patterson (42, 98), Brito (99), Grande and Bemis (71), Schultze and Arratia (4, 7, 73, 100), Arratia and Schultze (74), and Arratia (43, 45, 101–103). Character 132 in Arratia (45) and 152 in Arratia (44).

Character 4. Preural vertebrae 3 of adult individuals: with haemal arches autogenous or articulating with the centrum [0]; fused with the centrum [1].

Comments—Modified from Arratia (43), which also included the preural vertebrae 2. Character 121 in Arratia (45) and 141 in Arratia (44).

Character 5. Neural spine of preural centrum 1: long, close or extending to the dorsal margin of the body [0]; short or absent [1].

Comments—From Arratia (43). Character 123 in Arratia (45) and 143 in Arratia (44).

Character 6. Number of principal caudal rays: fewer than 19 [0]; 20 to 30 [1]; 19 [2]; more than 40 rays [3].

Comments—Modified from Patterson (98), Patterson and Rosen (104), and Arratia (44, 45, 101). Character 148 in Arratia (45) and 173 in Arratia (44).

Character 7. Hypurals 2 and 3: without a space between them [0]; with a space (hypural diastema) between them; non-applicable, e.g., fusion of hypurals [–].

Comments—From Arratia (43). Character 141 in Arratia (45) and 161 in Arratia (44).

Fig. S1. Gene expression patterns of zebrafish *hox13* paralogs at 1 and 2 dpf. *In situ* hybridizations were performed against *a13a*, *a13b*, *b13a*, *c13a*, *c13b*, and *d13a* to visualize their expression patterns. (A), 1 dpf zebrafish larvae. Left panels, whole larvae in lateral view, scale bar at 0.5 mm. Right panels provide a close-up of the tail, scale bar at 0.1 mm. (B), 2 dpf zebrafish larvae. Left panels, whole larvae in lateral view, scale bar at 0.5 mm. Middle panels close-up to the anus, right panels close-up to the tail. Middle and right panel scale bars at 0.1 mm. For A, B, The yellow arrowhead points at the expression in the pectoral fins, the red arrowhead at the posterior end of either the hindgut (hg, purple arrowhead), pronephric duct (pd, light blue arrowhead), or proctodeum/cloaca (pt, orange arrowhead).

Fig. S2. Gene expression patterns of *hox13* **zebrafish paralogs at 3 and 4 dpf.** *In situ* hybridizations were performed against *a13a*, *a13b*, *b13a*, *c13a*, *c13b*, and *d13a* at 3 and 4 dpf to visualize their expression patterns. (**A**), 3 dpf zebrafish larvae. Left panels show larvae in lateral view, scale bar at 0.5 mm. Middle panels provide a close-up to the anus, scale bar at 0.1 mm. Right panels provide a close-up to the tail, scale bar at 0.1 mm. (**B**), 4 dpf zebrafish larvae. Left panels provide a close-up to the anus, scale bar at 0.1 mm. For **A**, **B**, yellow arrowheads point at the expression in the pectoral fins, purple arrowheads highlight at the expression in the hindgut (hg), and light blue arrowheads show *hox* gene expression in the pronephric duct (pd). Black

b13a c13a c13b d13a arrows indicate the position of the end of the caudal artery that delimits the position of the PU/U boundary. (C), Summary of the expression patterns of all *hox13* paralogs in different tissues over time.

Fig. S3. Reconstruction of *hox13* gene repertoire evolution in actinopterygians. The presence vs absence of each *hox13* gene was determined by manually searching for each *Hox* cluster in annotated genome assemblies of actinopterygians available on NCBI (see Table S1). The simplified phylogeny is based on Betancur-R et al. (105), with the base of the teleosts resolved as a polytomy. Boxed, at the bottom left of the figure, are the three possible scenarios of the most basally diverging group, including Elopomorpha (105), Osteoglossomorpha (98) or Clupeocephala (106) although these do not affect the interpretations of *hox13* gene evolution. The presence of each gene is indicated by a coloured rectangle, green for *hoxa13*, blue for *hoxb13*, red for *hoxc13*, and yellow for *hoxd13* orthologs. Empty (white)

rectangles indicate the absence of the respective gene. Zebrafish (*Danio rerio*) is in bold and indicated with a red star. TGD, teleost genome duplication; SGD, salmonid genome duplication.

Fig. S4. Description of *b13a* and *c13a* gene mutations and genotyping procedure. (A), Description of the 10bp insertion mutation in *b13a* and the 11-bp deletion in *c13a* genes, both of which were generated using CRISPR/Cas9. Both mutations cause a frameshift in the first exon resulting in an early stop codon. The DNA binding homeobox (hbox) is encoded by the second exon in both genes. (B), An incross of heterozygous *b13a* and *c13a* mutant zebrafish, produced a mendelian ratio of inheritance for the more than 70 F2 individuals tested. (C), Genotyping of both clutches was performed using a heteroduplex mobility assay. In this assay, the presence of strands of different sizes in heterozygous fish leads to the formation of a heteroduplex, which delays DNA migration during acrylamide gel electrophoresis (red arrowhead). (D), Homozygous mutants were identified by adding homozygous mutant DNA to each unknown sample. If the unknown sample was from a wild type or heterozygous individual, the presence of the mutant DNA would cause a heteroduplex mobility shift, which could be

detected by the presence of a delayed band in the acrylamide gel (blue asterisk). Homozygous mutant samples, on the other hand, would not generate this band, and were identified by the absence of the delayed band (red asterisk).

Fig. S5. Quantification of caudal fin phenotypes in *b13a* and *c13a* mutants. (A), Lower lobe length relative to standard length in wild-type, heterozygous and homozygous b13a mutant siblings (n=14). ANCOVA indicated no variation in lower lobe length between genotypes ($F_{(2.38)}$ =1.076, p=0.3510). Shaded area represents the 95% confidence interval around the regression line. For B–E, $n = b13a^{+/+}$:12, $b13a^{+/-}:14$, $b13a^{-/-}:14$, $c13a^{+/+}:13$, $c13a^{+/-}:15$ and $c13a^{-/-}:12$. Each graph presents the mean, and the circle size is proportional to the number of individuals. (B), Procurrent ray number in both mutants. Poisson regressions revealed significant increases in procurrent ray number in *b13a* mutants $(\chi^2_{(2)}=15.04, p=0.0005)$. ANOVA revealed significant reduction in procurrent ray number for *c13a* mutants ($F_{(2,37)}$ =51.18, p<0.0001). Multiple comparisons indicated a *c13a* gene-dosage effect. (C), Principal ray number separated into upper and lower lobes in both mutants. Poisson regressions revealed a significant increase in upper principal ray number in *b13a* mutants ($\chi^2_{(2)}=17.15$, p<0.0001) but not in lower principal ray number ($\chi^2_{(2)}=0.82$, p=0.66). Poisson regressions revealed a significant reduction in both upper and lower lobes of *c13a* mutants (*upper*: $\chi^2_{(2)}=10.95$, p<0.0042; *lower*: $\chi^2_{(2)}=25.40$, p<0.0001). (D), Procurrent ray number separated into dorsal and ventral series in both mutants. Poisson regression revealed a significant increase in ventral procurrent rays in *b13a* mutants ($\chi^2_{(2)}=14.75$, p=0.0006) but not dorsal procurrent rays ($\chi^2_{(2)}$ =4.68, p=0.089). ANOVA revealed a significant decrease in procurrent ray number in both upper and lower procurrent rays in c13a mutants (upper: F(2,37)=30.81, p < 0.0001; *lower*: $F_{(2,37)} = 33.58$, p < 0.0001). (E), Frequencies of the first principal ray being epaxial, or longer than other principal rays in both mutants. (F), Cleared and stained skeletal preparations

highlighting the first principal and dorsal procurrent fin rays. The first principal ray (in red) is the first non-bifurcating ray adjacent to a bifurcating ray. Epaxial rays (in purple) vs hypaxial rays (in green) refer to the relation between fin ray bases and the position of the notochord (1 mm scale bar).

Fig. S6. Dorsal, anal, pectoral, and pelvic fin ray and radial counts in single and double $b13a^{-/-}$; $c13a^{-/-}$ **zebrafish mutants.** The number of principal fin rays and radials for the zebrafish fins, excluding the caudal fin, is shown ($n = b13a^{+/+}:12$, $b13a^{+/-}:14$, $b13a^{-/-}:14$, $c13a^{+/+}:13$, $c13a^{+/-}:15$ and $c13a^{-/-}:12$, $b13a^{-/-}:c13a^{-/-}:5$). For paired fins, the number of left and right rays and radials were added. (**A**) Pectoral fin: left side endoskeleton shown in a dorsal view. ANOVA revealed no significant count variations in principal fin rays ($b13a: F_{(1,24)}=1.85$, p=0.19; $c13a: F_{(1,23)}=0.89$, p=0.35), distal radials ($b13a: F_{(1,24)}=0.96$, p=0.34; $c13a: F_{(1,22)}=1.85$, p=0.19) and radials ($b13a: F_{(1,24)}=0.37$, p=0.55; $c13a: F_{(1,22)}=1.85$, p=0.19). (**B**) Pelvic fin: left side shown in a ventral view. ANOVA revealed no significant count variation in principal fin rays ($b13a: F_{(1,24)}=0.85$, p=0.37; $c13a: F_{(1,23)}=0.0011$, p=0.97) and radials ($b13a: F_{(1,24)}=0.047$, p=0.83; $c13a: F_{(1,24)}=0.85$, p=0.37; $c13a: F_{(1,23)}=0.0011$, p=0.97) and radials ($b13a: F_{(1,24)}=0.047$, p=0.83; $c13a: F_{(1,23)}=1.09$, p=0.31). (**C**) Dorsal fin: lateral view of endoskeleton. ANOVA revealed no significant count variation in principal fin rays ($b13a: F_{(1,23)}=1.09$, p=0.31). (**C**) Dorsal fin: lateral view of endoskeleton. ANOVA revealed no significant count variation in principal fin rays ($b13a: F_{(1,23)}=1.09$, p=0.30; $c13a: F_{(1,23)}=3.66$, p=0.068; $c13a: F_{(1,23)}=2.01$, p=0.17), distal radials ($b13a: F_{(1,24)}=1.10$, p=0.30; $c13a: F_{(1,23)}=4.18$, p=0.05), middle radials ($b13a: F_{(1,24)}=1.01$, p=0.33; $c13a: F_{(1,23)}=0.59$, p=0.45) and proximal radials ($b13a: F_{(1,24)}=2.01$, p=0.17; $c13a: F_{(1,23)}=0.92$, p=0.35). (**D**) Anal fin: lateral view of endoskeleton. ANOVA revealed a significant

reduction in principal fin ray counts for *b13a* mutants ($F_{(1,24)}=4.80$, p=0.038) but not in *c13a* mutants ($F_{(1,22)}=0.12$, p=0.74). No significant variations were found in anal fin distal radials (*b13a*: $F_{(1,24)}=3.32$, p=0.081; *c13a*: $F_{(1,22)}=0.12$, p=0.74), middle radials (*b13a*: $F_{(1,24)}=1.78$, p=0.19; *c13a*: $F_{(1,22)}=0.28$, p=0.60) and proximal radials (*b13a*: $F_{(1,24)}=2.98$, p=0.097; *c13a*: $F_{(1,22)}=0.12$, p=0.74). In all measurements, the mean of double mutant ray number was within the margins of normal variations. Each graph presents the mean, and the circle size is proportional to the number of individuals. "ns" indicates a non-significant ANOVA test. In each image, scale bar is 200 µm, and anteroposterior axis is indicated with an arrow. *Abbrev*.: co, coracoid; dr, distal radial; mco, mesocoracoid; mr, middle radial; mtg, metapterygium; plb, pelvic bone; pr, proximal radial; ra, radial; sc, scapula; spl, splint; st, stay.

Fig. S7. Quantification of vertebral phenotypes in *b13a* and *c13a* mutants. (A), Relationship between the tip of the notochord (red arrowhead), the presence of an opisthural cartilage (yellow arrowhead) and the posterior end of the hypural 5 (dashed line with a black arrowhead). Both mutants exhibit an abbreviated notochord. For b-e, $n = b13a^{+/+}:12$, $b13a^{+/-}:14$, $b13a^{-/-}:14$, $c13a^{+/+}:13$, $c13a^{+/-}:15$ and c13a^{-/-}:12, b13a^{-/-};c13a^{-/-}:4. (B), Frequencies for the presence of an opisthural cartilage, an elongated neural spine on the preural centrum 1, an articulating haemal arch on the preural centrum 3, and extra distal radials in *b13a* and *c13a* mutants. (C), Epural number for both mutants. Poisson regressions revealed no significant changes in epural number in both mutants (*b13a*: $\chi^2_{(2)}=1.57$, p=0.46; *c13a*: $\chi^2_{(2)}=0.55$, p=0.76). (**D**), Hypural number for both mutants. Poisson regressions revealed a significant decrease in hypural number in *b13a* mutants ($\chi^2_{(2)}$ =8.50, p=0.014) but not in *c13a* mutants ($\chi^2_{(2)}$ =1.05, p=0.36). Post-hoc comparisons showed a significant effect in $b13a^{-/-}$ mutants only. (E), Cleared and stained skeletal preparations showing the presence of extra distal radials, either cartilaginous (in blue) or ossified (in red) at the distal ends of hypurals 1 and 2, and the parhypural. Poisson regressions revealed a significant increase in distal radial number in *c13a* mutants ($\chi^2_{(2)}=27.05$, p<0.0001) but not significant in *b13a* mutants ($\chi^2_{(2)}$ =1.98, p=0.37). Post-hoc comparisons showed a significant effect in *c13a*^{-/-} mutants only. Scale bar is 100 μ m. Each graph presents the mean, and the circle size is proportional to the number of individuals.

b13a

c13a

A

Fig. S8. Morphological and ontogenetic description of the posterior end of the tail of $b13a^{-/-};c13a^{-/-}$ double mutant fish. (A), micro-CT segmentation of the last four vertebrae of an adult double mutant, showing extremely condensed and fused posterior elements. The last neural and haemal spines were partially fused together. (B), A close-up on the posterior end of the body axis reveals a neural and haemal canal all the way to the posterior-most element (purple), which implies the absence of hypurals and other ural elements.

Table S1. Gene IDs for each *hox13* **gene present in a broad set of annotated genomes of actinopterygians.** For each species, the family, assembly number, and the NCBI gene ID for each *hox* gene, if present, is given. A dash (–) indicates the absence of the corresponding gene in the respective gene cluster.

Acarabogena Ista Focalarl.1 Focalarl.1 Ista Sparkle (C) 694848153.1 1190109 11902252 - - ActO Geno L1 ActO Geno L1 12510154 12529421 12510154 12529252 Anaporentiale Corpolate ActO Geno L1 - - - Acto Geno L1 Acto Geno L1 11570269 11588836 11158167 - - Amarkedbage Anaplatia CCF 900349521.1 11571040 113167043 - - - Anarkedbage Anaplatia (CCF 900349521.1 1168231 -	Species	Family	Assembly	a13a	a13b	b13a	<i>b13b</i>	с13а	c13b	d13a	d13b
Alac. dom Alac. Clapeda	Acanthopagrus latus	Sparidae	fAcaLat1.1 (GCF_904848185.1)	119016198	119006236	119014195	-	119022528	_	_	_
Ampleyrine AmpOcol 0 occliars GCR 0027766451 11158026 11158021 - - - Aukar testulative Anabantike GCR 002766451 111370269 11310001 - 11158123 - - Aukar testulative Anabantike GCR 002546425 113132850 111370269 113160018 - 11158123 - - Auguran Anabantike GCR 002546452 113170269 113100018 - 11638232 -	Alosa alosa	Clupeidae	AALO_Geno_1.1 (GCF 017589495.1)	_	125305489	125296091	_	125293421	125301534	125292652	_
Texas analysis Texas (CC 9021445.2) 113153850 11316309 11316018 113167455 - - Amerikeling GCC 9021445.2) 113153850 113170309 11316018 - - - Amerikeling GCC 90214525.1) 11638022 11638023 - - - - Anguna Aaduke3 affee - 118210810 - 11820357 118211264 118224185 - - Anguna Aaduke3 affee - 118208160 118208160 - 11820357 118208160 11820357 118208162 - </td <td>Amphiprion ocellaris</td> <td>Pomacentridae</td> <td>AmpOce1.0 (GCF_002776465.1)</td> <td>111570269</td> <td>111588836</td> <td>111568215</td> <td>_</td> <td>111581487</td> <td>_</td> <td>_</td> <td>_</td>	Amphiprion ocellaris	Pomacentridae	AmpOce1.0 (GCF_002776465.1)	111570269	111588836	111568215	_	111581487	_	_	_
Auerheichdys GGC Weel 1.0 occilian anguilla Anguillade (GCP 045559251) 116387229 116387220 - - - Inguilla anguilla (GCP 0455795251) 11821031 11821030 11821024 1182211264 1182211254 -	Anabas testudineus	Anabantidae	fAnaTes1.2 (GCF_900324465.2)	113153850	113170369	113160018	-	113167485	-	-	-
Inspecific anguella Charghappin Anguellia Anguellia (CCP 01347853) 118208157 11821126 - <td>Anarrhichthys ocellatus</td> <td>Anarhichadidae</td> <td>GSC_Weel_1.0 (GCF_004355925.1)</td> <td>116387229</td> <td>116386823</td> <td>116379203</td> <td>_</td> <td>116382332</td> <td>-</td> <td>-</td> <td>-</td>	Anarrhichthys ocellatus	Anarhichadidae	GSC_Weel_1.0 (GCF_004355925.1)	116387229	116386823	116379203	_	116382332	-	-	-
Astynaat AstMacs Surface meciconar Opphronemidae Opphronemidae Opphronemidae Opphronemidae OC Distribution Distribution <td>Anguilla anguilla</td> <td>Anguillidae</td> <td>fAngAng1.pri (GCF_013347855.1)</td> <td>118233193</td> <td>118210810</td> <td>118216130</td> <td>-</td> <td>118208357</td> <td>118211264</td> <td>118224185</td> <td>-</td>	Anguilla anguilla	Anguillidae	fAngAng1.pri (GCF_013347855.1)	118233193	118210810	118216130	-	118208357	118211264	118224185	-
Betta splanden Opphronemidae GGCF 90034795.3) 114865817 114843721 11480546 11485382 - - Brietonogras BBR/CCF_0.4 GGF 90034795.3) 125710216 125740217 - 125742441 125710353 125723646 125710344 - Chanos chanoo Chanidae (GCF 90034795.3) 121510703 121610703 114807050 - - - Chavaa Chavaa </td <td>Astyanax mexicanus</td> <td>Characidae</td> <td>AstMex3_surface (GCF_023375975.1)</td> <td>103021373</td> <td>125802465</td> <td>103043948</td> <td>-</td> <td>103031462</td> <td>125787537</td> <td>103046722</td> <td>-</td>	Astyanax mexicanus	Characidae	AstMex3_surface (GCF_023375975.1)	103021373	125802465	103043948	-	103031462	125787537	103046722	-
Breachvista BBRACH_0.4 Direction breachvista GCFP_03285655.11 125710365 125710363 125710364 - Chanos chanos Chanida GCFP_03256565.11 115825775 115818678 11582565 - 115807888 115812501 -	Betta splendens	Osphronemidae	fBetSpI5.3 (GCF_900634795.3)	114865817	114843721	114860546	-	114858382	_	-	-
Chanos chanos Chanola Clastial.1 Chanos chanos Clastial.1 11582757 115818678 115829565 - 115807888 115814502 115822611 - Chelmon rostratus Chaetodonidas (GCF 0702632.1) 121610032 121610032 -	Brienomyrus brachyistius	Mormyridae	BBRACH_0.4 (GCF_023856365.1)	125719156	125749217	-	125742441	125713053	125723646	125710344	-
Chelmon rostratus Chedosa Ign Chellos I 21610903 121610905 - - - Chejmon rostratus Chapeida CGC 9070432.1 121610932 121610932 -<	Chanos chanos	Chanidae	fChaCha1.1 (GCF_902362185.1)	115825775	115818678	115829565	-	115807888	115814502	115822611	-
$ \begin{array}{c} Ch.y2.0.2 \\ Clupeidae (GCF. 9000415.2) - 105911402 105912847 - 105912700 105907699 105907975 - Colossoma macropo \\ Colossoma macro \\ Colossoma macropo \\ Colossoma macropo \\ Colos$	Chelmon rostratus	Chaetodontidae	fCheRos1.pri (GCF_017976325.1)	121619703	121610632	121620985	-	121612905	-	_	-
$ \begin{array}{c} Colossona main \\ max \\ max \\ max \\ max \\ max \\ corpornium \\ \hline Serrasalnide \\ (OCF 904425451) \\ 11800508 \\ 11880508 \\ 118813412 \\ 118821189 \\ - \\ 115012486 \\ - \\ 11501248 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Clupea harengus	Clupeidae	Ch_v2.0.2 (GCF_900700415.2)	-	105911402	105912847	_	105912700	105907699	105907975	-
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Colossoma	a 1.11	Colossoma_macropo mum	110005000	110010410	110001100		11000000000	110000001	110005555	
$ \begin{array}{c} Cottoperce gaboo = Bovichidae = (CGF 900654415.1) = 1150/2183 = 1150/2183 = 1150/2183 = - 15000850 = $	macropomum	Serrasalmidae	(GCF_904425465.1) fCotGob3.1	118805088	118813412	118821189		118822/80	118800031	118805755	_
$ \begin{array}{c} \mbox{idella} x $$ chocypnidas (CF 01992492.1) 127501065 12749739 127509312 - 127504894 127522540 127519347 Cryprinods $$ csv1.0 $$ xenilaevis Cynoglossidas (CF 0005205.1) 10339422 10338423 103393562 - 103385112 Cyprinodom $$ A$$ MI60772351 119772871 119778601 - 119785041 Cyprinodom $$ c$ cyprinodomidae (CF 016077235.1) 119779531 11977287 119778601 - 119785041 Cyprinodomidae (CF 00002005.6) 570239 30438 559921 - 58059 58063 30407 - Denticeps Denticepitidae (GCF 00002035.6) 570239 30438 559921 - 58059 58063 30407 - Electrophorus Denticepitidae (GCF 00002035.6) 1113580414 113571216 11356906 - 113570296 113572414 113582335 - Electrophorus (CF 011397635.1) 123904682 125893496 125879368 - 125891524 Electrophorus Epretichyby ExpCal1.3 - CCF v1 (GCF 001207635.1) 125904682 125893496 125879368 - 125891524 Electrophorus (CCF 011397635.1) 125904682 125893496 125879368 - 125891524 Electrophorus (CCF 0011397635.1) 125904682 125893496 125879368 - 125891524 Electrophorus (CCF 011397635.1) 125904682 125893496 125879368 - 125891524 Electrophorus (CCF 0011397635.1) 125904682 125893496 125879368 - 125891524 Electrophorus (CCF 0011397635.1) 125904682 125893496 125879368 - 125891524 Electrophorus (CCF 001109785.2) 114664210 - 114664381 114647630 - 127528919 - Elevalue1.pri - Elevalue1.pri$	Cottoperca gobio Ctenopharyngodon	Bovichtidae	(GCF_900634415.1) HZGC01	115015782	115021485	115012486	_	115010850	-	_	-
$ \begin{array}{c} semilaevis \\ semilaevis \\ Cyronglossidae \\ (GCF 000520025.1) \\ 103384226 \\ 10338423 \\ 103393562 \\ - \\ 10338512 \\ - \\ - \\ 10338512 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	idella Cynoglossus	Xenocyprididae	(GCF 019924925.1) Cse_v1.0	127501065	127497339	127509312	-	127504894	127522540	127519347	-
Intarosa Cyprinodonidae (GC F) 016077235.1) 119779531 11977287 119778601 - 119785041 - <	semilaevis Cyprinodon	Cynoglossidae	(GCF_000523025.1) ASM1607723v1	103394226	103388423	103393562	-	103385112	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tularosa	Cyprinodontidae	(GCF_016077235.1)	119779531	119772787	119778601	-	119785041	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Danio rerio	Cyprinidae	(GCF_000002035.6)	570239	30438	559921	_	58059	58063	30407	-
Electrophorus IEEELe1.pri electricus Gymnotidae (GCF 013358815.1) 113580414 113571216 113569906 – 113570296 113572414 113582335 – Epinephelus	Denticeps clupeoides	Denticipitidae	fDenClu1.1 (GCF 900700375.1)	_	114789724	114793421	_	114798405	114800762	_	-
	Electrophorus electricus	Gymnotidae	fEleEle1.pri (GCF_013358815.1)	113580414	113571216	113569906	-	113570296	113572414	113582335	-
Inscoguitatus Serranidae (CCF 011397635.1) 125904682 12589368 - 125891524 -	Epinephelus		E.fuscoguttatus.final _Chr_v1								
calabaricus Polypteridae (GCF 900747795.2) 114664210 - 114664381 114647630 - 127528919 - Esox lucius Esocidae (GCF 011004845.1) 1050023650 10501810 105013260 - 105013634 105016993 105016222 - Fundulus MU-UCD_Fhet_4.1 -	fuscoguttatus Erpetoichthys	Serranidae	(GCF 011397635.1) fErpCal1.3	125904682	125893496	125879368	—	125891524	—	_	_
Esox hucius Esocidae (GCF_011004845.1) 105023650 105018810 105013260 - 105013634 105016993 105016222 - Fundulus MU-UCD_Fhet 4.1 MU-UCD_Fhet 4.1 -	calabaricus	Polypteridae	(GCF_900747795.2) fEsoLuc1.pri	114664210	-	114664381		114647630	-	127528919	_
Parkadatas Fundulidae (GCF 011125445.2) 105934282 105926310 - <	Esox lucius	Esocidae	(GCF_011004845.1) MULUCD_Ebet_4.1	105023650	105018810	105013260	-	105013634	105016993	105016222	-
Gadus morhua Gadidae (GCF 902167405.1) 115536261 115554199 11557907 - 115542510 -<	heteroclitus	Fundulidae	(GCF_011125445.2)	105934282	105926310	-	-	105928933	-	_	-
Gambusia affinis Poeciliidae (GCF_019740435.1) 122831439 122821262 122828352 - - - Gasterosteus ersion5 ersion5 ersion5 -	Gadus morhua	Gadidae	(GCF 902167405.1)	115536261	115554199	115557907	-	115542510	-	-	-
Grateristeus Gasterosteus aculeatus Gasterosteidae (GCF 016920845.1) 120809982 120827242 – <td>Gambusia affinis</td> <td>Poeciliidae</td> <td>(GCF_019740435.1)</td> <td>122843743</td> <td>122831439</td> <td>122821262</td> <td>-</td> <td>122828352</td> <td>-</td> <td>-</td> <td>-</td>	Gambusia affinis	Poeciliidae	(GCF_019740435.1)	122843743	122831439	122821262	-	122828352	-	-	-
active Odstolsteldae (OCF 0192044.1) 120829900 120829902 120829902 120829913 - </td <td>Gasterosteus</td> <td>Gasterestaidae</td> <td>ersion5</td> <td>120826006</td> <td>120800082</td> <td>120827242</td> <td></td> <td>120820012</td> <td></td> <td></td> <td></td>	Gasterosteus	Gasterestaidae	ersion5	120826006	120800082	120827242		120820012			
multiradiatus Goodeidae (GCF_021462225.1) 124879185 124865511 124864643 - 124874917 - <t< td=""><td>Girardinichthys</td><td>Gasterosterdae</td><td>DD fGirMul XY1</td><td>120820900</td><td>120809982</td><td>120627242</td><td>-</td><td>120629913</td><td>-</td><td>-</td><td>-</td></t<>	Girardinichthys	Gasterosterdae	DD fGirMul XY1	120820900	120809982	120627242	-	120629913	-	-	-
offstand Gobiesocidae (GCF 900634775.1) 114472436 114478105 114468953 - 114467248 -	multiradiatus Gouania	Goodeidae	(GCF_021462225.1) fGouWil2_1	124879185	124865511	124864643	-	124874917	-	-	-
Gymnodraco Intymachini Intymachini <thintymachini< th=""> <thintymachini< th=""></thintymachini<></thintymachini<>	willdenowi	Gobiesocidae	(GCF_900634775.1)	114472436	114478105	114468953	-	114467248	-	-	-
Haplochromis NCSU_Asbul burtoni Cichlidae (GCF 018398535.1) 102313663 102305000 102307949 – 102309054 – – – Hippocampus ASM2543408v3 –	<i>Gymnodraco</i> <i>acuticeps</i>	Bathydraconidae	(GCF 902827175.1)	117563002	117554052	117547479	-	117541974	_	_	_
Hippocampus ASM2543408v3 zosterae Syngnathidae (GCF_025434085.1) 127603790 127601411 127590245 – 127596034 – <t< td=""><td>Haplochromis burtoni</td><td>Cichlidae</td><td>NCSU_Asbu1 (GCF 018398535.1)</td><td>102313663</td><td>102305000</td><td>102307949</td><td>_</td><td>102309054</td><td>_</td><td>_</td><td>_</td></t<>	Haplochromis burtoni	Cichlidae	NCSU_Asbu1 (GCF 018398535.1)	102313663	102305000	102307949	_	102309054	_	_	_
HypOmesus fHypTra1 transpacificus Osmeridae (GCF 021917145.1) 124467241 124479323 124479662 – 124481039 124471218 124484894 –	Hippocampus zosterae	Syngnathidae	ASM2543408v3 (GCF 025434085.1)	127603790	127601411	127590245	-	127596034	_	_	_
12101007 121011210 1240074 =	Hypomesus transpacificus	Osmeridae	fHypTra1 (GCF 021917145.1)	124467241	124479323	124479662	_	124481039	124471218	124484894	_

Text	Tete here'de a	IpCoco_1.2	100257241	100529527	100275712		124491020	100201070	1092((222	
Ictalurus punctatus	Ictaluridae	IGBB LRoh.1.0	108257341	100528527	1082/5/12	-	124481039	108281070	108266222	
Labeo rohita	Cyprinidae	(GCF_022985175.1)	127182171	127178305	127163141	_	127154533	127173481	127170654	-
Larimichthys crocea	Sciaenidae	L_crocea_2.0 (GCF_000972845.2)	104940566	104927762	104927154	_	113747701	_	_	_
		TLL_Latcal_v3								
Lates carcarifer	Latidae	(GCF_001640805.2)	108877307	108891462	108898525	-	108876406	-	-	
oculatus	Lepisosteidae	(GCF 000242695.1)	102685955	-	102684356	-	102695065	-	102687373	-
Mastacembelus armatus	Mastacembelidae	fMasArm1.2 (GCF_900324485.2)	113126226	113122525	113141170	_	113145809	_	_	_
Megalops	mustacemberidae	fMegCyp1.pri	115120220	115122525	115111170		1151 15007			
cyprinoides Malanotaania	Megalopidae	(GCF_013368585.1) fMelBoe1 pri	118796574	118784978	118794944	118786861	118781054	118779675	118788744	
boesemani	Melanotaeniidae	(GCF_017639745.1)	121657123	121641975	121630574	-	121651751	-	-	_
Micropterus dolomiau	Centrarchidae	ASM2129224v1	123076630	123068447	123063320		123074600			
uotomieu	Centrarenidae	M_albus_1.0	123970030	123900447	123903320		123974090	_		
Monopterus albus	Synbranchidae	(GCF_001952655.1)	109968138	109967340	109964752	-	109971443	-	-	-
Morone saxatilis	Moronidae	(GCF_004916995.1)	118342900	118336211	118322950	-	118324617	-	_	_
		CIBA_Mcephalus_1.								
Mugil cephalus	Mugilidae	(GCF 022458985.1)	125020101	125016446	124997272	_	125004882	_	_	_
<u> </u>		fMyrMur1.1	1152(7727	115252564	1152(2521		1152/0/5/			
Myripristis murdjan Nothobranchius	Holocentridae	(GCF_902150065.1) Nfu 20140520	115367737	1153/3564	115363531	-	115362656	-	-	_
furzeri	Nothobranchiidae	(GCF 001465895.1)	107383371	107373760	107372950	_	107390910	-	-	
Notolabrus celidotus	Labridae	fNotCel1.pri (GCF_009762535.1)	117827578	117822401	117831858	_	117821136	_	_	_
Notothenia	Luciidae	NC01	11/02/070	11/022101	11,001000		11,021100			
coriiceps	Nototheniidae	(GCF_000735185.1) ASM223467v1	104941128	104949896	104961652	-	104956898	-	-	_
Oryzias latipes	Adrianichthyidae	(GCF_002234675.1)	101162380	101158301	101175240	-	101172814	-	-	-
Pangasianodon hypophthalmus	Pangasiidae	fPanHyp1.pri (GCF_027358585_1)	113536158	113542465	113527999	_	113530408	113537872	113526107	_
nypopninaimas	Tangashdae	fParRan2.1	115550150	115542405	115521777		115550400	115557672	115520107	
Parambassis ranga	Ambassidae	(GCF_900634625.1) PKINGS_0_1	114450846	114448736	114440004	-	114438672	-	-	-
kingsleyae	Mormyridae	(GCF_002872115.1)	111846880	111839073	-	111845174	111837113	111854629	111838605	-
Douoa Anniatilia	Danaida a	GENO_Pfluv_1.0	120570770	120562706	120572067		120550200			
Periophthalmus	Percidae	fPerMag1.pri	1203/07/9	120302700	1203/390/	_	120338388	_	_	
magnuspinnatus	Gobiidae	(GCF_009829125.1)	117378578	117384231	117374905	-	117373699	-	-	_
promelas	Leuciscidae	(GCF_016745375.1)	120483476	120494977	120489151	-	120462838	120473470	120459864	_
Delised an analysis	Dahar da ati da a	ASM1765450v1	101015110		101004050		121207102		1010005(0	
Polypterus	Polyodoniidae	ASM1683550v1	121313113	-	121324055	-	12130/103	-	121323303	
senegalus	Polypteridae	(GCF 016835505.1)	120515966	-	120517882	-	120526741	-	120531872	_
s georgianus	Channichthyidae	(GCF 902827115.1)	117455526	117461369	117451460	_	117449376	_	_	_
D. H. H.	a	ASM1883169v1	1000000	10000000	1000 (1001		10000075	100054000	100051005	
Puntigrus tetrazona Pvgocentrus	Cyprinidae	(GCF_018831695.1) fPygNat1.pri	122323997	122360656	122341821	_	1223290/5	122354330	122351297	
nattereri	Serrasalmidae	(GCF_015220715.1)	108425156	108441525	108412326	-	108433367	108424576	108424277	-
Salarias fasciatus	Blenniidae	fSalaFa1.1 (GCF 902148845.1)	115380987	115396613	115387337	_	115408331	_	_	_
		fSalTru1.1								
Salmo trutta A	Salmonidae	(GCF_901001165.1) fSalTru1 1	115175456	115187781	115197040	-	115167868	115150489	115155476	-
Salmo trutta B	Salmonidae	(GCF_901001165.1)	115173940	115187701	115171015	_	115165528	115207926	115160778	_
Scatophagus argus	Scatophagidae	tScaArg1.pri (GCF 020382885.2)	124074176	124064917	124073304	_	124063977	_	_	_
Scleropages	Statophagraat	fSclFor1.1	121071170	121001011	1210/0001		1210003711			
formosus Scophthalmus	Osteoglossidae	(GCF_900964775.1) ASM2237912v1	108933365	108927390	108936910	108918676	108939194	108918377	-	
maximus	Scophthalmidae	(GCF_022379125.1)	118292521	118302692	118288805	-	118316278	_	-	_
Sebastes umbrosus	Sebactidae	fSebUmb1.pri	119503/23	119496208	119501162	_	119480031	_	_	_
seousies uniorosus	Sebastidae	Sdu_1.0	117505723	117770220	117501102	-	117707751	-		
Seriola dumerili Silurus	Carangidae	(GCF_002260705.1) ASM1480568v1	111223387	111238797	111669768	-	111219155	-	-	-
meridionalis	Siluridae	(GCF_014805685.1)	124376121	124384259	124396948	-	124399096	124402352	124382995	_
Synonathus acus	Synonathidae	fSynAcu1.2 (GCF_901709675_1)	119130672	119136231	119126029	_	119119446	_	_	_
Syngmanus acus	Syngiamidae	(301_000000001)	. 1 / 1 / 00 / 2	11/10/201	11/120029					

Tachysurus		HZAU_PFXX_2.0								
fulvidraco	Bagridae	(GCF_022655615.1)	113641606	113644199	113637995	-	113641954	113661989	113654529	-
		fTakRub1.2								
Takifugu rubripes	Tetraodontidae	(GCF_901000725.2)	101069611	101062469	101072102	_	101079732	_	-	-
Thalassophryne		fThaAma1.1								
amazonica	Batrachoididae	(GCF_902500255.1)	117501877	117514506	117527962	_	117511652	-	_	-
		fThuAlb1.1								
Thunnus albacares	Scombridae	(GCF 914725855.1)	122969662	122987517	122967155	_	122982087	_	-	
		fToxJac2.pri								
Toxotes jaculatrix	Toxotidae	(GCF 017976425.1)	121192022	121186135	121198671	_	121194472	_	-	
Trematomus		fTreBer1.1								
bernacchii	Nototheniidae	(GCF_902827165.1)	117477647	117480696	117469296	_	117494396	_	-	-
		ASM1685928v1								
Xiphias gladius	Xiphiidae	(GCF_016859285.1)	120786631	120784448	120787991	—	120803580	—	—	-

Table S2. Character-taxon data matrix for the seven characters used in the character

reconstruction analysis. State [–] represents the character is not applicable. Missing or ambiguous information is represented with [?]; †, extinct taxon.

Taxon	Characters							
	1	2	3	4	5	6	7	
Amia calva	0	0	0	0	0	0	0	
†Amia pattersoni	0	0	0	0	0	-	0	
†Anaethalion	1	1	1	1	1	2	1	
†Ascalabos	1	1	1	1	1	2	1	
†Aspidorhynchus	1	0	1	0	1	1	0	
†Belonostomus	1	0	1	0	1	0	0	
†Domeykos	1	1	1	1	1	1	1	
†Dorsetichthys	1	0	1	0	1	1	1	
†Ebertichthys	1	1	-	1	1	2	1	
Elops	1	1	1	0	1	2	1	
†Eurycormus	1	0	1	0	1	1	1	
Heterotis	1	_	0	1	0	0	1	
Hiodon	1	1	1	1	0	1/2	1	
†Hypsocormus	0	_	0	0	0	3	-	
<i>†Leptolepis coryphaenoides</i>	1	1	1	1	1	2	0	
Lepisosteus	0	0	0	0	0	0	0	
†Luisichthys	?	1	1	0	1	-	1	
<i>†Lycoptera</i>	1	0/1	1	1	0	0	1	
Megalops	1	1	1	1	1	2	1	
†Obaichthys	0	0	0	0	-	0	0	
†Orthocormus	0	-	0	0	0	3	-	
†Pachycormus	0	-	0	0	0	3	-	
†Parapholidophorus	?	0	0	0	-	1	0	

<i>†Pholidoctenus serianus</i>	1	0	0	0	1	0/3	0
†Prohalecites	1	0	0	0	1	0	0
†Protoclupea	1	1	1	0	1	1	1
†Tharsis	0/1	1	1	0	1	2	0
†Varasichthys	?	1	1	0	0	?	1
†Vinctifer	1	—	1	0	1	0	0

Table S3. Oligonucleotides for each of the experiments performed in this work. Oligonucleotides for *in situ* hybridization, single guide RNAs for CRISPR/Cas9 and genotyping primers for the heteroduplex mobility assay are detailed.

Identifier	Oligonucleotide
hoxa13a ISH probes	F: 5' AGGTAACTTCTCGCCAAGCC 3'
	R: 5' ATCCGTCTGCGTTTGTCCTT 3'
hoxb13a ISH probes	F: 5' GTTTGGTTGGAAGCGGCAAT 3'
	R: 5' GCTATGGCGCGGTGTTTTTA 3'
hoxc13a ISH probes:	F 5' GGTCCTGCATCCACGCTGG 3'
	R 5' CTGAGAGGTTGGTTGTCGCA 3'
hoxc13b ISH probes	F: 5' CTGGGCGGACACACTGATTT 3'
	R: 5' CTCGGAGAGACTCGTTGTGG 3'
hoxc12a ISH probes	F: 5' AATCCATCGGAGTCGTGCAA 3'
	R: 5' GGACAAAGCCTGTTCCCTCA 3'
sgRNA hoxb13a_1	5'_TAATACGACTCACTATA GGCGTAGGGGATGGGACCTG GTTTT
	AGAGCTAGAA_3'
sgRNA hoxb13a_2	5'_TAATACGACTCACTATA GGGCCATGGACAAGGCTAGA GTTTT
	AGAGCTAGAA_3'
sgRNA hoxc13a_1	5'_TAATACGACTCACTATA GGGCAGCGCTTTGCCCACAG GTTTT
	AGAGCTAGAA_3'
sgRNA hoxc13a_2	5'_TAATACGACTCACTATA GGAGCGCTAGATGACGTCTG GTTTT
	AGAGCTAGAA_3'
sgRNA 3' common primer:	5'_AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGG
	ACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC_3'
Heteroduplex mobility shift	F: 5'_GGAATCTGATGGCCCACTCG_3'
assay against <i>hoxb13a</i>	R: 5'_TCAGACGTGACCGGGGTATC_3'
Heteroduplex mobility shift	F: 5'_GCAGCCCGTGATATGACG_3'
assay against <i>hoxc13a</i>	R: 5'_CTGCAAGTTCACATTGTGCG_3'

Movie S1. Double mutant adult and larvae swimming. The movie shows the swimming behavior of double mutant adults alongside wild type fish to highlight the differences in caudal fin morphology. Notably, the fish in the video swim using their anal fin. Additionally, the movie includes footage of a juvenile fish during the tail coiling stage, showcasing their unique swimming behavior.

Movie S2. Micro-CT video of double *b13a*^{-/-}; *c13a*^{-/-} mutant. Each vertebra is segmented in a different color.

REFERENCES AND NOTES

- J. J. Heckel, Über das Wirbelsäulen-Ende bei Ganoiden und Teleostiern. Sber. Akad. Wiss. Wien 5, 143–147 (1850).
- A. Kölliker, Über das Ende der Wirbelsäule der Ganoiden und einiger Teleostier. (von Willhelm Engelmann, 1860).
- 3. J. A. Ryder, "On the origin of heterocercy and the evolution of the fins and fin rays of fishes," *Rep. US Comm. Fish and Fisheries.* (US Government Printing Office, 1884), pp. 981–1107.
- H.-P. Schultze, G. Arratia, The composition of the caudal skeleton of teleosts (Actinopterygil: Osteichthyes). *Zool. J. Linn. Soc.* 97, 189–231 (1989).
- O. Nybelin, Zur Morphologie und Terminologie des Schwanzskelettes der Actinopterygier. *Ark. Zool.* 15, 485–516 (1963).
- B. D. Metscher, P. E. Ahlberg, "Origin of the teleost tail: Phylogenetic frameworks for developmental studies" in *Major Events in Early Vertebrate Evolution*, P. E. Ahlberg, Ed. (Taylor & Francis, 2001), chap. 19, pp. 333–349.
- H.-P. Schultze, G. Arratia, "The caudal skeleton of basal teleosts, its conventions, and some of its major evolutionary novelties in a temporal dimension" in *Mesozoic Fishes 5 – Global Diversity and Evolution*, G. Arratia, H.-P. Schultze, M. V. H. Wilson, Eds. (Verlag Dr. Friedrich Pfeil, 2013), pp. 187–246.
- 8. G. Arratia, Complexities of early Teleostei and the evolution of particular morphological structures through time. *Copeia* **103**, 999–1025 (2015).
- 9. T. H. Huxley, Original communications: Observations on the development of some parts of the skeleton of fishes. *J. Cell Sci.* **1**, 33–46 (1859).
- T. Desvignes, A. Carey, J. H. Postlethwait, Evolution of caudal fin ray development and caudal fin hypural diastema complex in spotted gar, teleosts, and other neopterygian fishes. *Dev. Dyn.* 247, 832–853 (2018).

- T. Desvignes, A. E. Robbins, A. Z. Carey, R. Bailon-Zambrano, J. T. Nichols, J. H. Postlethwait, K. Stankunas, Coordinated patterning of zebrafish caudal fin symmetry by a central and two peripheral organizers. *Dev. Dyn.* 251, 1306–1321 (2022).
- Y. Nakatani, P. Shingate, V. Ravi, N. E. Pillai, A. Prasad, A. McLysaght, B. Venkatesh, Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. *Nat. Commun.* 12, 4489 (2021).
- O. Simakov, F. Marletaz, J. X. Yue, B. O'Connell, J. Jenkins, A. Brandt, R. Calef, C. H. Tung, T. K. Huang, J. Schmutz, N. Satoh, J. K. Yu, N. H. Putnam, R. E. Green, D. S. Rokhsar, Deeply conserved synteny resolves early events in vertebrate evolution. *Nat. Ecol. Evol.* 4, 820–830 (2020).
- 14. E. B. Lewis, A gene complex controlling segmentation in *Drosophila*. *Nature* 276, 565–570 (1978).
- 15. D. Duboule, P. Dollé, The structural and functional organization of the murine HOX gene family resembles that of *Drosophila* homeotic genes. *EMBO J.* **8**, 1497–1505 (1989).
- 16. S. J. Gaunt, R. Krumlauf, D. Duboule, Mouse homeo-genes within a subfamily, Hox-1.4,
 -2.6 and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. *Development* 107, 131–141 (1989).
- 17. A. Graham, N. Papalopulu, R. Krumlauf, The murine and *Drosophila* homeobox gene complexes have common features of organization and expression. *Cell* **57**, 367–378 (1989).
- N. Denans, T. Iimura, O. Pourquié, *Hox* genes control vertebrate body elongation by collinear Wnt repression. *eLife* 4, e04379 (2015).
- R. Aires, L. de Lemos, A. Novoa, A. D. Jurberg, B. Mascrez, D. Duboule, M. Mallo, Tail Bud progenitor activity relies on a network comprising *Gdf11*, *Lin28*, and *Hox13* genes. *Dev. Cell* 48, 383–395.e8 (2019).

- 20. T. Young, J. E. Rowland, C. van de Ven, M. Bialecka, A. Novoa, M. Carapuco, J. van Nes, W. de Graaff, I. Duluc, J. N. Freund, F. Beck, M. Mallo, J. Deschamps, *Cdx* and *Hox* genes differentially regulate posterior axial growth in mammalian embryos. *Dev. Cell* 17, 516–526 (2009).
- K. D. Economides, L. Zeltser, M. R. Capecchi, *Hoxb13* mutations cause overgrowth of caudal spinal cordand tail vertebrae. *Dev. Biol.* 256, 317–330 (2003).
- 22. A. R. Godwin, M. R. Capecchi, *Hoxc13* mutant mice lack external hair. *Genes Dev.* 12, 11–20 (1998).
- 23. A. Amores, A. Force, Y L Yan, L. Joly, C. Amemiya, A. Fritz, R K Ho, J. Langeland, V. Prince, Y L Wang, M. Westerfield, M. Ekker, J. H. Postlethwait, Zebrafish hox Clusters and vertebrate genome evolution. *Science* 282, 1711–1714 (1998).
- 24. D. Davesne, M. Friedman, A. D. Schmitt, V. Fernandez, G. Carnevale, P. E. Ahlberg, S. Sanchez, R. B. J. Benson, Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication. *Proc. Natl. Acad. Sci. U.S.A.* **118**, e2101780118 (2021).
- 25. J. S. Taylor, I. Braasch, T. Frickey, A. Meyer, Y. Van de Peer, Genome duplication, a trait shared by 22000 species of ray-finned fish. *Genome Res.* **13**, 382–390 (2003).
- 26. R. Thummel, L. Li, C. Tanase, M. P. Sarras, Jr., A. R. Godwin, Differences in expression pattern and function between zebrafish *hoxc13* orthologs: Recruitment of Hoxc13b into an early embryonic role. *Dev. Biol.* 274, 318–333 (2004).
- 27. M. Corredor-Adámez, M. Welten, H. Spaink, J. Jeffery, R. Schoon, M. De Bakker, C. Bagowski, A. Meijer, F. Verbeek, M. Richardson, Genomic annotation and transcriptome analysis of the zebrafish (*Danio* rerio) hoxcomplex with description of a novel member, hoxb13a. *Evol. Dev.* 7, 362–375 (2005).
- Z. Ye, D. Kimelman, Hox13 genes are required for mesoderm formation and axis elongation during early zebrafish development. *Development* 147, dev185298 (2020).

- J. Géraudie, V. Borday Birraux, Posterior *hoxa* genes expression during zebrafish bony fin ray development and regeneration suggests their involvement in scleroblast differentiation. *Dev. Genes Evol.* 213, 182–186 (2003).
- 30. R. Thummel, M. Ju, M. P. Sarras, Jr., A. R. Godwin, Both *Hoxc13* orthologs are functionally important for zebrafish tail fin regeneration. *Dev. Genes Evol.* **217**, 413–420 (2007).
- 31. C. Fromental-Ramain, X. Warot, N. Messadecq, M. LeMeur, P. Dollé, P. Chambon, *Hoxa-13* and *Hoxd-13* play a crucial role in the patterning of the limb autopod. *Development* 122, 2997–3011 (1996).
- D. Ahn, R. K. Ho, Tri-phasic expression of posterior *Hox* genes during development of pectoral fins in zebrafish: Implications for the evolution of vertebrate paired appendages. *Dev. Biol.* 322, 220–233 (2008).
- 33. R. Freitas, C. Gomez-Marin, J. M. Wilson, F. Casares, J. L. Gomez-Skarmeta, *Hoxd13* contribution to the evolution of vertebrate appendages. *Dev. Cell* 23, 1219–1229 (2012).
- 34. T. Nakamura, A. R. Gehrke, J. Lemberg, J. Szymaszek, N. H. Shubin, Digits and fin rays share common developmental histories. *Nature* **537**, 225–228 (2016).
- 35. D. M. Parichy, M. R. Elizondo, M. G. Mills, T. N. Gordon, R. E. Engeszer, Normal table of postembryonic zebrafish development: Staging by externally visible anatomy of the living fish. *Dev. Dyn.* 238, 2975–3015 (2009).
- 36. G. Arratia, Actinopterygian postcranial skeleton with special reference to the diversity of fin ray elements, and the problem of identifying homologies in *Mesozoic Fishes 4 – Homology and Phylogeny*, G. Arratia, H.-P. Schultze, M. V. H. Wilson, Eds. (Verlag Dr. Friedrich Pfeil, 2008), pp. 49–101.
- N. C. Bird, P. M. Mabee, Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Dev. Dyn. 228, 337–357 (2003).

- 38. H. Kryvi, K. Nordvik, P. G. Fjelldal, M. Eilertsen, J. V. Helvik, E. N. Storen, J. H. Long, Jr., Heads and tails: The notochord develops differently in the cranium and caudal fin of Atlantic Salmon (*Salmo salar*, L.). *Anat. Rec.* **304**, 1629–1649 (2021).
- 39. L. Lleras Forero, R. Narayanan, L. F. Huitema, M. VanBergen, A. Apschner, J. Peterson-Maduro, I. Logister, G. Valentin, L. G. Morelli, A. C. Oates, S. Schulte-Merker, Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. *eLife* 7, e33843 (2018).
- 40. N. Cumplido, M. L. Allende, G. Arratia, From Devo to Evo: Patterning, fusion and evolution of the zebrafish terminal vertebra. *Front. Zool.* **17**, 18 (2020).
- 41. D. Duboule, G. Morata, Colinearity and functional hierarchy among genes of the homeotic complexes. *Trends Genet.* **10**, 358–364 (1994).
- 42. C. Patterson, The caudal skeleton in lower Liassic pholidophorid fishes. *Bull.Br.Mus.Nat.Hist.Geol.* **16**, 201–239 (1968).
- 43. G. Arratia, "The caudal skeleton of Jurassic teleosts; a phylogenetic analysis" in *Early vertebrates and related problems in evolutionary biology*, M. Chang, H. Liu, G.-R. Zhang, Eds. (Science Press, 1991), pp. 249–340.
- 44. G. Arratia, New Triassic teleosts (Actinopterygii, Teleosteomorpha) from northern Italy and their phylogenetic relationships among the most basal teleosts. J. Vertebr. Paleontol. 37, e1312690 (2017).
- 45. G. Arratia, Morphology, taxonomy, and phylogeny of Triassic pholidophorid fishes (Actinopterygii, Teleostei). *J. Vertebr. Paleontol.* **33**, 1–138 (2013).
- 46. G. Arratia, H. P. Schultze, H. Tischlinger, On a remarkable new species of *Tharsis*, a Late Jurassic teleostean fish from southern Germany: Its morphology and phylogenetic relationships. *Foss. Rec.* 22, 1–23 (2019).

- 47. W. McGinnis, R. L. Garber, J. Wirz, A. Kuroiwa, W. J. Gehring, A homologous protein-coding sequence in *Drosophila* homeotic genes and its conservation in other metazoans. *Cell* 37, 403–408 (1984).
- 48. E. B. Lewis, The bithorax complex: The first fifty years. *Int. J. Dev. Biol.* **42**, 403–415 (1998).
- 49. J. H. Postlethwait, H. A. Schneiderman, A clonal analysis of determination in *Antennapedia* a homoeotic mutant of *Drosophila melanogaster*. *Proc. Natl. Acad. Sci. U. S. A.* **64**, 176–183 (1969).
- 50. J. H. Postlethwait, H. A. Schneiderman, Pattern formation and determination in the antenna of the homoeotic mutant *Antennapedia* of *Drosophila melanogaster*. *Dev. Biol.* **25**, 606–640 (1971).
- 51. T. Sato, K. Kataoka, Y. Ito, S. Yokoyama, M. Inui, M. Mori, S. Takahashi, K. Akita, S. Takada, H. Ueno-Kudoh, H. Asahara, *Lin28a/let-7* pathway modulates the *Hox* code via *Polycomb* regulation during axial patterning in vertebrates. *eLife* 9, e53608 (2020).
- 52. L. Thomson, L. Muresan, B. Steventon, The zebrafish presomitic mesoderm elongates through compaction-extension. *Cells Dev.* **168**, 203748 (2021).
- 53. A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio, J. Giammona, O. Campàs, A fluid-to-solid jamming transition underlies vertebrate body axis elongation. *Nature* 561, 401–405 (2018).
- L. Zhang, C. Kendrick, D. Julich, S. A. Holley, Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. *Development* 135, 2065–2070 (2008).
- 55. C. M. Bouldin, C. D. Snelson, G. H. Farr, D. Kimelman, Restricted expression of cdc25a in the tailbud is essential for formation of the zebrafish posterior body. *Genes Dev.* 28, 384–395 (2014).

- 56. B. Steventon, F. Duarte, R. Lagadec, S. Mazan, J. F. Nicolas, E. Hirsinger, Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. *Development* 143, 1732–1741 (2016).
- R. T. Lee, J. P. Thiery, T. J. Carney, Dermal fin rays and scales derive from mesoderm, not neural crest. *Curr. Biol.* 23, R336–R337 (2013).
- 58. C. Neutens, D. Adriaens, J. Christiaens, B. De Kegel, M. Dierick, R. Boistel, L. Van Hoorebeke, Grasping convergent evolution in syngnathids: A unique tale of tails. *J. Anat.* 224, 710–723 (2014).
- 59. O. Larouche, M. L. Zelditch, R. Cloutier, A critical appraisal of appendage disparity and homology in fishes. *Fish Fish.* **20**, 1138–1175 (2019).
- 60. Y. Hadzhiev, Z. Lele, S. Schindler, S. W. Wilson, P. Ahlberg, U. Strahle, F. Muller, Hedgehog signaling patterns the outgrowth of unpaired skeletal appendages in zebrafish. *BMC Dev. Biol.* 7, 75 (2007).
- 61. J. Letelier, E. de la Calle-Mustienes, J. Pieretti, S. Naranjo, I. Maeso, T. Nakamura, J. Pascual-Anaya, N. H. Shubin, I. Schneider, J. R. Martinez-Morales, J. L. Gomez-Skarmeta, A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. *Nat. Genet.* **50**, 504–509 (2018).
- 62. R. Freitas, G. Zhang, M. J. Cohn, Evidence that mechanisms of fin development evolved in the midline of early vertebrates. *Nature* **442**, 1033–1037 (2006).
- 63. R. Freitas, G. J. Zhang, M. J. Cohn, Biphasic *Hoxd* gene expression in shark paired fins reveals an ancient origin of the distal limb domain. *PLOS ONE* **2**, e754 (2007).
- 64. A. Minelli, The origin and evolution of appendages. Int. J. Dev. Biol. 47, 573–581 (2003).
- 65. A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, J. Postlethwait, Preservation of duplicate genes by complementary, degenerative mutations. *Genetics* **151**, 1531–1545 (1999).

- 66. J. H. Postlethwait, I. G. Woods, P. Ngo-Hazelett, Y. L. Yan, P. D. Kelly, F. Chu, H. Huang, A. Hill-Force, W. S. Talbot, Zebrafish comparative genomics and the origins of vertebrate chromosomes. *Genome Res.* **10**, 1890–1902 (2000).
- 67. C. T. Hittinger, S. B. Carroll, Gene duplication and the adaptive evolution of a classic genetic switch. *Nature* **449**, 677–681 (2007).
- 68. D. L. Stern, The genetic causes of convergent evolution. *Nat. Rev. Genet.* **14**, 751–764 (2013).
- L. Chen, A. L. DeVries, C. H. Cheng, Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. *Proc. Natl. Acad. Sci. U.S.A.* 94, 3817–3822 (1997).
- D. L. Stern, V. Orgogozo, The loci of evolution: How predictable is genetic evolution? *Evolution* 62, 2155–2177 (2008).
- L. Grande, W. E. Bemis, A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. an empirical search for interconnected patterns of natural history. *J. Vertebr. Paleontol.* 18, 1–696 (1998).
- 72. T. Desvignes, A. Carey, I. Braasch, T. Enright, J. H. Postlethwait, Skeletal development in the heterocercal caudal fin of spotted gar (*Lepisosteus oculatus*) and other lepisosteiformes. *Dev. Dyn.* 247, 724–740 (2018).
- 73. H. P. Schultze, G. Arratia, Reevaluation of the caudal skeleton of some actinopterygian fishes: II. Hiodon, Elops, and Albula. *J. Morphol.* **195**, 257–303 (1988).
- 74. G. Arratia, H.-P. Schultze, Reevaluation of the caudal skeleton of certain actinopterygian fishes: III. Salmonidae. Homologization of caudal skeletal structures. *J. Morphol.* 214, 187–249 (1992).
- 75. E. J. Hilton, R. Britz, "The caudal skeleton of osteoglossomorph fishes, revisited: Comparisons, homologies, and characters" in *Origin and Phylogenetic Interrelationships of*

Teleosts, J. S. Nelson, H.-P. Schultze, M. V. H. Wilson, Eds. (Verlag Dr. Friedrich Pfeil, 2010), pp. 219–237.

- 76. D. F. Vaz, E. J. Hilton, The caudal skeleton of batrachoidiformes (Teleostei: Percomorphacea): A study of morphological diversity, intraspecific variation, and phylogenetic inferences. *Zool. J. Linn. Soc.* **189**, 228–286 (2020).
- 77. P. Thieme, P. Warth, T. Moritz, Development of the caudal-fin skeleton reveals multiple convergent fusions within Atherinomorpha. *Front. Zool.* **18**, 20 (2021).
- W. A. Gosline, Some osteological features of modern lower teleostean fishes. *Smithson. Misc. Collect. Washingt.* 142, 1–42 (1961).
- 79. K. Hoshino, Homologies of the caudal fin rays of Pleuronectiformes (Teleostei). *Ichthyol. Res.* 48, 231–246 (2001).
- 80. M. Westerfield, *The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio)*. (Univ. of Oregon Press, ed. 4th, 2000).
- C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, T. F. Schilling, Stages of embryonic development of the zebrafish. *Dev. Dyn.* 203, 253–310 (1995).
- 82. E. O. Wiley, A. M. Fuiten, M. H. Doosey, B. K. Lohman, C. Merkes, M. Azuma, The caudal skeleton of the zebrafish, *Danio rerio*, from a phylogenetic perspective: A polyural interpretation of homologous structures. *Copeia* **103**, 740–750 (2015).
- A. Bensimon-Brito, M. L. Cancela, A. Huysseune, P. E. Witten, The zebrafish (*Danio rerio*) caudal complex a model to study vertebral body fusion. *J. Appl. Ichthyol.* 26, 235–238 (2010).
- H. Acloque, D. G. Wilkinson, M. A. Nieto, "Chapter 9 In Situ Hybridization Analysis of Chick Embryos in Whole-Mount and Tissue Sections" in *Avian Embryology*, 2nd Edition. (2008), pp. 169–185.

- 85. A. Muto, S. Ikeda, M. E. Lopez-Burks, Y. Kikuchi, A. L. Calof, A. D. Lander, T. F. Schilling, Nipbl and mediator cooperatively regulate gene expression to control limb development. *PLOS Genet.* **10**, e1004671 (2014).
- 86. C. Thisse, B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos. *Nat. Protoc.* **3**, 59–69 (2008).
- A. Hruscha, P. Krawitz, A. Rechenberg, V. Heinrich, J. Hecht, C. Haass, B. Schmid, Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. *Development* 140, 4982–4987 (2013).
- W. Y. Hwang, Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J. R. Yeh, J. K. Joung, Efficient genome editing in zebrafish using a CRISPR-Cas system. *Nat. Biotechnol.* 31, 227–229 (2013).
- 89. L. E. Jao, S. R. Wente, W. Chen, Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 13904–13909 (2013).
- 90. M. A. Moreno-Mateos, C. E. Vejnar, J.-D. Beaudoin, J. P. Fernandez, E. K. Mis, M. K. Khokha, A. J. Giraldez, CRISPRscan: Designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. *Nat. Methods* 12, 982–988 (2015).
- 91. T. Nakayama, I. L. Blitz, M. B. Fish, A. O. Odeleye, S. Manohar, K. W. Cho, R. M. Grainger, Cas9-based genome editing in *Xenopus tropicalis*. *Method. Enzymol.* 546, 355–375 (2014).
- S. Ansai, M. Kinoshita, Targeted mutagenesis using CRISPR/Cas system in medaka. *Biol. Open* 3, 362–371 (2014).
- 93. E. L. Sorlien, M. A. Witucki, J. Ogas, Efficient production and identification of CRISPR/Cas9-generated gene knockouts in the model system *Danio rerio*. J. Vis. Exp., e56969 (2018).

- M. B. Walker, C. B. Kimmel, A two-color acid-free cartilage and bone stain for zebrafish larvae. *Biotech. Histochem.* 82, 23–28 (2007).
- 95. E. H. Bryant, On use of logarithms to accommodate scale. Syst. Zool. 35, 552–559 (1986).
- 96. P. Sordino, D. Duboule, T. Kondo, Zebrafish *Hoxa* and *Evx-2* genes: Cloning, developmental expression and implications for the functional evolution of posterior *Hox* genes. *Mech. Dev.* 59, 165–175 (1996).
- 97. C. Thisse, B. Thisse, High throughput expression analysis of ZF-models consortium clones. *ZFIN Direct Data Submission*. (2005).
- C. Patterson, "The contribution of paleontology to teleostean phylogeny" in *Major Patterns in Vertebrate Evolution*, M. K. Hecht, P. C. Goody, B. M. Hecht, Eds. (Plenum, 1977), vol. 14, pp. 579–643.
- 99. P. M. Brito, Révision des Aspidorhynchidae (Pisces, Actinopterygii) du Mésozoïque: Ostéologie, relations phylogénétiques, données environnementales et biogéographiques. *Geodiversitas* 19, 681–772 (1997).
- 100. H.-P. Schultze, G. Arratia, Reevaluation of the caudal skeleton of actinopterygian fishes: I. Lepisosteus and Amia. *J. Morphol.* **190**, 215–241 (1986).
- 101. G. Arratia, "The monophyly of Teleostei and stem-group teleosts" in *Mesozoic Fishes 2 Systematics and Fossil Record*, G. Arratia, H.-P. Schultze, Eds. (Dr. Friedrich Pfeil, München, 1999), vol. 2, pp. 265–334.
- 102. G. Arratia, Basal teleosts and teleostean phylogeny. Paleo Ichth. 7, 5–168 (1997).
- 103. G. Arratia, Remarkable teleostean fishes from the Late Jurassic of southern Germany and their phylogenetic relationships. *Mitt. Mus. Nat. Kd., Berl. Geowiss. Reihe* **3**, 137–179 (2000).

- 104. C. Patterson, D. E. Rosen, Review of ichthyodectiform and other Mesozoic teleost fishes, and the theory and practice of classifying fossils. *Bull. Am. Mus. Nat. Hist.* **158**, 81–172 (1977).
- 105. R. R. Betancur, E. O. Wiley, G. Arratia, A. Acero, N. Bailly, M. Miya, G. Lecointre, G. Orti, Phylogenetic classification of bony fishes. *BMC Evol. Biol.* **17**, 162 (2017).
- 106. E. Parey, A. Louis, J. Montfort, O. Bouchez, C. Roques, C. Iampietro, J. Lluch, A. Castinel, C. Donnadieu, T. Desvignes, C. Floi Bucao, E. Jouanno, M. Wen, S. Mejri, R. Dirks, H. Jansen, C. Henkel, W. J. Chen, M. Zahm, C. Cabau, C. Klopp, A. W. Thompson, M. Robinson-Rechavi, I. Braasch, G. Lecointre, J. Bobe, J. H. Postlethwait, C. Berthelot, H. R. Crollius, Y. Guiguen, Genome structures resolve the early diversification of teleost fishes. *Science* **379**, 572–575 (2023).