1) DD, where: $\theta = 0.5[1 + \exp(-\alpha_1 d)]$ $\alpha_1 = 0.005, 0.05, 0.1, 1, 2, 10$

 α_4 = 0.05, 0.1, 0.2, 0.5, 1, 2

- 2) PDD, where: $\theta = 0.5[1 + \exp\{(\alpha_2 \log(d)) (\alpha_1 d)\}]$ $\alpha_1 = 0.005, 0.05, 0.1, 1, 2, 10$ $\alpha_2 = 0.05, 0.1, 0.5, 1$
- 3) DIR, where: $\theta=0.5\Big[1+\exp\{\left(\alpha_3\cos(\phi-\mu)\right)+\left(\alpha_4\sin(\phi-\mu)\right)\}\Big]$ where the pollution source is arbitrarily selected to emit a contaminant in the direction of the mean angle $\mu=\frac{\pi}{4}$ and where $\phi=$ the angle of the centroid from the pollution source, $\alpha_3=0.05,\,0.1,\,0.2,\,0.5,\,1,\,2$
- 4) DDIR, where: $\theta = 0.5 \Big[1 + \exp \Big\{ \Big(\alpha_3 \cos (\phi \mu) \Big) + \Big(\alpha_4 \sin (\phi \mu) \Big) \Big(\alpha_1 d \Big) \Big\} \Big]$ $\alpha_1 = 0.005, \, 0.05, \, 0.1, \, 1, \, 2, \, 10$ $\alpha_3 = 0.05, \, 0.1, \, 0.2, \, 0.5, \, 1, \, 2$ $\alpha_4 = 0.05, \, 0.1, \, 0.2, \, 0.5, \, 1, \, 2$
- 5) PDDIR, where:

$$\theta = 0.5 \left[1 + \exp\left\{ \left(\alpha_3 \cos\left(\phi - \mu\right) \right) + \left(\alpha_4 \sin\left(\phi - \mu\right) \right) + \left(\alpha_2 \log\left(d\right) \right) - \left(\alpha_1 d\right) \right\} \right]$$

 α_1 = 0.005, 0.05, 0.1, 1, 2, 10

 α_2 = 0.05, 0.1, 0.5, 1

 α_3 = 0.05, 0.1, 0.2, 0.5, 1, 2

 α_4 = 0.05, 0.1, 0.2, 0.5, 1, 2