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ONLINE SUPPLEMENTAL APPENDIX S1 

Sources and Assumptions for Dating the CAM Lineages Presented in Figure 1B and 1C.  

To generate Figure 1 panel 1B, we report dates from phylogenetic chronograms for stem and 

crown nodes of CAM-specific clades.  The identification of CAM specific clades was based on 

densely-sampled δ13C surveys, gas exchange analyses, or diurnal acid accumulation, which were 

then mapped onto phylogenies reported below. For lineages where the CAM status of sister 

clades are not known, we assumed they were C3 if not listed as CAM by Gilman et al. (2023), 

with the notable exception of the Crassulaceae where uncertainty in CAM distribution led us to 

not have confidence in this assumption. As Gilman et al. note, follow-up surveys of sister clades 

should be conducted as prior work did not always report non-CAM determinations, or did not 

survey sister clades if they lacked strong succulence.  

For Fig. 1C, we used Gilman et al. (2023) and Smith and Winter (1996) to identify clades 

containing some CAM species, and use dated phylogenies for divergence dates of these clades. 

Generally, CAM determinations for species within these clades are limited to a handful of 

species, so it is not possible to identify CAM specific clades, nor even when CAM may have 

arisen.  Therefore, the date of the divergence given are for the clade in which the limited number 

of CAM species occur.  This approach generally will not identify CAM age in the clade, but does 

set the oldest boundary for CAM. Generally, CAM will be much younger than the clade age.  

What follows is a listing of clades examined and the source of the phylogenetic dates.  For each 

clade, see the Fig. 1 legend for the clade names corresponding to each histogram as given in the 

sources listed below. The order of presentation matches that shown in Fig. 1B and 1C.  

We note that our survey identified 73 CAM lineages, in contrast to the minimum of 66 CAM 

lineages noted by Gilman et al., (2023). This discrepancy reflects different assumptions and 

authorities in the two studies, and the preliminary nature of the respective efforts given the 

incomplete knowledge of CAM diversity and phylogenetics within many CAM families. Rather 

than harmonize the two estimates, we chose to stay with our estimate of 73 lineages to recognize 

that identification of CAM lineages is an ongoing area of research. 

Figure 1B (listed bottom to top within the panel):  

Dendrobium (Orchidaceae), CAM clades 1-8 in Table 2 from Li et al. (2019).  

Eulophiinae (Orchidaceae), CAM clades 1-4 in Table 2 (Bone et al., 2015).  

Bulbophyllum from Gamisch et al. (2021).  

Bromeliads from the Discussion in Crayn et al. (2015) in the order of the clades Hectioideae, 

Dyckia, Puya/Core Bromeliads, core Tillandsia, and Tillandsia utriculata. Tillandsia clade dates 

are estimated from Givnish et al. (2014).  

Agave clades are Hesperaloe, the crown Yucca, and Agave clades as delineated by Heyduk et al. 

and dated by McCain et al. (McKain et al., 2016; Heyduk et al., 2022).  
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Euphorbia clades follow Table 2 in Horn et al. (2014), where the histograms of Fig. 1B 

represent 15 of their 17 postulated strong CAM clades, as listed in the Fig. 1 legend. 

Anthacanthae + Balsamis was assumed here to represent one clade, Anthacanthacae clade 8.  

Aizoaceae: The three CAM clades from bottom to top in Fig. 1B are Tetragonia, 

Mesembyranthoideae, and core Rushoideae.  Divergence dates for these clades follow Klak et al. 

for the Tetragonia clade, and Liede-Schumann et al. for the other two clades (Klak et al., 2017; 

Liede-Schumann et al. 2020).  To estimate the divergence of these strong CAM clades we 

assumed the sister clades were either C3+CAM or C3, following their absence from the CAM 

genera listed by Gilman et al. (2023).  

Portulacineae: The crown node of the Portulacineae is thought to be C3+CAM, given the 

distribution of C3+CAM character states in the clades that branch at distal nodes in the 

phylogeny.  Strong CAM evolved multiple times in the individual clades of Portulacinae shown 

in Fig. 1B. Stem and crown node dates follow Wang et al. and Arakaki et al. for the 

Portulacineae and its CAM-specific clades Alluadia + Allauadiopsis, core Cactoideae, Grusonia, 

and a clade of Tephrocactus and Opuntia (Arakaki et al. 2011; Wang et al., 2019). Stem and 

crown node dates for strong CAM in the Anacampseros are from Ocampo and Columbus (2010) 

following CAM determinations by Guralnik et al. (2008).  

Rubiaceae: Two lineages of epiphytic ant-plants in the tribe Psychotrieae of Rubiaceae are dated 

from Fig. 1 in Chomicki and Renner (2016).  Myrmecodia beccarii, which occurs in northern 

Queensland, Australia, is maximum 3.6 Ma old.  Three CAM species in Squamellaria endemic 

to Fiji are estimated at 1.6 Ma. 

Zygophyllaceae: Bulnesia retama in the subgenus Larreiodeae is recently shown to be the only 

C3+ CAM species in the family (Mok et al., 2023). It splits from its sister species at 1 (crown) to 

4 (stem) Ma (Böhnert et al., 2020).  

 

Figure 1C: Clades containing CAM species, but CAM position uncertain. 

Pyrrosia ferns follow Wei et al. (2017) who conclude CAM likely evolved in a distinct Austral-

Asian clade with deeply sunken stomata at 17.98 Ma.  

Peperomia dates are from the average of crown dates in Nauman et al. (2013) and Massoni et al. 

(2015). The ancestral condition of Peperomia appears to be C3, with CAM arising multiple yet 

uncertain times at more distal nodes in the Peperomia tree.   

Asphodelaceae (Aloid clades): The origin of the strongly succulent and largely CAM clade Aloe 

and relatives (=genera in the Aloiod clade which includes Aloidendron and Haworthia) is based 

on Additional Files 2 and 3 in Grace et al. (2015). We presumed the crown of Bulbine + 

Asphodeloideae indicates when CAM evolved in this clade.  

Orchidaceae clades are estimated by mapping isotope data and CAM clades from the undated 

phylogeny of Silvera et al. (2009, 2010; see also Silvera et al., 2005) onto the dated supermatrix 
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tree with all 301 taxa in the supplement of Givinish et al. and using the latter’s stem dates to 

estimate clade age (Silvera et al. 2009, 2010; Givnish et al., 2015). Clades are 1, Maxillariinae; 

2, Stanhopeinae; 3, Oncidiinae; 4, Laeliinae; 5, Vandeae; 6, Pleurothallidae. See Fig. 1B for 

CAM origins in Dendrobium.  

Ottelia in the Hydrocharitaceae follows divergence dates presented in Li et al. (2019).  

Pelargonium divergence is estimated by van der Kerke et al. (2019). Because the CAM clade is 

subtended within the genus, we used their crown node date.  

Coleus dates are for the succulent, CAM containing clade B (Paton et al., 2018).  

Apocynaceae: Four independent CAM clades are apparent in the Apocynaceae (Ceropegia, 

Cynachrum, Dischidia-Hoya, and Pachypodium; Gilman et al., 2023).  Dates for divergence of 

the Ceropegia clade follows Bruyns et al. and Liede-Schumann et al. for the Dischidia-Hoya 

clade (Bruyns et al., 2015; Liede‐Schumann et al., 2022).   Date estimates for the Cynachrum 

divergence, and the Pachypodium divergence were estimated by taking their respective crown 

node length presented in Wang et al., dividing by the stem node length of the Dischidia-Hoya 

clade, and then multiplying these relative lengths times the stem node ages of the Dischidia-

Hoya clade.  This method was able to reproduce the stem node age of the Ceropegia clade in 

Bruyns et al. (Bruyns et al., 2015; Wang et al., 2023).  

Asteraceae tribe Senescioneae: Three succulent clades with confirmed CAM are present in the 

Asteraceae – the Gynuroid clade with multiple CAM genera (for example, Kleinia, Curio and 

Senecio meuselii), the Caputia clade, and the Othonna/Crossothonna clade.  The divergence 

dates of these clades are based on the ITS/ETS chronogram presented in Fig. 5 of Pelser et al. 

(2010). Other succulent Senecioneae not shown (e.g Pictocaulon; Cicuzza et al., 2017) branch at 

nodes that are less than 5 Ma but the presence of CAM requires confirmation.   

Clusia: Late-Miocene Clusia divergence dates are based on Ruhfel et al. (2016). Lujan et al. 

(2022) show strengthening of CAM across the Clusia phylogeny following its divergence.  

Curcurbitaceae: CAM divergence of two separate CAM-containing clades, Seyrigia and 

Xerosicyos, are dated in the Fig. 2 and Fig. A1 chronograms of Guo et al. (2020).  

Gesneriaceae: Two CAM lineages are identified in the African violet family, one in the 

Ramondinae (Haberlea/Ramonda) clade, and a second in the Cadonanthe clade.  Petrova et al. 

date the Ramondinae spilt from a non-CAM sister clade at a crown age of 24.5 Ma, and a stem of 

30.5 Ma while Roalson and Roberts date the CAM-inclusive Codonanthe-Nematanthus clade to 

diverge at 14 to 15 Ma (Petrova et al., 2015; Roalson and Roberts, 2016). However, the known 

CAM clade of Codonanthe appears younger, diverging 3 to 6 Ma. This clade is shown to have 

weak CAM (Guralnick et al., 1986).  

Crassulaceae: Dates are based on Messerschmid et al. (2020) for Crassulaceae and Crassula 

divergence, as discussed in the text. Uncertainty in phylogenetic dating and CAM occurrence 

lead us to show the bar for Crassulaceae fading in color towards the left of the plot.    
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