

APPENDIX G. CALCULATION OF ESTIMATED VO2 MAX

Because the relation between heart rate and oxygen consumption is linear during exercise, we can estimate maximal oxygen consumption (V0₂ max) by measuring the heart rate response to known levels of submaximal work. This relation can be summed up by the equation for a line: y = mx + b, where y is heart rate, m is slope, x is V0₂, and b is the intercept. By rearranging these terms, we can derive the following equation:

Estimated VO ₂ max	= <u>PMHR – Intercept</u>
	Slope

Slope	= n (Σ x _i y _i) slope – (Σ x _i) (Σ y _i) / n Σ x _i ² - (Σ x _i) ²
PMHR	= 220 - Age at interview
Intercept	$=\overline{Y}$ - b \overline{X}

 \overline{Y} = mean of End of Stage 1 Heart Rate + End of Stage 2 Heart Rate \overline{X} = mean of End of Stage 1 VO₂ + End of Stage 2 VO₂ b = slope

Slope =
$$n(\sum x_i y_i) - (\sum x_i)(\sum y_i)/n \sum x_i^2 - (\sum x_i)^2$$

n = 2
 $x_i = x_1, x_2$
 x_1 = submax VO₂ at end of Stage 1
 x_2 = submax VO₂ at end of Stage 2

 $\begin{array}{l} y_i = y_1, y_2 \\ y_1 = end \ of \ Stage \ 1 \ HR \\ y_2 = end \ of \ Stage \ 2 \ HR \end{array}$

Get end of stage V0₂ from Appendix H.

Example: A 40 year old man was assigned Protocol 6. Looking in Appendix G, we see that the corresponding submax VO_2 values for these stages are 23.3 and 31.4 ml/kg/min respectively. His heart rate at the end of Stage 1 is 120 and at the end of Stage 2 is 140 beats/min respectively. Plugging these numbers into the formulas above, we then solve our equation.

Estimated V0₂ max = $\frac{180 - 62.47}{2.469}$ = 47.6 ml/kg/min 2.469