

Supplementary Material

Metabolic remodeling in cardiac hypertrophy and heart failure with reduced ejection fraction occurs independent of transcription factor EB in mice

Niklas Dörmann, Elke Hammer, Karlotta Struckmann, Julia Rüdebusch, Kirsten Bartels, Kristin Wenzel, Julia Schulz, Stefan Gross, Stefan Schwanz, Elisa Martin, Britta Fielitz, Cristina Pablo Tortola, Alexander Hahn, Alexander Benkner, Uwe Völker, Stephan B. Felix, Jens Fielitz

1 Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1. TFE3-induced *Ppargc1a* expression is regulated by class IIa HDACs and PKD. (A) Luciferase assays performed with cell extracts of COS-7 cells transfected with Hs Ppargcla-Luc and increasing amounts of FLAG-TFEB (TFEB; 50, 100, 200, and 400 ng) as indicated or control (-) plasmid. Luciferase activity was normalized to expression of CMV-LacZ and expressed as fold increase. Data are represented as mean \pm SD. Two-tailed t-test; ###p<0.001 vs. control transfection with pcDNA3.1; *p<0.05, **p<0.01, ***p<0.001 vs. transfection with TFEB only. (**B-D**) Luciferase assays performed with cell extracts of COS-7 cells transfected with Hs *Ppargc1a*-Luc, FLAG-TFEB (TFEB) and increasing amounts (50, 100, 200, and 400 ng) of MYC-HDAC4 (HDAC4), MYC-HDAC5 (HDAC5), or MYC-HDAC7 (HDAC7) as indicated or control (-) plasmid. Luciferase activity was normalized to expression of CMV-LacZ and expressed as fold increase. Data are represented as mean±SD. One-way ANOVA q<0.0001 for (B); ###q<0.001 vs. control transfection with pcDNA3.1; *q < 0.05; **q < 0.01; ***q < 0.001 vs. transfection with TFEB only. (**E-G**), COS-7 cells were transfected with expression plasmids encoding FLAG-TFEB, (E) HDAC4-MYC, (F) HDAC5-MYC, or (G) HDAC7-MYC, or constitutively active (ca) PKD1 (left panel), caPKD2 (middle panel), and caPKD3 (right panel) proteins, as indicated, together with the Hs_Ppargc1a-Luc reporter construct. Values were normalized to expression of CMV-LacZ and calculated as the fold increase in luciferase/CMV-LacZ ratio compared with the reporter alone. Data are represented as mean \pm SD. One-way ANOVA q<0.0001 for (E-G); *q<0.05; **q<0.01; ***q<0.001. n=5.

Supplementary Figure 2. Deletion of TFEB leads to an increased expression of cardiac stress and remodeling markers and a decreased cardiac function. (A) Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of *Tfeb*, *Tfe3* and *Mitf* expression from WT and cKO mice. mRNA expression was normalized to *Gapdh*. (B) Western blot analysis with anti-TFEB and anti-GAPDH antibodies (left; n.s.=nonspecific signal). GAPDH was used as loading control. Bar graph showing the ratio of the relative densities of TFEB and GAPDH protein contents. (C) Heart, lung and liver weights of WT and cKO mice normalized to tibia length. (D) Echocardiographic data for left ventricular ejection fraction (LVEF) and fractional shortening (FS) from WT and cKO mice. (E) Representative images of Hematoxylin and Eosin (H&E) stained heart cross-sections of WT and cKO mice. (F) Wheat Germ Agglutinin (WGA) stained histological cross-sections of hearts from WT and cKO mice (Scale bar, 100 μm) and (G) myocyte cross-sectional area (MCSA) measured on WGA stained sections with Image J. (H) Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of indicated genes from WT and cKO mice. mRNA expression was normalized to *Gapdh*. (I) Western blot analysis with anti-GAPDH antibodies. GAPDH was used as loading control. Bar graph showing

the ratio of the relative densities of β -MyHC and GAPDH protein contents. (**J**) Representative images of Picrosirius Red stained (PSR, left) heart cross-sections of WT and cKO mice; scale bar, 1 mm. Fibrotic area (right) was measured with Image J. (**K**) qRT-PCR analysis of indicated genes from WT and cKO mice. mRNA expression was normalized to *Gapdh*. Data are presented as Mean±SD (WT: n=10, cKO: n=8; *q<0.05, **q<0.01, ****q<0.001, ****q<0.0001).

Supplementary Figure 3. Deletion of TFEB leads to an impaired regulation of genes involved in energy homeostasis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of indicated metabolic genes (**A-B**) and genes involved in OXPHOS (**C**) and mitochondrial fission and fusion (**D**) from WT and cKO mice. mRNA expression was normalized to *Gapdh*. (**E**) Representative images of PAS stained heart cross-sections of WT and cKO mice; left: overview, scale bare 1mm; middle: higher magnification, scale bar 100 μ m (corresponding to inset from left), right: quantification of glycogen content with Image J. (**A-E**) Data are presented as mean \pm SD (WT: n=10, cKO: n=8; *q<0.05, **q<0.01, ****q<0.001, ****q<0.0001). (**F**) Volcano plots of differentially expressed genes in WT and cKO hearts. Genes that are significantly upregulated (red, q-value < 0.05), downregulated (blue, q-value < 0.05) or unchanged (gray, not significant (n.s.)) are indicated. The grid line on the y axis indicates the significant threshold of -log₁₀(q-value) = 1.3.

Supplementary Figure 4. PO-induced cardiomyocyte hypertrophy is comparable between WT and cKO mice in the LVH model. (**A**) Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of MiT/TFE genes in hearts of WT and cKO mice after 21 days of Sham or TAC surgery as indicated. mRNA expression was normalized to *Gapdh*. (**B**) Kinetics of left ventricular mass as determined by echocardiography at indicated time points after Sham and TAC surgery, respectively, of WT and cKO mice. (**C**) Representative images of Hematoxylin and Eosin (H&E) stained cardiac cross-sections of WT and cKO mice; scale bar, 100 μm. (**D-G**) Frequency-distribution histograms of myocyte cross-sectional areas (MCSA) measured with Image J on Wheat Germ Agglutinin (WGA) stained sections comparing WT_Sham and WT_TAC (D), cKO_Sham and cKO_TAC (E), WT_Sham and cKO_Sham (F), and WT_TAC and cKO_TAC (G). Data are presented as mean ± SD (21 days, WT Sham: n=10, WT TAC: n=13, cKO Sham: n=10, cKO TAC: n=15; *q<0.05, **q<0.01, ****q<0.001, ****q<0.0001).

Supplementary Figure 5. PO-induced cardiomyocyte hypertrophy is attenuated in cKO mice in the HFrEF model. (**A**) Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of MiT/TFE genes in hearts of WT and cKO mice after 56 days of Sham or TAC surgery as indicated. mRNA expression was normalized to *Gapdh*. (**B**) Kinetics of left ventricular mass as determined by echocardiography at indicated time points after Sham and TAC surgery, respectively, of WT and cKO mice. (**C**) Representative images of Hematoxylin and Eosin (H&E) stained cardiac cross-sections of WT and cKO mice; scale bar, 100 μm. (**D-G**) Frequency-distribution histograms of myocyte cross-sectional areas (MCSA) measured with Image J on Wheat Germ Agglutinin (WGA) stained sections comparing WT_Sham and WT_TAC (D), cKO_Sham and cKO_TAC (E), WT_Sham and cKO_Sham (F), and WT_TAC and cKO_TAC (G). Data are presented as mean ± SD (56 days, WT Sham: n=10, WT TAC: n=6, cKO Sham: n=8, cKO TAC, n=6; *q<0.05, **q<0.01, ***q<0.001, ****q<0.0001).

Supplementary Figure 6. Proteomics data of WT and cKO mice after 56 days of Sham or TAC surgery. (A) Correlation between the cKO_TAC/cKO_Sham, (B) cKO_TAC/WT_TAC and (C) cKO_Sham/WT_Sham ratios and the WT_TAC/WT_Sham ratios. Ratio data is presented as single points. Correlation was calculated with Pearson r and p value. Simple linear regression is shown with 95% CI. Single protein analysis of (D) cardiac stress and remodeling markers and (E) proteins of the

energy metabolism, mitochondrial fission and fusion, and ETC. (56 days, WT Sham: n=10, WT TAC: n=6, cKO Sham: n=8, cKO TAC: n=6; *q<0.05, ***q<0.01, ****q<0.001, ****q<0.001).

Supplementary Figure 7. Analysis of proteomics data from hearts of WT and cKO mice after 56 days of Sham or TAC surgery. (A) Heatmaps of canonical metabolic pathways and (B) canonical signaling pathways with significant enrichment of regulated proteins are shown. Data are presented as heat maps (q-value ≤ 0.05 , FC=1.3). Hatched marked boxes indicate that changes are not significant. (C) KEGG pathway of FAO related proteins (highlighted in red arrows) as shown in A.

1.2 Supplementary Tables

Supplementary Table 1: PCR primers for genotyping.

Name	Primer sequence
Tcfeb_forward	GTAGAACTGAGTCAAGGCATACTGG
Tcfeb_reverse	GGGTCCTACCTACCACAGAGCC
αMHC-Cre_forward	CGGCACTCTTAGCAAACCTC
αMHC-Cre_reverse	AGGCAAATTTTGGTGTACGG

Supplementary Table 2: qRT-PCR primers.

Name	Primer sequence
Acta1_forward	AGCCGGTGCTCTCCTACTG
Acta1_reverse	CGTCGCACATGGTGTCTAGT
Atp5a1_forward	CGGGCTGAGGAATGTTCA
Atp5a1_reverse	CCAAGTTCAGGGACATACCC
Col1a1_forward	TGTAAACACCCCAGCGAAGAA
Col1a1_reverse	CTGAGTTGCCATTTCCTTGGA
Col3a1_forward	CTCACCCTTCTTCATCCCACTCTTA
Col3a1_reverse	ACATGGTTCTGGCTTCCAGACAT
Cox4_forward	TCACTGCGCTCGTTCTGAT
Cox4_reverse	CGATCGAAAGTATGAGGGATG
Cpt1b_forward	GAGTGACTGGTGGGAAGAATATG
Cpt1b_reverse	GCTGCTTGCACATTTGTGTT
Drp1_forward	TCCCAATTCCATTATCCTCGC
Drp1_reverse	CATCAGTACCCGCATCCATG
Esrra_forward	GCCTCCAATGAGTGTGAGATC
Esrra_reverse	TTTGTACTTCTGCCGTCCG
Esrrb_forward	TGTGTTCCTCATCAACTGGG
Esrrb_reverse	CAGCTTGTCATCGTATGGGAG
Esrrg_forward	GGATGGGCAAAACATATTCCAG
Esrrg_reverse	GTTCATCCTCAAACGAAAGCG
Fis1_forward	AAGGGAGCAAAGAGGAACAG
Fis1_reverse	GCCCTCGCACATACTTTAGAG
Gys1_forward	CTGTCCTGTTCGGCTTCCT
Gys1_reverse	CCACATACGGCTTCTCTTCG
Hk2_forward	GCCAGCCTCTCCTGATTTTAGTGT
Hk2_reverse	GGGAACACAAAGACCTCTTCTGG
Mfn1_forward	CATTGCGTTTCGGTTTTCCC
Mfn1_reverse	GAAGGAGCAGTAGGAGTTGAAG
Mfn2_forward	CGAGGCTCTGGATTCACTTC
Mfn2_reverse	CAACCAGCCAGCTTTATTCC
Mitf_forward	AAAAGTCAACCTCTGAAGAGCAG
Mitf_reverse	GCGTAGCAAGATGCGTGAT
MT-Co1_forward	TCCACTATTTGTCTGATCCGTACT
MT-Co1_reverse	AGTAGTATAGTAATGCCTGCGGCTA
MT-Cytb_forward	CATTTATTATCGCGGCCCTA
MT-Cytb_reverse	TGGGTTGTTTGATCCTGTTTC
MT-Nd1_forward	CTAGCAGAAACAAACCGGGC
MT-Nd1_reverse	CCGGCTGCGTATTCTACGTT
MT-Nd4_forward	CCAAACTCCATGAAGCTTCATAGG

MT-Nd4_reverse GATGATGTGAGGCCATGTGCG Myh6_forward GCCAAGACTGTCCGGAATGA Myh6_reverse TGGAAGATCACCCGGGACTT Myh7_forward CGCATCAAGGAGCTCACC Myh7 reverse CTGCAGCCGCAGTAGGTT Ndufb8 forward TCCCTTCCTACCAGCCTGT Ndufb8 reverse GAGCAGGAAAACAGGAATGC Nppa forward GGGGGTAGGATTGACAGGAT Nppa_reverse ACACACCACAAGGGCTTAGG Nppb_forward GCACAAGATAGACCGGATCG Nppb_reverse CTTCAAAGGTGGTCCCAGAG Nrf1_forward TGGAGTCCAAGATGCTAATGG GCGAGGCTGGTTACCACA Nrf1_reverse Ppara forward CTGAGACCCTCGGGGAAC AAACGTCAGTTCACAGGGAAG Ppara reverse Ppargc1a_forward TGAAAGGCCAAACAGAGAG Ppargc1a_reverse GTAAATCACACGGCGCTCTT Pppargc1b_forward CCACAGCCCACTTCCAGA Pppargc1b reverse CCAAGAGAGTCGCTTTGTGA Sdha forward CCCTGAGCATTGCAGAATC Sdha reverse TCTTCTCCAGCATTTGCCTTA Sdhb forward ACTGGTGGAACGGAGACAAG CCTCTGTGAAGTCGTCTCTGG Sdhb_reverse Slc2a1_forward TTGTTGTAGAGCGAGCTGGA Slc2a1 reverse TTCAAAGAAGGCCACAAAGC Slc2a4 forward GTCGGGTTTCCAGCAGAT Slc2a4 reverse GGCATTGATAACCCCAATGT Tfam_forward CAAAGGATGATTCGGCTCAG Tfam_reverse AAGCTGAATATATGCCTGCTTTTC GAGCTGGGAATGCTGATCC Tfeb forward Tfeb_reverse CTTGAGGATGGTGCCTTTGT GCTCAAAAGCCAACCCCTAT Tfe3 forward Tfe3 reverse GGTGTGGCCTGCAGTGATA Uqcrc2_forward TGGGCTCTTTGGAATTTACAC Uqcrc2_reverse TTGGTTGTAGGCAGCATTGA

Supplementary Table 3: LC-MS/MS parameters (A) and Spectronaut parameters for peptide/Protein identification and intensity extraction (B).

Supplementary Table 3A: LC-MS/MS parameters (data independent mode; quantitative data).

Data independent acquisition (DIA)				
Reversed phase liquid chromatography	Ultimate 3000 RSLC (Thermo Scientific)			
Trap column	75 μm inner diameter, packed with 3			
	μm C18 particles (Acclaim			
	PepMap100, Thermo Scientific)			
Analytical column	75 μm inner diameter, packed with			
	2.6 µm C18 particles (Accucore, 25			
	cm, Thermo Scientific)			
Flow rate	300 nl/min			
Column oven temperature	40°C			
Buffer system	binary buffer system consisting of			
	0.1% acetic acid in HPLC-grade			
	water (buffer A) and 100% ACN in			
Gradient	0.1% acetic acid (buffer B) gradient of buffer B: 2min 2% to 5 %,			
Gradient	8min 7%, 60min 7% to 25%, 5min 25			
	to 40%, 2 min 40% to 90%, 6 min			
	90%, 2 min 90% to 2%, 10 min 2%			
Mass spectrometer	Exploris 480			
Operation mode	Data-independent			
Electrospray	Nanospray Flex Ion Source			
Full MS				
MS scan resolution	120,000			
Normalized AGC target	300%			
Maximum ion injection time for the MS scan	60 ms			
Scan range	350 to 1,200 m/z			
Spectra data type	profile			
dd-MS2				
Resolution	30,000			
Normalized MS/MS AGC target	3,000			
Maximum ion injection time for the MS/MS scans	auto			
Spectra data type	profile			
Selection for MS/MS	1			
Isolation window	65 windows m/z 13 (overlap m/z 2)			
Fixed first mass	200			
Dissociation mode	higher energy collisional dissociation			
	(HCD)			
Normalized collision energy	fixed, 30			
Dissociation mode	HCD			

Supplementary Table 3B: Spectronaut parameters for peptide/Protein identification and intensity extraction.

Spectronaut 14.10

Computer Name: AGVOE-SPECTRONA
User Domain Name: AGVOE-

SPECTRONA

User Name: spectronaut Analysis Mode: UI Analysis Type: directDIA Analysis Date: 20-April-2021

Settings Used:

Pulsar Search\Peptides

Toggle N-terminal M:TrueMin Peptide Length:7Max Peptide Length:52Missed Cleavages:2

Digest Type: Specific Enzymes / Cleavage Rules: Trypsin/P

Pulsar Search\Labeling

Channels:

Channel 1: False
Channel 2: False
Channel 3: False

DIA Analysis\Data Extraction

MS1 Mass Tolerance Strategy: Dynamic

Correction Factor:

MS2 Mass Tolerance Strategy: Dynamic

Correction Factor: 1

Intensity Extraction MS1: Maximum Intensity
Intensity Extraction MS2: Maximum Intensity

DIA Analysis\XIC Extraction

XIC IM Extraction Window: Dynamic

Correction Factor: 1

XIC RT Extraction Window: Dynamic

Correction Factor: 1

Pulsar Search\Modifications

Max Variable Modifications: 5

Database

Original File: Uniprot_2_2021.fasta (Mus musculus)

Select Modifications:

Fixed Modifications: Carbamidomethyl (C)

Variable Modifications: Acetyl (Protein N-term), Oxidation (M)

DIA Analysis\Calibration

MS1 Mass Tolerance Strategy: System Default MS2 Mass Tolerance Strategy: System Default

Precision iRT: True

iRT <-> RT Regression Type: Local (Non-Linear) Regression

Exclude Deamidated Peptides: True

MZ Extraction Strategy: Maximum Intensity

Allow source specific iRT Calibration: True

DIA Analysis\Identification

Generate Decoys: True
Decoy Limit Strategy: Dynamic
Library Size Fraction: 0.1
Decoy Method: Mutated

Preferred Fragment Source: NN Predicted Fragments

Machine Learning:

Exclude Duplicate Assays:

Precursor PEP Cutoff:

Protein Qvalue Cutoff (Experiment):

Protein Qvalue Cutoff (Run):

Exclude Single Hit Proteins:

Per Run

1

0.01

0.05

Pvalue Estimator: Kernel Density Estimator

Precursor Qvalue Cutoff: 0.001

Single Hit Definition: By Stripped Sequence

DIA Analysis\Quantification

Interference Correction:

MS1 Min:

MS2 Min:

Exclude All Multi-Channel Interferences:

Only Identified Peptides:

Protein LFQ Method:

True

Automatic

Major (Protein) Grouping: by Protein Group Id Minor (Peptide) Grouping: by Stripped Sequence

Minor Group Top N: False

Minor Group Quantity: Sum precursor quantity

Major Group Top N: True Min: 2 Max: 3

Major Group Quantity: Mean peptide quantity

Quantity MS-Level:MS2Quantity Type:AreaProteotypicity Filter:None

Data Filtering: Qvalue percentile

Fraction: 0.25

Imputing Strategy: No Imputing

Cross Run Normalization: False

DIA Analysis\PTM Workflow

PTM Localization: True
Probability Cutoff: 0.75
PTM Analysis: True
Multiplicity: True
Run Clustering: False
PTM Consolidation: Sum
Flanking Region: 7

DIA Analysis\Workflow

MS2 DeMultiplexing: Automatic

Run Limit for directDIA Library: -1
Method Evaluation: False

Profiling Strategy: iRT Profiling

Profiling Row Selection: Minimum Qvalue Row Selection

Qvalue Threshold: 0.001

Profiling Target Selection: Profile only non-identfied Precursor

Identification Criterion:QvalueThreshold:0.001Carry-over exact Peak Boundaries:False

Unify Peptide Peaks Strategy: Select corresponding Peak

DIA Analysis\Protein Inference

Protein Inference Workflow: Automatic
Inference Algorithm: IDPicker

DIA Analysis\Post Analysis

Calculate Sample Correlation Matrix: True
Calculate Explained TIC: Quick

Differential Abundance Grouping: Major Group (Quantification Settings)
Smallest Quantitative Unit: Precursor Ion (Quantification Settings)

Use All MS-Level Quantities: False

Differential Abundance Testing: Paired *t*-test

Group-Wise Testing Correction: False Run Clustering: True

Distance Metric: Manhattan Distance Linkage Strategy: Ward's Method

Z-score transformation: False Order Runs by Clustering: True

DIA Analysis\Pipeline Mode

Post Analysis Reports:

Scoring Histograms: True
Data Completeness Bar Chart: True
Run Identifications Bar Chart: True
CV Density Line Chart: True

CVs Below X Bar Chart: True
Generate SNE File: True
Store Iontraces in SNE: False

Report Schema: C_FunGene_complex (Normal)

Reporting Unit: Across Experiment

Pulsar Search\Identification

Peptide FDR: 0.01
Protein Group FDR: 0.01
PSM FDR: 0.01

Pulsar Search\Tolerances

Tolerance Parameters:

Thermo Orbitrap:

Calibration Search: Dynamic

MS1 Correction Factor: 1
MS2 Correction Factor: 1

Main Search: Dynamic

MS1 Correction Factor: 1
MS2 Correction Factor: 1

TOF:

Calibration Search: Dynamic

MS1 Correction Factor: 1
MS2 Correction Factor: 1

Main Search: Dynamic

MS1 Correction Factor: 1
MS2 Correction Factor: 1

Thermo IonTrap:

Calibration Search: Dynamic

MS1 Correction Factor: 1
MS2 Correction Factor: 1

Main Search: Dynamic

MS1 Correction Factor: 1
MS2 Correction Factor: 1

Pulsar Search\Workflow

Use DNN Predicted Ion Mobility: Auto

Fragment Ion Selection Strategy: Intensity Based

In-Silico Generate Missing Channels: False

Pulsar Search\Result Filters

Precursors:

Best N Fragments per Peptide:

Min:
6
Max:
10
Channel Count:
False
Modifications:
None
Amino Acids:
False

Supplementary Material

Best N Peptides per Protein Group:	False
FASTA Matched:	False
Missed Cleavage:	False
Peptide Charge:	False
Proteotypicity:	False
Fragment Ions:	
m/z:	True
Min:	300
Max:	1,800
Ion Charge:	False
Ion Loss Type:	False
Ion Type:	False
Ion AA Length:	True
N:	3
Relative Intensity:	True
Min:	5

Supplementary Table 4: Subunits of the electron transport chain.

Complex	Gene	Gen name
Complex I	MT-Nd1	NADH-ubiquinone oxidoreductase chain 1
	MT-Nd4	NADH-ubiquinone oxidoreductase chain 4
	Ndufb8	NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial
Complex II	Sdha	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial
	Sdhb	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial
Complex III	MT-Cytb	Cytochrome b
	Uqcrc2	Cytochrome b-c1 complex subunit 2, mitochondrial
Complex IV	Cox4	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial
	MT-Co1	Cytochrome c oxidase subunit 1
Complex V	Atp5a1	ATP synthase subunit alpha, mitochondrial

Supplementary Table 5. Summarized echocardiography data from WT and cKO mice after 21 days of TAC.

Attached as "Table S5 - Echo - 21 days of TAC - eng.xlsx"

Supplementary Table 6. Summarized echocardiography data from WT and cKO mice after 56 days of TAC.

Supplementary Table 6A. WT_TAC vs. WT_Sham & cKO_TAC vs. cKO_Sham.

Supplementary Table 6B. cKO_Sham vs. WT_Sham & cKO_TAC vs. WT_TAC.

Attached as "Table S6 A,B - Echo - 56 days of TAC - eng.xlsx"