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Supporting Methods and Results 

Animals  

Albino Xenopus laevis tadpoles of both sexes were obtained from an in-house colony at 

the Department of Animal Resources at the Scripps Research Institute, La Jolla or 

purchased from Xenopus Express (Brooksville, FL, USA, RRID:XEP_Xla200). Animals 

were reared in 0.1X Steinberg’s solution at 22oC under a 12 hour light/12 hour dark cycle, 

and anesthetized before all procedures in 0.02% tricaine methanesulfonate (MS-222). 

When experiments were completed, animals were euthanized with 0.1% MS-222. Animals 

were staged according to Nieuwkoop and Faber (1). All animal protocols were approved 

by the Institutional Animal Care and Use Committee of Scripps Research (protocol # 08-

0083-3). 

Isolation of enriched populations of neural progenitor cells and immature neurons 
from the optic tectum 

Cell samples enriched in neural progenitor cells and immature neurons were collected 

from tadpole midbrain as follows. Stage 46 tadpoles (1) were taken directly from their 12h 

dark cycle, anesthetized in 0.02% MS-222, and their brains were electroporated with 

plasmids expressing Gal4-UAS-turboGFP (tGFP) driven by the oct4/sox2 enhancer from 

the minimal FGF promoter, called pSOX2-bd::turboGFP. pSOX2-bd::tGFP (2µg/µl) was 

injected into the ventricle and electrodes were positioned next to the midbrain to 

electroporate plasmid into ventricular layer cells. After 24h, tGFP was detected in neural 

progenitor cells in the ventricular layer and immature neurons in the neuronal layers (2, 

3). The HMG-Box transcription factor, SOX2, is expressed in neural progenitor cells in 

vertebrate brain, including Xenopus (3, 4) and is necessary to maintain progenitor cell 

identity (5). Expression of tGFP from this plasmid requires pre-existing SOX2 protein to 

be present in the cell, and tGFP expression levels are amplified by the Gal4-UAS 

elements. This process birthdates SOX2+ neural progenitor cells lining the ventricle with 

tGFP.  

We tested the birthdating ability of pSOX2bd::tGFP by co-electroporating the 

plasmid along with translation-blocking morpholinos targeted against the sox2 transcript, 

which do not affect levels of pre-existing SOX2 protein. Co-electroporating sox2 

morpholinos with pSOX2bd::tGFP did not interfere with tGFP expression indicating that 

SOX2 protein present prior to introduction of morpholinos was sufficient to drive 
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expression of pSOX2bd::tGFP in progenitors. Furthermore, tGPP expression persisted in 

neuronal progeny (Figure S1). Therefore, pSOX2bd::tGFP is a powerful tool for birthdating 

progenitors and their neuronal progeny with tGFP expression in the Xenopus brain, even 

under conditions that might subsequently alter the generation of additional neural 

progenitors.  

 

 

Figure S1. pSOX2bd::tGFP labels cells even in the absence of new SOX2 synthesis. 

A. Schematic diagram of in vivo imaging protocol. After co-electroporation with pSOX2bd::tGFP and either 

control or sox2 morpholinos (MO), animals were reared in a 12h light/12h dark cycle and imaged in vivo for 3 
consecutive days by confocal microscopy. B. Representative images of tGFP+ cells in the optic tectum of 

control (top, ConMO) and sox2 (bottom, M sox2MO) morpholino-treated animals, imaged daily for 3 days. C. 
Number of Sox2bd::tGFP-labeled cells in animals treated with control (gray) and sox2 (yellow) morpholinos 

over 3 days. Cell numbers are normalized within animals to day 1. Bar graphs indicate average ±SEM, with 
circles indicating individual animal numbers. At each day, the number of cells is the same between groups 

(Mann-Whitney test). Note that labeled cells continue to divide over the 3 day experiment in both treatment 

groups. D. Difference in fold-change of Sox2bd::tGFP positive cells over the 3 day experiment is not significant 
between control (gray) and sox2 (yellow) morpholino-treated animals (Mann-Whitney test). Scale bar, 100 µm. 
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Immediately following electroporation, animals were exposed to either a simulated 

motion stimulus, referred to as enhanced visual stimulation, to enrich for immature 

neurons, or dark for 24 hours to enrich for neural progenitor cells, as described (2, 3, 6). 

Midbrains were collected from 100 animals reared in each condition and dissociated into 

single cells with amphibian PBS (NaCl 113mM, Na2HPO4 8mM, KH2PO4 1.5mM, EDTA 

0.1%, EGTA 2mM). Approximately 40,000 tGFP+ cells were collected from ~100 animals 

from each condition, using Fluorescence Activated Cell Sorting (FACS; FACSAria II, BD 

Biosciences, USA; RRID:SCR_018934). For FACS, forward scatter was used to set the 

threshold for cell size and side scatter was used to set the threshold for cellular granularity. 

The background fluorescence in the FITC channel was set according to fluorescence from 

cells dissociated from midbrains without electroporation and cells with green fluorescence 

higher than the background were collected. Forward and side scatter plots indicated no 

difference in the size or granularity of the tGFP+ cells compared to the non-electroporated 

cells, which are a mixture of neural progenitor cells and immature neurons. There was no 

difference in size and granularity between tGFP+ neural progenitor cells and immature 

neurons. In addition, there was no overlap between tGFP+ cells and cells labeled with 

SytoxRed (S34859, Life Technologies), a nuclear dye that labels unfixed dead cells, 

suggesting that the tGFP+ cells are healthy. Total RNA was extracted using the mirVana 

kit (Life Technologies, USA), followed by DNase treatment to remove genomic DNA and 

followed by clean-up using RNeasy mini kit (Qiagen, USA). The total RNA isolated from 

these sorted cells was high quality (Figure S2). Samples with RIN values of 9.4 for neural 

progenitor cells and 9.2 for immature neurons, measured with a Bioanalyzer, were used 

for subsequent analysis. 2ng of total RNA was amplified to 2–3 µg of double-stranded 

cDNA, using the Ovation RNA-Seq System V2 (NuGEN, USA). The amplified cDNA was 

purified, using Agencourt AMPure XP beads (Beckman Coulter, Inc.), quantified by 

NanoDrop using Agilent Bioanalyzer. Three biological replicates were analyzed for each 

condition.  
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Figure S2. Read quality and alignment of differential expression dataset.  

A. Read quality of entire dataset including 3 biological replicates of both NPCs and immature neurons. B. 
MAPQ alignment quality using SAMStat.  C-E. Details of alignment of reads against Xenopus laevis genome, 

using STAR. C. 80% of RNA-seq reads in average are uniquely aligned to the genome scaffolds, indicating 

the specificity of the reads to Xenopus laevis genome. D. Against genome scaffold (J-strain v9.1) and gff3 file, 
64% of the aligned reads in average belong to mRNA; while 35% of the aligned reads in average belong to 

the regions between mRNA, ie. intergenic region. E. Percentage of reads aligned to the features in the 

transcripts. F-H. Details of alignment of reads against Xenopus laevis genome, using TopHat2. F. 78% of 
RNA-seq reads in average are uniquely aligned to the genome scaffolds, indicating the specificity of the reads 

to Xenopus laevis genome. G. Against genome scaffold (J-strain v9.1) and gff3 file, 62% of the aligned reads 

in average belong to mRNA; while 30% of the aligned reads in average belong to the regions between mRNA, 
ie. intergenic region. H. Percentage of reads aligned to the features in the transcripts.  



 6 

RNA-Seq of neural progenitor cells and immature neurons  

1µg of cDNA was sheared in microTube (Covaris) and then used for library preparation 

(KAPA Taq PCR kits). The size selection for the final PCR product between 200 – 500bp 

was done by gel purification. The next generation sequencing was done using HiSeq2000 

platform (Illumina; RRID:SCR_020132) for single-end reads at size 100bp. Samples were 

multiplexed in one lane at the Next Generation Sequencing Core at the Scripps Research 

Institute (La Jolla). Each sample has between 17 and 20 million reads (Table S1). We 

used the differential expression analysis package, DESeq2 (RRID:SCR_015687) (7), and 

graphics are performed under R (v3.1.2; cran.r-project.org; RRID:SCR_001905) through 

Bioconductor (RRID:SCR_006442)(8).  

Analysis of Read Quality: Methods: The quality of raw reads was reviewed, using 

FASTQC (v0.11.4) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/; 

RRID:SCR_014583). Two aligners, STAR (v2.4.0j; RRID:SCR_004463) (9) and TopHat2 

(v2.0.13; RRID:SCR_013035) (10), were used to align the reads against the J-strain, v9.1 

Xenopus laevis genome assembly (Xenbase; RRID:SCR_003280) with the annotation 

using gene model (JGI v1.8; Xenbase)(11, 12). The v9.1 of the Xenopus laevis genome 

release incorporated >90% of the genome sequence into 18 pseudomolecules 

representing the 18 chromosomes of X. laevis. These 18 pseudomolecules can be 

categorized as 9 pairs, each pair containing one L and one S pseudomolecule. 45,099 

primary transcripts are annotated in v9.1, with primary transcripts being defined as the 

longest splice variant of a particular gene. Not all the annotated transcripts have a 

published gene symbol. 17,409 of the transcripts have a published gene symbol; 20,685 

have a gene symbol starting with xelaev, which means that this transcript is specific to X. 

laevis; 4,293 start with LOC, which have no published symbols and no orthologs; 2,712 

start with xetrop which are homologous to Xenopus tropicalis but do not have any 

published gene symbol. Approximately 38.6% of the primary transcripts have a known 

gene symbol. These transcripts were used for functional classification with existing 

databases. For alignment with STAR, no trimming on the raw reads was performed before 

alignment since STAR itself has a soft clipping function. For TopHat2 alignment, dynamic 

trimming was performed, using Trimmomatic (v0.32; RRID:SCR_011848) (13). Alignment 

quality was examined, using SAMStat (v1.09; RRID:SCR_005432) (14). Only the reads 

with MAPQ score higher than 20 were included in the differential expression analysis. The 

reads were counted by HTSeq (HTSeq-count; v0.6.1p1; RRID:SCR_005514; 
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RRID:SCR_011867) (15). Differential expression analysis package, DESeq2 

(RRID:SCR_015687) (7), and graphics are performed under R (v3.1.2; cran.r-project.org; 

RRID:SCR_001905) through Bioconductor (RRID:SCR_006442)(8). 

Differential expression analysis with DESeq2: Out of 45,099 transcripts, 27,027 and 

26,137 transcripts were detected, using aligner STAR and TopHat2, respectively, based 

on the criteria that the total number of normalized counts is larger than 6 across 6 samples, 

i.e. one count per sample on average. The difference in the number of transcripts detected 

between STAR and TopHat2 likely results from a difference in the number of reads that 

are classified as ambiguous. We used two methods to detect changes in transcript 

expression: one calculates differential expression based on the reads aligned to the whole 

transcript/mRNA, while the other calculates the reads aligned to the coding sequence 

(CDS) only. The statistical analysis based on CDS only shows which transcripts are 

differentially expressed between neural progenitor cells and immature neurons and have 

the potential to be translated into proteins, while the analysis based on mRNAs 

incorporates the information from 5’UTR, 3’UTR and introns in addition to CDS. Our 

alignment statistics and quality analysis are further detailed in Figures S2, S3. We 

identified 487 or 464 differentially expressed transcripts based on the mRNAs, and 738 or 

677 differentially expressed transcripts based on the CDS using STAR or TopHat2, 

respectively, as the aligner (Figure S3, Table S1). The statistical significance was 

determined using a false discovery rate less than 0.1 and based on a requirement for a 

minimum log2 fold change of 2 for the transcript expression to be called as differentially 

expressed between cell populations. To examine how closely correlated the output is from 

two different aligners, we compared the fold change calculated based on the output from 

STAR vs TopHat2. The fold change of the transcript expression between STAR and 

TopHat2 is well correlated in a linear relationship. In addition, 67.4% (383/568) of 

differentially expressed transcripts, calculated based on the mRNAs (Figure S2A) and 

71.7% (591/824) of differentially expressed transcripts based on CDS (Figure S2 B) were 

overlapped between two aligners. The high percentage of transcripts found differentially 

expressed in the analyses based on both aligners further supports a strong correlation 

between the respective outputs from STAR and TopHat2. To further assess whether the 

analyses performed based on mRNA and CDS, using the same aligner, are well-

correlated, a comparison between fold change of transcript expression was performed. A 

linear relationship was observed in the fold change of the transcript expression between 

CDS and mRNA, using STAR (Figure S2C). In addition, an MA plot of the mean 
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expression and fold change of the transcript expression between neural progenitor cells 

and immature neurons based on the CDS, using STAR, shows that the mean expression 

(the number of normalized reads) of differentially expressed transcripts ranged from low 

to medium expression level (Figure S3D), indicating the analysis is unbiased based on 

expression level. From the alignment data (Data S2), we identified a total of 1,130 

transcripts that were differentially expressed between neural progenitor cells and 

immature neurons. 

Table S1. Read alignment against X. laevis genome using TopHat2 and STAR  

 

 

Accessing RNA-seq read alignment against Xenopus laevis genome scaffold v9.1 

We profiled the transcript expression using v9.1 of the Xenopus laevis genome assembly 

and annotation (JGI gene model v1.8) for alignment. Approximately 39% of the transcripts 

have a known gene symbol, and only these transcripts were used for functional 

classification with the existing databases. In each of our 3 biological replicates, there are 

tophat 2 neural progenitor cells immature neurons
sample 1 sample 2 sample 3 sample 1 sample 2 sample 3

raw reads 17,590,066 19,990,928 16,804,899 17,523,604 19,423,625 19,859,802
trimmed reads 14,464,497 16,044,500 14,953,754 15,741,735 17,349,543 17,800,922
uniquely mapped reads 11,444,705 13,710,391 11,517,049 12,503,563 13,537,406 13,777,726
reads with MAPQ >= 30 10,477,365 12,427,637 10,572,169 11,509,693 12,276,215 12,545,706
reads counted for mRNA 6,947,287 8,048,157 7,111,316 7,779,759 8,132,974 8,324,947
reads counted for intergenic 
region 3,637,589 4,467,038 3,520,628 3,829,538 4,244,592 4,307,845

reads counted for CDS 3,118,975 4,485,633 4,392,286 3,628,992 4,439,246 5,125,655
reads counted for 3UTR 1,257,093 1,807,527 1,660,929 1,446,179 1,774,019 1,865,073
reads counted for 5UTR 589,252 843,930 590,526 676,117 779,413 668,988
reads counted for intron 1,911,967 911,067 467,575 2,028,471 1,140,296 665,231

Supplementary Table S1

STAR neural progenitor cells immature neurons
sample 1 sample 2 sample 3 sample 1 sample 2 sample 3

raw reads 17,590,066 19,990,928 16,804,899 17,523,604 19,423,625 19,859,802
uniquely mapped reads 13,273,346 15,819,463 13,406,592 14,520,781 15,568,590 15,937,605
reads counted for mRNA 8,422,751 9,655,249 8,480,161 9,388,103 9,747,548 9,914,191
reads counted for intergenic 
region 4,767,796 6,071,063 4,853,417 5,045,312 5,728,889 5,935,165

reads counted for CDS 3,796,644 5,316,712 5,172,041 4,304,968 5,259,977 6,033,870
reads counted for 3UTR 1,561,072 2,245,761 2,060,704 1,792,487 2,201,242 2,312,324
reads counted for 5UTR 757,445 1,084,443 764,621 868,924 1,001,476 862,520
reads counted for intron 2,307,590 1,008,330 482,795 2,421,724 1,284,853 705,477

tophat 2 neural progenitor cells immature neurons
sample 1 sample 2 sample 3 sample 1 sample 2 sample 3

raw reads 17,590,066 19,990,928 16,804,899 17,523,604 19,423,625 19,859,802
trimmed reads 14,464,497 16,044,500 14,953,754 15,741,735 17,349,543 17,800,922
uniquely mapped reads 11,444,705 13,710,391 11,517,049 12,503,563 13,537,406 13,777,726
reads with MAPQ >= 30 10,477,365 12,427,637 10,572,169 11,509,693 12,276,215 12,545,706
reads counted for mRNA 6,947,287 8,048,157 7,111,316 7,779,759 8,132,974 8,324,947
reads counted for intergenic 
region 3,637,589 4,467,038 3,520,628 3,829,538 4,244,592 4,307,845

reads counted for CDS 3,118,975 4,485,633 4,392,286 3,628,992 4,439,246 5,125,655
reads counted for 3UTR 1,257,093 1,807,527 1,660,929 1,446,179 1,774,019 1,865,073
reads counted for 5UTR 589,252 843,930 590,526 676,117 779,413 668,988
reads counted for intron 1,911,967 911,067 467,575 2,028,471 1,140,296 665,231

Supplementary Table S1

STAR neural progenitor cells immature neurons
sample 1 sample 2 sample 3 sample 1 sample 2 sample 3

raw reads 17,590,066 19,990,928 16,804,899 17,523,604 19,423,625 19,859,802
uniquely mapped reads 13,273,346 15,819,463 13,406,592 14,520,781 15,568,590 15,937,605
reads counted for mRNA 8,422,751 9,655,249 8,480,161 9,388,103 9,747,548 9,914,191
reads counted for intergenic 
region 4,767,796 6,071,063 4,853,417 5,045,312 5,728,889 5,935,165

reads counted for CDS 3,796,644 5,316,712 5,172,041 4,304,968 5,259,977 6,033,870
reads counted for 3UTR 1,561,072 2,245,761 2,060,704 1,792,487 2,201,242 2,312,324
reads counted for 5UTR 757,445 1,084,443 764,621 868,924 1,001,476 862,520
reads counted for intron 2,307,590 1,008,330 482,795 2,421,724 1,284,853 705,477
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approximately 17-20 million single-end reads at 100bp (Table S1), and the reads were 

determined to be high-quality by FASTQC (Figure S2A). To include all the potential 

changes in transcript expression, two aligners or mappers were used, Spliced Transcripts 

Alignment to a Reference (STAR) and TopHat2. Each aligner, due to the nature of different 

algorithms they incorporate, has different true positive rates and false positive rates. The 

high quality of alignment was summarized by SAMStat with 92.9% of the reads having a 

MAPQ score ≥30 (Figure S2B). Including the output from both aligners provides a more 

inclusive picture of the transcriptome analysis. The efficiency of alignment against the 

genome assembly is 80% and 78% on average among all the samples, using STAR and 

TopHat2, respectively (Figure S2C-H). The reads with an alignment score < 20 were not 

included in the differential expression analysis, to ensure the specificity of the read count 

for each transcript. Over 14 million reads on average were uniquely aligned to the genome, 

which provided enough depth in the sequencing for a reliable differential expression 

analysis. We further characterized where these reads were aligned using STAR and found 

that 64% of the reads on average were aligned to transcript regions annotated on the 

genome scaffolds, while 35% of the reads on average were aligned to intergenic regions 

(Figure S2C-E). The alignment of 1% of the reads could not be determined since they 

were aligned to multiple transcripts. In a similar analysis using TopHat2 as the aligner, 

62% of the aligned reads were assigned to a transcript; 30% aligned to intergenic regions 

and 8% were classified as ambiguous (Figure S2F-H). There was no apparent difference 

in the percent of aligned reads against intergenic region between neural progenitor cells 

and immature neurons. To examine where the reads are aligned in the transcripts, we 

categorized the transcript alignment into different regions: 56% of the reads align to coding 

domains (CDS), 16% to introns, 4% to 5’UTR, and 24% to 3’UTR using STAR (Figure 

S2E), and 55% CDS, 16% introns, 8% 5’UTR, and 21% 3’UTR using TopHat2 (Figure 

S2H). Taken together, these data indicate the high quality of our reads and read 

alignments to the Xenopus genome and demonstrate the distribution of read alignments 

in the coding and non-coding regions. High quality of reads and read alignments are 

essential for a reliable differential expression analysis and subsequent analysis. 

 

Differential expression analysis of transcripts expressed by neural progenitor 
cells and immature neurons.  
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We profiled the differences in neural progenitor cell and immature neuron transcriptomes 

and identified the transcripts that are enriched in one cell population or the other, by 

conducting differential expression analysis on transcript expression with DESeq2 on the 

alignment output from STAR and TopHat2. Out of 45,099 transcripts, 27,027 and 26,137 

transcripts were detected, using aligner STAR and TopHat2, respectively, based on the 

criteria that the total number of normalized counts is larger than 6 across 6 samples, i.e. 

one count per sample on average. The difference in the number of transcripts detected 

between STAR and TopHat2 likely results from a difference in the number of reads that 

are classified as ambiguous. We used two ways to detect changes in transcript 

expression: one calculates differential expression based on the reads aligned to the whole 

transcript/mRNA, while the other way calculates the reads aligned to the CDS only. The 

statistical analysis based on CDS only shows which transcripts are differentially expressed 

between neural progenitor cells and immature neurons and have the potential to be 

translated into proteins, while the analysis based on mRNAs incorporates the information 

from 5’UTR, 3’UTR and introns in addition to CDS. We identified 487 or 464 differentially 

expressed transcripts based on the mRNAs and 738 or 677 differentially expressed 

transcripts based on the CDS using STAR or TopHat2, respectively, as the aligner. The 

statistical significance was determined using a false discovery rate less than 0.1 and 

based on a requirement for a minimal fold change of 4 (log2(2.0)) for the transcript 

expression to be called as differentially expressed between cell populations. To examine 

how closely correlated the output is from two different aligners, we compared the fold 

change calculated based on the output from STAR vs TopHat2. The fold change of the 

transcript expression between STAR and TopHat2 is well correlated in a linear 

relationship. In addition, 67.4% (383/568) of differentially expressed transcripts, calculated 

based on the mRNAs (Figure S3A) and 71.7% (591/824) of differentially expressed 

transcripts based on CDS (Figure S3B) were overlapped between two aligners. The high 

percentage of transcripts found differentially expressed in the analyses based on both 

aligners further supports a strong correlation between the respective outputs from STAR 

and TopHat2. To further assess whether the analyses performed based on mRNA and 

CDS, using the same aligner, are well-correlated, a comparison between fold change of 

transcript expression was performed. A linear relationship was observed in the fold change 

of the transcript expression between CDS and mRNA, using STAR (Figure S3C). In 

addition, an MA plot of the mean expression and fold change of the transcript expression 

between neural progenitor cells and immature neurons based on the CDS, using STAR, 
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shows that the mean expression (the number of normalized reads) of differentially 

expressed transcripts ranged from low to medium expression level (Figure S3D), 

indicating the analysis is unbiased based on expression level. From these data, we 

identified a total of 1,130 transcripts that were differentially expressed between neural 

progenitor cells and immature neurons from both aligners based on mRNA and CDS (Data 

S1).  

 

 

Figure S3. Comparison of the differentially expressed transcripts between neural progenitor cells and 
immature neurons, identified using STAR and TopHat2.  

A. A scatter plot showing the correlation of the fold change of transcript expression in immature neurons in 
comparison to neural progenitor cells based on mRNA between STAR and TopHat2. B. A scatter plot showing 
the correlation of the fold change of transcript expression in immature neurons in comparison to neural 
progenitor cells based on coding region (CDS) between STAR and TopHat2. C. A scatter plot showing 
correlation of the fold change of transcript expression in immature neurons in comparison to neural progenitor 
cells based on mRNA and CDS, using STAR. D. MA plot shows the mean expression of transcripts vs its fold 
change (log2) between neural progenitor cells and immature neurons. The differentially expressed genes are 
indicated in red with adjusted p-value < 0.1.  
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We validated the enrichment of NPCs and immature neurons by testing for 

differential expression of genes known to be involved in neuronal differentiation or 

proliferation. The immature neuron population has higher expression of transcripts 

involved in neural patterning and differentiation, such as neurod1, wnt1, fgf2, vegfa, nfkb1, 

and smad9. Conversely, NPCs expressed transcripts known to be involved in proliferation, 

including elk-1, e4f1, sstr4, bmp4, jak2 and nr2f5 (Table S2). Taken together, the DE 

analysis of the transcripts recovered from cell populations enriched in neural progenitor 

cells and immature neurons demonstrated a well-correlated fold change in transcript 

expression. sox2 did not emerge as a differentially expressed transcript in our dataset, 

likely because GFP+ cells isolated following VE included a minority of SOX2+ NPCs (3, 

6), and our experimental design to identify early master regulators of cell fate decisions.  

 

Table S2. Canonical progenitor and neuronal genes are enriched in isolated neural 

progenitor and neuronal samples.  

Enriched in 
Neural Progenitor 

Cells 

Fold 
Change 

(log2) 

Enriched in 
Immature 

Neurons 

Fold 
Change (log2) 

elk1 6.4 neurod1 8.0 

e4f1 6.3 wnt1 7.6 

sstr4 5.9 fgf2 6.8 

bmp4 4.8 vegfa 6.2 

jak2 3.5 nfkb1 4.5 

nr2f5 3.0 smad9 3.5 

 

 

Bioinformatic analysis  

STRING (v10; RRID:SCR_005223) (16) was used for protein-protein interaction 

analysis; Cytoscape (v3.2.1; RRID:SCR_015784) (http://www.cytoscape.org/) for network 

analysis and visualization; ClueGO (v2.1.7; RRID:SCR_005748) (17) for functional 

network analysis; PANTHER (RRID: SCR_004869) (18) for Gene Ontology (GO) analysis; 

ENCODE (RRID:SCR_015482) (19) for transcription factor analysis. Fragment Per 

Kilobase of transcript per Million mapped reads (FPKM) was calculated using Cufflinks 

suite (v2.2.1; RRID:SCR_014597) (10). 
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PANTHER protein class analysis identified functional categories of differentially 
expressed genes  

To investigate the involvement of the differentially expressed transcripts in cell proliferation 

and neuronal differentiation, we functionally categorized these transcripts using the 

PANTHER (Protein Analysis Through Evolutionary Relationships) classification system. 

Of the 1,130 transcripts that were differentially expressed between neural progenitor cells 

and immature neurons, 635 were annotated with a published gene symbol in the genome 

assembly (v9.1), which then could be used for functional analysis (Figure S4, Data S2). 

630 out of the 635 differentially expressed transcripts were recognized by the PANTHER 

database, and 367 out of 630 genes were clustered based on PANTHER protein 

classification. The PANTHER protein classification categorized more genes than any other 

classification scheme in the PANTHER system, such as GO slim biological process, 

cellular component and molecular function, and PATHWAY analysis. The 367 PANTHER-

classified transcripts were clustered into 4 major protein categories: catalytic activity (220 

genes), DNA binding (98), receptor-mediated signaling (146) and structural proteins (89) 

(Figure S4, Data S2). The GO protein classes with the most DE genes were nucleic acid 

binding (52), enzyme modulator (47), and transcription factor (46). These results indicate 

that catalytic activities and transcription are heavily involved in either maintaining self-

renewal capacity or neuronal differentiation. Kinases and phosphatases, proteases, 

receptors and signaling molecules, and transcription factors are enriched in our differential 

expression dataset. Graphing these data according to their fold differential expression 

indicates that there is no obvious bias in the direction of fold changes between progenitors 

and neurons (Figure S5, Data S2). 

PANTHER’s functional categorization of the DE transcripts identified molecular 

components and signaling pathways induced in response to activity and extracellular 

signaling events that affect cell proliferation or cell cycle exit and neuronal differentiation. 

Prominent categories of the DE transcripts include proteases and transcription factors 

which regulate progenitor cell fate in other systems, validating our approach. The 

transcription factors enriched in NPCs, such as e4f1, znf217 and limx1b, can promote 

proliferation or cell survival (20, 21). LMX1B, cooperatively with LMX1A, regulates 

proliferation and specification of midbrain dopaminergic neurons (22). In contrast, the 

transcription factors we identified as enriched in immature neurons, such as neuroD1, 
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foxg1 and evx1, can induce the differentiation of NPCs into neurons. NeuroD1 induces 

terminal neuronal differentiation (23), while FOXG1 and EVX1 function in the specification 

of neuronal cell types (24, 25).  

Other DE transcripts which are less well known with respect to NPC fate regulation 

may reveal additional mechanisms involved in this context. For instance, 3 of the 15 

differentially expressed proteases encode members of the ADAMTS (a dis-integrin and 

metalloproteinase with thrombospondin motifs) family of extracellular proteases: adamts-

5, adamts-14 and adamts-17. Adamts-17 is involved in cell survival and proliferation (26), 

suggesting it may have a role in NPC proliferation. On the other hand, ADAMTS-5 

enhanced neurite extension in immature neurons (27). Adamts-14, a newer and less 

studied member of the ADAMTS family, may influence genetic predisposition for multiple 

sclerosis (28), but its potential role in neurogenesis is unknown.  

 

 



 15 

 
 
Figure S4. Gene Ontology (GO) analysis of differentially expressed transcripts. Differentially expressed 
transcripts are categorized based on GO protein classes. Gene number per GO class is indicated on the X-
axis. 
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Figure S5. Bioinformatic analysis of differentially expressed transcripts identifies functional 
categories and interaction networks. Fold change of transcript expression between neural progenitor cells 

and immature neurons in the most prominent protein categories. Transcription factors, signaling molecules 

and receptors were the most enriched sub-categories in our differential expression dataset. Graphing the data 
according to their fold differential expression indicates that there is no obvious bias in the direction of fold 

changes between progenitors and neurons. Protein expression is graphed relative to expression NCPs (blue) 

and neurons (red). 

 

Protein-Protein interaction networks identify key players in neurodevelopment 
among the differentially-expressed transcripts 

We identified a network of DE transcripts that are predicted to be important for NPC 

fate and neuronal differentiation, by applying a strategy to identify the encoded proteins 

which have the most protein-protein interactions, based on the likelihood that these 

predicted protein interaction networks would play a regulatory role in the fates of NPCs 

and neurons. This analysis identified nine DE transcripts whose protein products had more 
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than 20 interactions: ACTA2, BMP4, JAK2 and BRCA1, which were enriched in NPCs, 

and ITGA2, VEGFA, FGF2, AURKB and NFKB1, which were enriched in immature 

neurons. Focusing on the neuronal candidates, ITGA2 (Integrina2) has 40 protein 

interaction partners among the network of 458 proteins generated from our DE transcripts. 

Integrina2 facilitates migration of differentiating embryonic stem cells and iPSCs (induced 

pluripotent stem cells) by remodeling extracellular matrix and initiating intracellular 

signaling cascades (29). In addition to ITGA2, FGF2 (fibroblast growth factor 2) and 

VEGFa (vascular endothelial growth factor A), with 23 and 24 interactions in the network, 

respectively, are growth factors that regulate neuronal differentiation (30-32). VEGFa may 

also be involved in migration of newly differentiated neurons (33). We demonstrated that 

FGF2 KD increased NPC proliferation in Xenopus optic tectum, (2), consistent with FGF2 

maintaining NPC capacity for self-renewal (34). NF-kB1 (nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 1) regulates neuronal differentiation in the adult 

mouse hippocampus and maintains cell survival (35). It is interesting to note that NF-kB1 

signaling activity is regulated by Aurkb (Aurora kinase B) (36), another highly 

interconnected protein whose transcript is enriched in the immature neurons.  

 

Bioinformatic identification of Transcription factor networks regulating differential 
gene expression in neural progenitor cells and neurons. 

To identify master regulators that could control differential transcript expression in neural 

progenitor cells and immature neurons, we evaluated candidates based on two 

characteristics: the number of the target genes and the number of interactions they have 

with other transcription factors, assuming that a transcription factor with more protein-

protein interactions could indirectly regulate transcription of more genes. As a test case, 

we mined the ENCODE database and identified 126 transcription factors that could 

regulate the expression of our 635 differentially expressed transcripts (Figures S4, S5, 

Data S5). Each transcription factor can regulate between 3 and 488 of the differentially 

expressed target genes, indicated as the size of the circle in Figure S6. Three transcription 

factors, TAF1, SIN3A and MAX, regulate the most differentially expressed transcripts, with 

488, 484, and 484 gene targets, respectively.  
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Figure S6. Mining ENCODE identified master regulatory network controlling differential gene 
expression in neural progenitor cells and neurons.  

Network analysis of the 126 transcription factors identified in the ENCODE database that could regulate 
differential expression of Xenopus genes in our dataset. The size of the node reflects the number of 
differentially expressed transcripts that each transcription factor can potentially regulate. The color reflects the 
number of transcription factor binding partners. 

 

We then conducted a protein-protein interaction network analysis, using STRING and 

Cytoscape. STRING is a database of known and predicted protein interactions based on 

bioinformatic analysis of genomic and proteomic data and on published work. Starting 

again from the 1,130 differentially expressed transcripts, of which 635 have a published 

gene symbol, 629 of the 635 were recognized by the STRING protein database. Of the 

629 proteins predicted from the annotated transcripts, STRING identified 458 proteins as 

having one or more interaction partners (Data S3). We graphed the number of protein-

protein interactions versus the degree of differential expression of the transcripts, 

considering degree centrality and closeness centrality as two key metrics of the 
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importance of nodes within networks (Figure S6) (37).  Degree centrality in the network 

reflects the number of interactions (i.e., degree) each protein has within a node. Closeness 

centrality is a measure of the shortest path between proteins within a node. In this case, 

a high closeness score indicates that the interactions of a protein and its neighboring 

partner protein are less likely to be by-passed by other proteins in the node. This means 

that the protein plays an irreplaceable role in the network.  

STRING analysis revealed that only a subset of 4 of the 126 transcription factors is 

well connected in the network, indicated with hot colors in Figure S6. EP300, with the 

highest network connectivity, has 79 interactions, followed by HDAC1 (73), MYC (67) and 

JUN (65). Indeed, these most highly connected transcription factors are recognized as 

master regulators, validating our strategy of using protein-protein interactions combined 

with the number of target genes to identify master regulators for cell proliferation and 

neuronal differentiation in our dataset of differentially expressed transcription factors. Each 

of these transcriptional regulators has been shown to play roles in cell proliferation, 

differentiation, and cell fate determination. EP300 (E1A binding protein p300) acts as both 

a transcriptional co-activator and a histone acetyltransferase, positively regulating histone 

acetylation to initiate transcription. EP300 regulates transcription of both pluripotency 

genes (c-myc, c-myb, creb, c-jun, and c-fos) and neural genes (pax6, sox1, zic2, and 

znf521) (38-40), indicating that EP300 can affect both cell proliferation and neural 

differentiation. HDAC1 (histone deacetylase 1) is a transcriptional regulator that 

epigenetically represses gene transcription. Inhibition of HDAC activity can both maintain 

pluripotency of human embryonic stem cells and inhibit neural differentiation, depending 

on its targets (38). HDAC1 indirectly increases in c-Myc protein levels (41), which then 

increases self-renewability of neural progenitor cells (42). c-Myc is thought to regulate 

expression of 15% of all genes (43). Both c-Myc and Jun regulate cell proliferation by 

regulating expression of cyclins, and over-expression of c-Jun represses p53 expression, 

enhancing cell proliferation (44). These highly-connected transcription factors are 

recognized as master regulators of various cellular processes during development, 

validating our approach using protein-protein interactions and the number of target genes 

to identify master regulators in cell proliferation and neuronal differentiation.  

We applied this strategy to our DE dataset and identified 6 candidates that regulated 

other DE transcripts: BRCA1, ELK-1, CEBPB, CEBPD, FOSL1 and BRF1. A Venn 

diagram of the genes targeted by CEBPB (268), ELK-1 (209), CEBPD (178), BRCA1 (177) 
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and FOSL1 (66) (Figure 3B, Table S2) identified potential co-regulated transcripts, 

including six genes that could be regulated by all 5 transcriptional regulators. Four of these 

targets are enriched in immature neurons: APBA3 (fold change (FC) = 6.9), THUMPD (FC 

= 6.25), ELMOD3 (FC = 6.2), SLC39A3 (FC = 4.5), and 2 are enriched in NPCs: C12orf57 

(FC = -3.9) and MTMR4 (FC = -2.1).  

 

In vivo time-lapse imaging 

For in vivo live-cell time-lapse imaging, brain of late stage 46 tadpoles were electroporated 

with 2 μg/μl pSOX2-bd::tGFP. For analysis of BRCA1 or ELK1 function, we co-

electroporated pSOX2-bd::tGFP with 0.4mM antisense translation-blocking morpholino 

oligonucleotides tagged with lissamine fluorophores (45), targeted against brca1 

transcripts (GGTTCCATTTGTGTCAGCTCTCAGC) and against elk-1 transcripts 

(GGTCATTTTACTTTGTCCTGTCCCT), or a control non-specific sequence (GeneTools, 

Philomath, OR). We have previously shown that pSOX2-bd::tGFP can be used to birthdate 

progenitors that express SOX2 protein, and that tGFP persists for several days in their 

neuronal progeny (3). Moreover, we demonstrated that even when SOX2 levels are 

knocked down with sox2 morpholinos (AGCTCGGTCTCCATCATGCTGTA), the pSOX2-

bd::tGFP reporter expresses tGFP due to pre-existing SOX2 protein (Figure S1). 

Therefore, we reasoned that pSOX2-bd::tGFP could be used in conjunction with BRCA1 

KD to birthdate cells prior to any possible downstream effects of BRCA1 on SOX2. 

Animals were randomly divided into two groups for the 3-day duration of the time-lapse 

imaging; one group housed in the control 12h light/12h dark condition and the other 

housed in the dark in a light impermeable black chamber. Animals were maintained in 

their respective housing conditions throughout the experiment except when imaging. 

Tadpoles were screened for consistent morpholino fluorescent labeling in the tectum. For 

imaging, tadpoles were anesthetized in 0.01% MS-222, placed in a custom-built chamber 

and imaged with 20X (Olympus XLUMPlanFL 0.95 NA) water immersion lens on a custom-

built two-photon microscope modified from an Olympus FV300 system (46, 47). A stack 

of images for each tectal lobe was acquired at 1µm intervals ranging from 120µm to 160µm 

depending on the distribution of tGFP+ tectal cells over three days. All samples were 

imaged in parallel using identical image acquisition parameters. Data files were coded 

prior to analysis and all analysis was conducted blind to condition. Analysis was conducted 

using Cell Counter plugin in FIJI, an image processing package of ImageJ 
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(RRID:SCR_002285) (48, 49). tGFP-labelled cells were identified and categorized into 

three groups, neural progenitor cells, neurons or unidentifiable based on their morphology, 

using criteria as described (2, 3). While the majority of tGFP+ cells could be classified as 

either neural progenitor cells or neurons, a small population of cells was unclassified or 

unidentifiable. In control groups, the fraction of unidentifiable cells was 0.5-4.4% across 

all experiments over the course of the 3 days. For BRCA1 KD, the unidentifiable cell 

population ranged from 0.4-5.9%, and for ELK-1 the fraction of unidentifiable cells was 

3.1-10.8% across all experiments and timepoints. The proliferation and survival rates were 

calculated based on the changes in number of tGFP-labelled cells at day 2 and day 3 

normalized against the number at day 1. The changes in the fate of neural progenitor cells 

as the result of the treatment is presented as the percentage of each cell type compared 

to the total cell population each day. For experiments testing for interactions between the 

effects of visual experience and BRCA1 or ELK-1 expression on neural progenitor cell 

fate, we used a factorial experimental design (50) which allows us to compare results 

between multiple experimental conditions. 

 

Immunohistochemistry  

Animals were anesthetized and then fixed with freshly made 4% paraformaldehyde 

(Electron Microscopy Sciences, Fort Washington, PA) in 1x phosphate-buffered saline 

(PBS; pH 7.4) with a brief microwave pulse (150mV on-off-on, 1min each; Pelco BioWave 

Pro microwave, Model 36500, Ted Pella, Redding, CA) and were post-fixed at 4oC 

overnight. Whole brains were dissected and incubated in blocking solution (5% normal 

donkey serum and 1% Bovine Serum Albumin (BSA; Sigma) in PBS with 0.1% Triton-

X100 (PBS-T)) for 1 hour at room temperature before transferred to the anti-pH3 antibody 

solution (1:200 in blocking solution; #9706, Cell Signaling; RRID:AB_331748) at 4oC for 3 

days. After washes with PBS-T, brain tissues were incubated in secondary antibody 

solution (Alexa488 donkey anti-mouse secondary antibody, 1:1,000; A21202, Life 

Technologies; RRID:AB_141607) at 4oC overnight. After PBS-T washes, for cell death 

analysis in fixed tissue, nuclear labeling using Sytox Orange (SytoxO, 1:5000; S11368, 

Life Technologies) was applied to the brain tissues for 20 mins at room temperature (51). 

After several washes with PBS-T, brain tissues were mounted in 6M urea in 50% glycerol 

for imaging. 36µm Z-series we collected at 1µm intervals using Nikon C2 (20x Plan Apo 

lens with 0.75 NA), and ImageJ Cell Count plugin was used for analysis. Apoptotic cells 
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were identified based on the morphology of small granular structure and the high labeling 

intensity (52), and categorized into two groups, neural progenitor cells (NPC) and neurons 

based on their location in the tectum. 

 

Western blots 

To test the effect of different visual experience conditions, animals were reared under 

enhanced visual stimulation or dark for 30 hours as described previously (6) and the 

midbrains were dissected for homogenization. To test the effect of morpholino knockdown, 

brains of late stage 46 tadpoles were electroporated with 0.4mM morpholinos, and 

midbrains were dissected 2 days later. Because BRCA1 requires different extraction and 

detection conditions, tissues were homogenized in different lysis buffers for different 

antibodies. Experimental and paired control samples were prepared and processed side 

by side. For ELK-1 (Abcam #ab188316; RRID:AB_2890919) and SOX2 (Cell Signaling 

Technology #3579S; RRID:AB_2195767) antibodies, tissues were homogenized in RIPA 

buffer with brief sonication, and concentration was measured by BCA assay. 10µg of 

lysate was run on a Mini-Protean TGX precast gels (BioRad). For BRCA1 antibody (SCBT 

#SC-646; RRID:AB_630945), tissue was homogenized in lysis buffer documented in (53); 

HEPES 100mM (pH 7.5), NaCl 200mM, EDTA 40mM, EGTA 4mM, NaF 100mM, β-

glycerophosphate 20mM, sodium orthovanadate 2mM, Nonidet P-40 1%, Complete 

Protease Inhibitor mixture 1:50), and concentration measured by DC Protein Assay 

(BioRad). 40mg of lysate was loaded onto an in-house made 7% gel. Proteins were 

transferred to a nitrocellulose membrane and blotted with standard protocols. Antibodies 

were detected by goat anti-mouse/rabbit HRP-conjugated secondaries (BioRad) followed 

by ECL (Pierce, Thermo Fisher Scientific, 32209). Quantification was performed using 

densitometry (ImageJ), different exposures were used to avoid saturation, and bands were 

normalized to total protein using Ponceau S (54). BRCA1 and ELK-1 detected in western 

blots of the midbrain does not reflect their NPC or neuronal localization. 
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Table S3 (for Figure 3B)  
Gene list of transcripts regulated by the identified network of 5 transcription factors. 

 

 BRCA1 CEBPB CEBPD ELK1 FOSL1 
abca3 X X    

abl2  X    

acaa2  X    

acta2 X X    

acvr2a X   X  

adamts5  X    

adsl   X X  

aff3  X    

akap2  X    

alg2   X   

alkbh4    X  

amn   X   

anapc5   X   

ankrd16   X X  

ano6  X    

antxr2  X    

ap4e1 X X  X  

ap4s1  X X   

ap5s1 X X X   

apba3 X X X X X 

arap3  X   X 

arf3 X   X  

arhgef1   X   

arih2  X X X  

arl14ep  X  X  

arl6ip5  X    

armc7   X X  

art5     X 

asmtl X     

atf5  X X X X 

atg13 X X  X  

atic  X  X  
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
atl1 X X  X  

atr X X  X X 

atrip X     

atxn1l X X X   

aurkb X X    

b3galt4    X X 

b3galt6   X X  

b9d1 X   X  

bag5    X  

bcar3 X X  X  

bin3  X  X  

bnip3   X   

brca1 X X    

c12orf57 X X X X X 

c16orf13 X X  X  

c21orf2 X  X X  

c2orf82  X X   

c3orf17  X  X  

cacul1 X X  X  

cant1   X X X 

carhsp1  X X   

ccbl2     X 

ccdc125    X  

ccdc127   X   

ccdc134   X X  

ccdc43   X  X 

ccdc50  X X X X 

ccdc90b X X X X  

ccm2 X X  X  

cdc14b X X    

cdc37l1 X X  X  

cdc42se1  X X X  

cdc45 X X  X X 

cdca7l X X  X  

cebpb X X X  X 

cebpd X X X   
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
cenpa    X  

cenph  X  X  

cep104  X  X  

cep76 X X    

cfl2  X X   

chrac1 X   X  

clic4  X X X  

cnep1r1 X X X   

cnnm2 X   X  

cnppd1  X X  X 

cnpy2 X X  X  

col4a3bp  X X   

commd6 X X  X  

cops4  X    

cox18 X X X   

creld1 X X X   

crtap   X   

csgalnact2  X X X  

csnk1g3  X X X  

ctdsp2   X   

ctgf  X X   

ctr9 X X  X  

cxadr  X X X  

cxcl14  X    

cxxc1 X X  X  

cycs X X X X  

cyth2 X   X  

dbf4b X X    

dbndd1   X   

dbr1 X   X  

dcaf12  X    

dcakd X X X X  

dclre1c  X  X  

dctd  X    

ddx56   X   

desi2 X X X X  
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
dgkd  X    

dhrs4  X X   

dlg2  X    

dnah11  X    

dnaja4    X  

dnajb1 X X X X  

dnajc3  X    

dpy30 X X X X  

dusp7 X     

dydc2  X    

dyrk3 X     

e4f1 X X X X  

eaf2 X X X   

eci2  X X   

ecsit X X X   

edem2  X    

edem3 X   X  

egln2 X X X   

elk1  X  X X 

elmod3 X X X X X 

emd X     

eogt    X  

eri1 X X X X  

eva1c X     

eya3    X  

ezh1   X   

faah2  X   X 

fahd2a X X X   

fam174b X X  X  

fam177a1  X    

fam213a   X   

fam222b X     

fam43a  X    

fam64a   X   

fancd2 X X  X  

fas X X    
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
fdxr X X X X  

fem1c  X X   

fgd6 X     

fgf2  X    

fgfrl1  X    

fitm2 X X    

fkbp10   X  X 

fnip1   X X X 

fosl1 X X  X X 

foxn4  X    

frs3   X   

frzb  X    

fscn2  X    

g2e3  X X X  

g6pc3 X X X X  

gale  X X X  

gatc X X X X  

gdpgp1  X   X 

gga1 X X X X  

glce X     

gnai1  X    

gnpat    X  

gnpda1    X X 

golph3l X X    

gpatch3 X X X   

gpr56 X X    

grn   X  X 

gstz1 X  X X  

gyg1     X 

has2  X    

haus6  X X X  

hcar3  X    

hebp2    X  

hemk1   X X  

hes1 X X X X  

hiat1   X   
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
homer1 X X X X  

hsd17b6  X    

hsd17b7  X    

iars  X X   

icmt X     

idh3g X   X  

ier2 X X  X  

ifltd1  X    

ifngr2  X    

ift172 X X    

igfbp4  X    

ipo9  X    

iqch X X  X X 

irs2  X  X  

isg20l2 X X  X  

itga2  X    

jak2     X 

kbtbd4 X X X X  

kiaa0141    X  

krt17 X X  X  

lace1    X  

lats2 X X    

leprel4   X  X 

letm2 X X    

lmo4  X    

loxl1  X   X 

lpcat3   X   

lrp10  X X X X 

lrrc41 X X X X  

lrrc61 X X  X  

lrrc8d   X   

mad2l1 X X  X  

malsu1 X X    

march8 X    X 

mcl1  X X X  

mdm1  X  X  
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
mecr X   X  

mien1    X X 

mmadhc  X X   

mnat1  X X X  

mrpl10  X X X  

mrpl15  X X   

mrpl3 X X X X  

mrpl51  X X X  

mrps16 X X  X X 

mrps2 X X  X  

mrps34   X X  

mrrf X X  X  

msmo1 X X X  X 

msx1   X   

mtmr4 X X X X X 

naa16  X X X X 

nags   X  X 

narf  X X X  

narfl X X  X  

ndrg1  X    

ndufa12  X X   

ndufa5 X   X X 

neurod1 X     

nfkb1  X    

nfkb2 X   X  

nhlrc2  X  X  

nid1   X   

nle1     X 

nob1 X X X   

nol9 X X X X  

npff  X    

nuak2  X    

nufip1 X X    

nvl X X  X  

oat   X   

oaz2   X   
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
olfml2b  X    

oma1  X  X  

orc6 X X X   

ormdl1   X  X 

ovca2   X X  

pank4  X X   

pawr  X   X 

pcsk5  X   X 

pde5a  X    

pdf  X  X  

pet112    X  

pfdn4 X  X X  

pgap1  X    

pgs1  X X X X 

phc3  X X   

pign X   X  

pigp X X  X X 

pim1 X  X  X 

pip5k1a  X X   

pip5kl1  X    

plcd3 X     

plekhj1  X  X X 

plk2 X  X   

plk4 X X X X  

pms1   X  X 

ppard X X X X  

ppm1d X  X X  

ppm1h  X X   

ppp1r11  X  X X 

ppp1r13l X X  X X 

ppp1r2 X   X  

prc1 X X    

prkacb    X  

pros1  X    

prosc    X  

psme1   X   
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
psmg3  X X X  

ptcd2 X X  X  

ptdss1 X  X X  

ptgr1  X    

pttg1ip   X X  

pxmp2 X  X X X 

rap2b  X X   

rasl10b   X  X 

rbks X X X   

rbm48    X  

rcc1 X X X X  

recql X   X  

rexo4 X X  X  

rhbdd2  X   X 

rhob  X X   

rhog X X X  X 

ric3    X  

rnf103   X   

rpain   X   

rpp38 X X  X  

rpusd3    X  

rraga X X  X  

rrp9  X X X  

rrs1  X  X  

rtkn  X X   

rwdd4  X  X  

rxrb X  X X  

scrn2    X  

scyl2 X   X  

sdccag3 X X X X  

sec11a  X X X  

sept2  X X X  

sertad2  X X  X 

sh3bp5l  X X X X 

slc13a5   X   

slc25a20    X  
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
slc25a44 X   X X 

slc2a9  X    

slc30a7 X X  X  

slc35e3   X X X 

slc39a13  X    

slc39a3 X X X X X 

slc8a2     X 

snx15 X     

snx2  X    

snx24  X    

snx33  X X   

snx5 X  X X  

snx9  X X   

socs3  X X   

socs7 X X X X  

spata5l1  X X X  

spata7 X X    

srr  X X   

sssca1 X X  X  

ssu72 X X  X  

stam2    X  

stat2 X   X  

stim1 X    X 

sts  X    

stx12 X X  X  

sumf1     X 

supt3h   X X X 

tapbp  X X   

tatdn3 X X X X  

tbc1d9b    X  

tbccd1 X X X X  

tbx18  X    

tfb2m X X X X  

tgfa   X   

thumpd1 X X X X X 

timm21  X X   
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
tipin X X    

tm2d3 X   X  

tmbim4  X X X  

tmem11 X   X  

tmem138    X  

tmem150a  X X   

tmem170b   X   

tnnc2 X X X   

tob2 X X X X  

tomm20  X  X  

tor1b X   X  

tp53inp2 X X X   

tpmt  X  X  

traf6   X   

trappc2 X X  X  

trim44 X   X  

trmt13  X  X  

trmt5 X X  X  

trnt1 X X  X  

ube2c X     

ubfd1 X X X X  

ubqln1 X X  X  

ufm1  X  X  

ugcg   X X  

usp12   X  X 

usp2 X X    

usp38     X 

usp45  X    

utp23 X X  X  

vegfa X  X   

vprbp X  X X  

vps26b   X X  

vta1 X X X X  

vti1b X   X  

vwa3b  X    

wbp4  X X X  
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 BRCA1 CEBPB CEBPD ELK1 FOSL1 
wdr16  X  X  

wdr48 X X X X  

wnt1    X  

xkr9  X    

xrcc3 X X  X  

yars2  X X X  

ydjc X X  X  

yrdc X   X  

zbtb1 X X    

zbtb34    X X 

zfand5 X X X X  

zfand6 X     

znf217  X    

znf318     X 

znf804b  X    

znhit3  X  X  

zwilch X X X   

 

Additional Supporting Files: 

Data S1. List of DE transcripts.  

Data S2. Corresponding to Figures S4, S5 (list of genes in PANTHER GO categories) 

Data S3. Corresponding to Figure 2C (STRING analysis of DE genes) 

Data S4. Corresponding to Figure S6 (ENCODE data on transcription factors) 
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