
A. Proof of Theorem 1

Recall that E(t) is defined as in Eq. (7), and consider the represen-
tation Eq. (18). We begin by decomposing the first term e≠sQJesQ

inside of the integral in Eq. (18) as

e≠sQJesQ

=e≠sQQ+QJQQ+esQ + e≠sQ(I ≠ Q+Q)JQQ+esQ

+ e≠sQQ+QJ(I ≠ QQ+)esQ

+ e≠sQ(I ≠ Q+Q)J(I ≠ QQ+)esQ

=e≠sQQ+QJQQ+esQ + (I ≠ Q+Q)JQQ+esQ [52]

+ e≠sQQ+QJ(I ≠ QQ+) + (I ≠ Q+Q)J(I ≠ QQ+),

where we used Eq. (21) for the second identity. Regarding the
middle two terms, with our commutativity Eq. (22) assumption, we
observe that

(I ≠ Q+Q)JQQ+esQ + e≠sQQ+QJ(I ≠ QQ+) [53]

= (I ≠ Q+Q)JQ+QesQ + e≠sQQQ+J(I ≠ QQ+)

=
d

ds

!
(I ≠ Q+Q)JQ+esQ ≠ e≠sQQ+J(I ≠ QQ+)

"
.

Hence, integrating in time, and then using Eq. (20), Eq. (22) for
the first and last term terms on the right hand side, we have

⁄
t

0

)
(I ≠ Q+Q)JQQ+esQ + e≠sQQ+QJ(I ≠ QQ+)

*
ds

=(I ≠ Q+Q)JQ+etQ ≠ e≠tQQ+J(I ≠ QQ+)

≠ (I ≠ Q+Q)JQ+ + Q+J(I ≠ QQ+)

=(I ≠ Q+Q)J(Q+)2QetQ ≠ e≠tQQ+J(I ≠ QQ+)

≠ (I ≠ Q+Q)JQ+ + Q(Q+)2J(I ≠ QQ+) [54]

Finally let us note, regarding the second term on the right hand
side of Eq. (18), using again Eq. (21) and Eq. (20), Eq. (22)

≠tetQJ = ≠tetQQQ+J ≠ t(I ≠ Q+Q)J. [55]

By combining Eq. (52)–Eq. (55) and comparing with Eq. (18),
we now find that

E(t)=
⁄

t

0
e(t≠s)QQ+QJQQ+esQds + (I ≠Q+Q)J(Q+)2QetQ

+ etQQ(Q+)2J(I ≠ QQ+) ≠ tetQQQ+J
≠ Q+J(I ≠ QQ+) ≠ (I ≠ Q+Q)JQ+

≠ t(I ≠ Q+Q)JQQ+. [56]

Rearranging Eq. (56), we have

Q+J(I ≠ QQ+) + (I ≠ Q+Q)JQ+ + t(I ≠ Q+Q)JQQ+

+ ÒJetQ ≠ tetQJ = T1 + T2,

where

T1 :=
⁄

t

0
e(t≠s)QQ+QJQQ+esQds,

T2 :=(I ≠ Q+Q)J(Q+)2QetQ

+ etQQ(Q+)2J(I ≠ QQ+) ≠ tetQQQ+J.

We estimate each of T1 and T2 in turn. Regarding T1, using
once more Eq. (22), as well as Eq. (23), we have

ÎT1Î Æ
⁄

t

0
ÎQe(t≠s)QÎÎQ+JQ+ÎÎQesQÎds

ÆC2
0

⁄
t

0
e≠(t≠s)ŸÎQ+JQ+Îe≠sŸds

=C2
0 te≠tŸÎQ+JQ+Î.

Turning to T2, by Eq. (23) we have

ÎT2Î Æ C0(Î(I ≠ Q+Q)J(Q+)2Î + Î(Q+)2J(I ≠ QQ+)Î

+ tÎQ+ JÎ)e≠tŸ.

Combining these two bound completes the proof.

B. Proof of Theorem 2
This result is established from Theorem 1 and some basic properties
Q under the given assumptions. First, note that, cf. Eq. (32), (8)

|⁄d(Q)| Æ max
j=1,...,d≠

|⁄j(Q)| Æ |⁄1(Q)|. [57]

Referring back to Eq. (10), by Eq. (57) we have the estimate

ÎQetQÎF =

A
d≠ÿ

j=1

|⁄j(Q)et⁄j (Q)|2
B1/2

Æ


d≠|⁄1(Q)|e≠t|⁄d≠ (Q)|
. [58]

Similarly, from Eq. (11) and Eq. (57), we have that

ÎQetQÎop Æ max
j=1,...,d≠

|⁄j(Q)|e≠t|⁄j (Q)|

Æ|⁄1(Q)|e≠t|⁄d≠ (Q)|
. [59]

Likewise, we observe that

ÎQÎ2
F

=
dÿ

k=1

⁄k(Q)2 , ÎQ+Î2
F

=
d≠ÿ

k=1

1
⁄k(Q)2 , [60]

and that

ÎQÎ2
op = ⁄1(Q)2 , ÎQ+Î2

op =
1

⁄d≠ (Q)2 . [61]

Let U be as in Eq. (33). Noting, furthermore, that I ≠ QQ+ =
U(I ≠ Id≠ )Uú, where Id≠ is the matrix with 1’s along the first d≠
diagonal elements and zero otherwise, we have the bounds

ÎI ≠ QQ+ÎF =


d ≠ d≠, ÎI ≠ QQ+Îop = 1. [62]

Now, for any matrix norm Î · Î, Eq. (24) implies that

Ît(I ≠ Q+Q)JQQ+ + ÒJetQ ≠ tetQJÎ

Æ C(1 + t)e≠Ÿt + 2ÎQ+ÎÎJÎÎI ≠ QQ+Î [63]

for any t Ø 0, where C > 0 is given by Eq. (25). Thus, for the
choice of norm Î · Î = Î · ÎF , by Eq. (63), Eq. (58), Eq. (61) and
Eq. (62), we obtain Eq. (35). Similarly, for the choice of norm
Î · Î = Î · Îop, Eq. (63), in conjunction with Eq. (59), Eq. (61)
and Eq. (62), yields the bound Eq. (36). Since Eq. (38) follows
immediately from Eq. (35), and similarly between Eq. (39) and
Eq. (36), the proof is now complete.

C. Proof of Theorem 3
For use in this section, we introduce a probabilistic version of the
typical O and o asymptotic notations. Given collections of random
variable {Xd}dœN, {Yd}dœN, we write

Xd = Oa.s.(f(d)), Yd = oa.s.(f(d)), [64]

for some f : N æ R+ to mean, respectively, that there exists
a random variable C = C(Ê), not dependent on d, such that
|Xd|/f(d) Æ C for all d œ N a.s., and also that limdæŒ Yd/f(d) = 0
a.s.

In everything that follows we will make use of the so-called
Weyl’s inequalities (see e.g. (30, Theorem 4.3.1, p. 239)). Namely,
let A, B œ S(d,C), each with its own eigenvalues listed in increasing
order as in our convention Eq. (8). Then, for i = 1, . . . , d,

⁄i(A + B) Æ ⁄i+j(A) + ⁄d≠j(B), j = 0, 1, . . . , d ≠ i, [65]

and
⁄i≠j+1(A) + ⁄j(B) Æ ⁄i(A + B), j = 1, . . . , i. [66]
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In what follows, we also make use of the fact that, for A œ S(d,C),

⁄¸(≠A) = ≠⁄d≠¸+1(A), ¸ = 1, . . . , d. [67]

With these preliminaries now in hand, we turn to the proof of
Theorem 3. This result is established with the aide of four auxiliary
results, Lemma 1, Lemma 2, Lemma 3 and Lemma 4, whose precise
statements and proof are provided immediately afterward.

Proof. To demonstrate our desired result, Eq. (44), it su�ces to
establish the lower bound

‡2
2(Q) Ø (d ≠ 1)2

Ó1
µ d

d ≠ 1

22
+ Oa.s.

1Ú
log d

d

2Ô
[68]

as well as the upper bound

‡2
d
(Q) Æ (d ≠ 1)2

Ó1
µ d

d ≠ 1

22
+ Oa.s.

1Ú
log d

d

2Ô
. [69]

With this in mind, we now decompose Q as follows, starting with
the case Eq. (42). Fix d œ N\{1}. Taking FX to be the distribution
defining the elements in Eq. (42), draw

{Âqii}i=1,...,d

iid≥ FX independently of {qij}i,j=1,...,d. [70]

Here note carefully that Âqii

d= qij and Âqii

d

”= qii. Now recast
Q = {qij}i,j as
Q

ca

0 q12 ≠ µ . . . q1d ≠ µ
q21 ≠ µ 0 . . . q2d ≠ µ

...
...

. . .
...

qd1 ≠ µ qd2 ≠ µ . . . 0

R

db +

Q

ca

q11 µ . . . µ
µ q22 . . . µ
...

...
. . .

...
µ µ . . . qdd

R

db

=

Y
__]

__[

Q

cca

Âq11 ≠ µ q12 ≠ µ . . . q1d ≠ µ
q21 ≠ µ Âq22 ≠ µ . . . q2d ≠ µ

...
...

. . .
...

qd1 ≠ µ qd2 ≠ µ . . . Âqdd ≠ µ

R

ddb [71]

+

Q

cca

≠Âq11 + µ 0 . . . 0
0 ≠Âq22 + µ . . . 0
...

...
. . .

...
0 0 . . . ≠Âqdd + µ

R

ddb

Z
__̂

__\

+ (1 ≠ d)

Y
___]

___[

Q

ccca

≠q11≠(d≠1)µ

d≠1 0 . . . 0
0 ≠q22≠(d≠1)µ

d≠1 . . . 0
...

...
. . .

...
0 0 . . . ≠qdd≠(d≠1)µ

d≠1

R

dddb

+

Q

cca

µ ≠µ

d≠1 . . . ≠µ

d≠1
≠µ

d≠1 µ . . . ≠µ

d≠1
...

...
. . .

...
≠µ

d≠1
≠µ

d≠1 . . . µ

R

ddb

Z
__̂

__\
[72]

=: Q1 + Q2 + (1 ≠ d)
)

Q3 + Q4
*

=: R + (1 ≠ d)Q4 [73]

Working from Eq. (73) we start by establishing the first bound
Eq. (68) under Eq. (42). Noting from Lemma 4 that Q4 is symmetric
and positive, making use of Eq. (66), first with i = 2, j = 1, then
with i = 1, j = 1, invoking Eq. (67) and finally using that RRú is
symmetric and non-negative, we find

‡2
2(Q) = ⁄2(QQú)

Ø (d ≠ 1)2
Ó

⁄2(Q2
4) + ⁄1

1 RRú

(d ≠ 1)2 ≠
Q4Rú + RQú

4
d ≠ 1

2Ô

Ø (d ≠ 1)2
Ó

⁄2(Q2
4) + ⁄1

1 RRú

(d ≠ 1)2

2
+ ⁄1

1Q4Rú + RQú
4

1 ≠ d

2Ô

Ø (d ≠ 1)2
Ó

⁄2(Q2
4) ≠ ⁄d

1Q4Rú + RQú
4

d ≠ 1

2Ô
. [74]

Now observe

|⁄j(A)| Æ ‡d(A) = ÎAÎop for any j = 1, . . . , d, [75]

whenever A is symmetric. Furthermore,

⁄2(Q2
4) = ⁄2

2(Q4) =
µ2d2

(d ≠ 1)2 , [76]

where the equality follows from Eq. (90) in Lemma 4. Combining
Eq. (74), Eq. (75) and Eq. (76), we therefore infer

‡2
2(Q) Ø (d ≠ 1)2

Ó1
µ d

d ≠ 1

22
≠

1
d ≠ 1

ÎQ4Rú + RQú
4Îop

Ô
. [77]

However, by Eq. (80) in Lemma 1, Eq. (83) in Lemma 2 and
Eq. (85) from Lemma 3 we have

d

d ≠ 1
ÎRÎop

d
Æ

d

d ≠ 1

1ÎQ1Îop
d

+
ÎQ2Îop

d

2
+ ÎQ3Îop

=Oa.s.

1Ú
log d

d

2
. [78]

Hence, by Eq. (78) and Eq. (90) in Lemma 4,
1

d ≠ 1
ÎQ4Rú + RQú

4Îop Æ
2d

d ≠ 1
ÎQ4Îop

...R
d

...
op

= O(1) · Oa.s.

1Ú
log d

d

2
= Oa.s.

1Ú
log d

d

2
. [79]

Thus, by Eq. (77), Eq. (78) and Eq. (79), the lower bound Eq. (68)
holds.

We now turn to verify Eq. (69). Here, by Eq. (73), Eq. (65) with
j = 0, i = d, Eq. (76) and finally Eq. (75),

‡2
d
(Q) = ⁄d(QQú)

Æ (d ≠ 1)2
Ó

⁄d(Q2
4) + ⁄d

1 RRú

(d ≠ 1)2

2
+ ⁄d

1Q4Rú + RQú
4

1 ≠ d

2Ô

Æ (d ≠ 1)2
Ó1

µ d

d ≠ 1

22
+

... R
d ≠ 1

...
2

op
+

1
d ≠ 1

ÎQ4Rú + RQú
4Îop

Ô
.

The upper bound Eq. (69) now follows from Eq. (78) and Eq. (79).
Thus, as a consequence of Eq. (68) and Eq. (69), Eq. (44) holds
under condition Eq. (42), as claimed. We have established the
desired result in the first case Eq. (42).

Now suppose that condition Eq. (43) holds. In order to establish
Eq. (44), it su�ces to replace qij , i < j, with qji in expression
Eq. (71) and in the definition of Q3. We then follow the rest of
the argument for proving Eq. (44) under condition Eq. (42) noting
that Lemma 1, Lemma 3 also hold in the symmetric case. This
concludes the proof.

We turn now to the Lemmata 1, 2, 3 and 4, which are used in
the proof of Theorem 3. These results correspond to the bounds we
use for each of elements in the decomposition Eq. (73). We start
o� with Lemma 1 which essentially packages results found in (39),
(21).

Lemma 1. Let Q1 = Q1(d), d œ N \ {1}, be the sequence of

random matrices defined as in Eq. (71). Here we suppose that the

o� diagonal elements qij defining Q1 are either as in Eq. (42) or

as in Eq. (43) and that the diagonal elements Âqii are drawn as in

Eq. (70). Then, in either case, we have

ÎQ1Îop
d

= Oa.s.

1 1
Ô

d

2
. [80]

Proof. To establish Eq. (80) in the first case, Eq. (42), we note that
d≠1Q1Qú

1 forms a sample covariance matrix, where each entry of
Q1 is centered and has infinitely many moments; cf. Remark 2.
Thus, by (39, Theorem 3.1, p. 517),

ÎQ1Îop =
Ô

d ·

Ú
⁄d

1Q1Qú
1

d

2
=

Ô
d ·


4‡2 + oa.s.(1), [81]

which immediately yields Eq. (80).
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In the second case, where all the o�-diagonal elements are deter-
mined starting from Eq. (43), Q1 is a centered (mean-zero) Wigner
matrix in the typical nomenclature followed by (21). Thus, noting
Eq. (11) and that, as in the previous case, Q1 has infinitely many
moments Eq. (80) is thus a direct consequence of (21, Theorem 2.12,
p. 630).

We next state and establish Lemma 2. Note that the assumption
of independence among the random variables is not needed for
this result. Here and below in what follows we adopt the useful
notational convention that oa.s.(1) denotes a random variable that
vanishes almost surely, as d æ Œ (cf. Eq. (64)).

Lemma 2. Let {Yd}dœN be an identically distributed sequence of

sub-exponential variables with mean µ; cf. Definition 1. Let

Zd = max
k=1,...,d

|Yk ≠ µ|, d œ N. [82]

Then, for any fixed Á0 > 0,

Zd

dÁ0
= oa.s.(1). [83]

In particular, for the sequence of diagonal matrices Q2 © Q2(d)
given as in Eq. (73), and any Á0 > 0,

ÎQ2Îop

dÁ0
= oa.s.(1). [84]

Proof. For any M > 0,

P
1

Zd

dÁ0
Ø

M

dÁ0/2

2
= P

1 d€

k=1

Ó |Yk ≠ µ|
dÁ0

Ø
M

dÁ0/2

Ô2

Æ d · P
!

|Y1 ≠ µ| Ø dÁ0/2M
"

Æ 2d · e≠ dÁ0/2M
K .

In the first and second inequalities, respectively, we use the assump-
tion that the random variables {Yd}dœN are identically distributed
as well as relation Eq. (40) for some suitable value K > 0. Therefore,qŒ

d=1 P(Zd/dÁ0/2 Ø M/dÁ0/2) < Œ. Since limdæŒ M/dÁ0/2 = 0,
Eq. (83) now follows as a consequence of the Borel-Cantelli lemma.

Regarding the second claim observe that, cf. Eq. (70), Q2 is a
diagonal matrix containing identically distributed sub-exponential
random variables. This mean that, taking Yk := q̃kk, ÎQ2Î is of
the form Eq. (82). As such the second claim Eq. (84) now follows
from the first Eq. (83), completing the proof.

Turning to our bounds on ÎQ3Îop, we have the following lemma.

Lemma 3. Let Q3 © Q3(d), d œ N, be a sequence of random

matrices as in Eq. (73). Here we assume that the qii are determined

either according to Eq. (42) or according to Eq. (43). Then, in

either of these cases,

ÎQ3Îop = Oa.s.

1Ú
log d

d

2
. [85]

Proof. Under either Eq. (42) or Eq. (43), each of the entries along
the main diagonal is a renormalized sums of iid sub-exponential
random variables i.e.

≠qii ≠ µ(d ≠ 1)
d ≠ 1

=
1

d ≠ 1

dÿ

j ”=i

(qij ≠ µ) [86]

While these diagonal elements are not independent under Eq. (43)
note carefully that we do not use the independence of the rows of
Q3 in the arguments that follow.

Now, by Bernstein’s inequality, (31, p. 29, Theorem 2.8.1), there
exists a constant C > 0 such that, for any Á > 0,

P
!-- ≠ qii ≠ µ(d ≠ 1)

-- > Á
"

Æ 2 · exp
Ó

≠ C min
Ó

Á2

(d ≠ 1)ÎXµÎ2
Â1

,
Á

ÎXµÎÂ1

ÔÔ
, [87]

for i = 1, . . . , d where Xµ := X ≠ µ for X ≥ FX and the right-hand
side of Eq. (87) involves the sub-exponential norm Eq. (41). Fix

” > 0, and let ÷ := (2 + ”)/C where C is the constant in the upper
bound in Eq. (87). Hence, for all d œ N\{1},

P
1Ú

d ≠ 1
÷ log d

ÎQ3(d)Îop > ÎXµÎÂ1

2

= P
1

max
i=1,...,d

---≠qii ≠ µ(d ≠ 1)
d ≠ 1

--- > ÎXµÎÂ1

Ú
÷ log d

d ≠ 1

2

= P
1 d€

i=1

)-- ≠ qii ≠ µ(d ≠ 1)
-- > ÎXµÎÂ1


÷(d ≠ 1) log d

*2

Æ
dÿ

i=1

P
1-- ≠ qii ≠ µ(d ≠ 1)

-- > ÎXµÎÂ1


÷(d ≠ 1) log d

2

Æ 2d · exp
)

≠ C min
)

÷ log d,


÷(d ≠ 1) log d
**

. [88]

In the second inequality in Eq. (88), we use Eq. (87) with Á :=
ÎXµÎÂ1


÷(d ≠ 1) log d and the fact that {qii}i=1,...,d are identi-

cally (but not necessarily independently) distributed. Therefore, for
every d su�ciently large,

P
1Ú

d ≠ 1
÷ log d

ÎQ3(d)Îop > ÎXµÎÂ1

2
Æ

2
d1+”

,

and as a consequence,
Œÿ

d=1

P
!

ÎQ3(d)Îop > ÎXµÎÂ1

Ú
÷ log d

d ≠ 1
"

< Œ.

Hence, by the Borel-Cantelli lemma,

P
1

ÎQ3(d)Îop > ÎXµÎÂ1

Ú
÷ log d

d ≠ 1
i.o.

2
= 0,

so that the relation Eq. (85) holds. The proof is complete.

Finally we conclude with Lemma 4 as follows.

Lemma 4. Let Q4 © Q4(d), d œ N, be the sequence of symmetric

matrices defined in Eq. (73). Then, for any d œ N\{1},

⁄1(Q4) = 0, [89]

and

⁄¸(Q4) =
µ d

d ≠ 1
, for ¸ = 2, . . . , d. [90]

Proof. The statement Eq. (89) is a consequence of the fact that
Q4 (1, . . . , 1)€ = 0 œ Rn. To establish Eq. (90), it su�ces to prove
that

d

d ≠ 1
Æ

⁄2(Q4)
µ

Æ
⁄d(Q4)

µ
Æ

d

d ≠ 1
, d œ N\{1}. [91]

Let 1 œ S(d,R) be a matrix of ones and recast
1
µ

Q4 = I +
1

d ≠ 1
(I ≠ 1). [92]

By Eq. (92), Eq. (66) with i = 2, j = 1 and Eq. (67),

⁄2(Q4)
µ

Ø ⁄1(I) + ⁄2

1 1
d ≠ 1

(I ≠ 1)
2

= ⁄1(I) ≠
1

d ≠ 1
⁄d≠1(1 ≠ I). [93]

However, by Eq. (65), in the case i = d ≠ 1, j = 1,

⁄d≠1(1 ≠ I) Æ ⁄d≠1(1) + ⁄d(≠I) = ≠1, [94]

where we used that

⁄1(1) = · · · = ⁄d≠1(1) = 0. [95]

This latter claim follows immediately from the fact that rank(1) = 1
and 1 (1, . . . , 1)€ = d(1, . . . , 1)€. The first inequality in Eq. (91) is
now a consequence of Eq. (93) and Eq. (94).
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On the other hand, again by Eq. (92), Eq. (65), this time with
i = d, j = 0, and Eq. (67),

⁄d(Q4)
µ

Æ ⁄d(I) + ⁄d

1 1
d ≠ 1

(I ≠ 1)
2

= ⁄d(I) ≠ ⁄1

1 1
d ≠ 1

(1 ≠ I)
2

. [96]

However, by Eq. (66) and Eq. (95),
⁄1(1 ≠ I) Ø ⁄1(1) + ⁄1(≠I) = ≠1. [97]

The third inequality in Eq. (91) is now a consequence of Eq. (96) and
Eq. (97). This establishes Eq. (91) and, hence, Eq. (90), completing
the proof.

D. Surrogate-trajectory Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) (40, 41) is an advanced MCMC
procedure that uses numerical approximations to Hamiltonian tra-
jectories to generate Metropolis-type (16) proposals far away from
the current Markov chain state. On the one hand, this approach
to proposal generation helps reduce autocorrelation between chain
states and is particularly helpful within higher-dimensional state
spaces. On the other hand, numerical integration of Hamilton’s
equations requires repeated evaluation of the Hamiltonian potential
energy’s gradient, and these repeated floating-point operations may
become computationally burdensome.

Lets briefly recall this HMC approach to resolve a given density
fi(·) of a ‘target’ probability measure of interest.� We proceed by
considering a potential energy of the form U(◊) := ≠ log fi(◊). We
then select an associated kinetic energy V (›) := |G≠1/2›|2 for
an appropriately chosen symmetric-positive-definite mass matrix
G (which is often taken as the identity for simplicity). One then
observes that the Gibbs measure, proportional to e≠H(◊,›) where
H = U + V , is invariant under the associated Hamiltonian dynamic.
Here note that the ◊ marginal of e≠H(◊,›) coincides with fi while
the › marginal is normally distributed as N (0, G).

One operationalizes these observations as an algorithmic sam-
pling procedure as follows. At each step, given a current sam-
ple ◊(n), one draws ›(n) ≥ N (0, G). From this initial state
(◊(0), ›(0)) := (◊(n), ›(n)) one then numerically approximates the
associated Hamiltonian dynamics using a Störmer-Verlet (velocity
Verlet) or leapfrog integrator up to a total integration time · > 0
and using integration step size ‘ > 0. In this context, note that a
single iteration of this integrator takes the form, (42),

›
1

s +
‘

2

2
:= ›(s) +

‘

2
Ò log fi(◊(s)),

◊(s + ‘) := ◊(s) + ‘ G≠1›(s +
‘

2
), [98]

›(s + ‘) := ›
1

s +
‘

2

2
+

‘

2
Ò log fi(◊(s + ‘)) .

In this fashion the proposed new state is given through Eq. (98)
by ◊(·). To remove bias this procedure can be augmented with
an acceptance probability of the form –(n) := exp(H(◊(0), ›(0)) ≠
H(◊(·), ›(·)) · 1.

Di�erent strategies aim to speed up the leapfrog integrator’s
many log-posterior gradient evaluations Ò log fi(◊), as these numer-
ical routines often represent the algorithm’s computational bottle-
neck. In model-specific contexts, (3, 4, 43) yield parallelization
strategies, and (35) develops dynamic programming techniques, to
accelerate the evaluation of Ò log fi(◊).

A small body of work considers another approach by replacing
Ò log fi(◊) with a suitable approximation ÂÒ log fi(◊) and recognizing
that the modified Eq. (98) continues to satisfy path reversibility
and volume preservation, two essential ingredients for well-specified
HMC. It follows immediately that the resulting ‘surrogate trajectory
HMC’ continues to sample the correct target distribution fi(·); see
further details (33, 41). Nonetheless, the acceptance rates and
overall e�ciency of such samplers may su�er when approximations
are poor.

� In the Bayesian inference context, we are typically considering the posterior density function
fi(◊) := p(◊|Y) for the parameter ◊ œ RK given observed data Y.
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Fig. S1. Posterior means for exponentiated random effects convey expected multi-
plicative deviations from the portion of the rate attributable to fixed effects for each
corresponding element of the generator matrix. Notably, we infer a roughly 1.81-fold
posterior mean increase in the rate of transitions from the US to Hubei, CN, beyond
that portion of the rate which may be explained by fixed effects. Less pronounced are
posterior mean multiplicative increases of 1.34 (US to Italy), 1.27 (US to UK), 1.44
(Netherlands to Italy) and 1.21 (Guangdong, CN, to Hubei, CN).

The majority of surrogate HMC methods first obtain a small
sample of exact gradient evaluations and then use some model to
interpolate: (44) assumes the approximate gradient follows a piece-
wise constant form across a grid; (45, 46) construct approximations
using Gaussian processes; and (47, 48) do the same using neural
networks. But an even simpler approach to surrogate HMC may be
appropriate when gradients have series representations as we can
leverage here in Eq. (3).

E. Visualizing the posterior mean random effects
Figure S1 displays posterior means of the exponentiated random
e�ects, which one may interpret as multiplicative deviations from
the fixed e�ects’ contributions to the generator matrix. Whereas
the vast majority of exponentiated random e�ects have posterior
means close to 1, indicating no deviation from the fixed-e�ect model,
a few exhibit posterior means that are significantly greater than
1. In particular, the rate element corresponding to transfer from
the US to Hubei, CN, exhibits a 1.81-fold random-e�ect derived
increase to the fixed-e�ect component. This large multiplicative
increase agrees with, but goes beyond, the influence that the Hubei
asymmetry holds for the entire generator matrix model.
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