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I. Materials and Methods 
Hyperspectral SRS microscopy 
Hyperspectral stimulated Raman scattering microscopy is constructed by sending a dual-output 
femtosecond laser system (InSight X3, Spectra-Physics) through a commercial Spectral Focusing Timing 
and Recombination Unit (SF-TRU, Newport Corporation) and coupled into a multiphoton laser scanning 
microscope (FVMPE-RS, Olympus). The pump beam is tunable in the range of 680-1300 nm, while the 
Stokes beam is fixed at 1045 nm. Inside SF-TRU, the Stokes beam passes through a resonant electro-optic 
amplitude modulator (EOM), which modulates the Stokes beam at a 10 MHz resonant frequency. A 
motorized delay stage (DL125, Newport) is inserted on the Stokes path to adjust the temporal overlap 
between two beams. A separate grating pair is installed in each beam path for spectral focusing. The pulse 
width for the pump and the Stokes are calculated to be 4 ps and 3.5 ps, respectively. The existence of grating 
pairs also reduces the pump tuning range to 790-910 nm (corresponding to a Raman shift range of 1300-
3100 cm-1). The two synchronized beams are spatiotemporally overlapped and then coupled into the 
microscope for SRS imaging. A 25x water objective (XLPlan N, N.A. 1.05, MP, Olympus) is used with a 
high N.A. condenser lens (oil immersion, N.A. 1.4, Olympus) to collect the pump and stokes beams passing 
through the samples. A large-area (10 mm x 10 mm) Si photodiode (S3590-09, Hamamatsu) is placed after 
a telescope to detect pump beam intensity loss after filtering out the Stokes beam with two high-optical-
density band-pass filters (FESH0950, Thorlabs). A 64 V DC power supply is used to reverse-biased the 
photodiode, and the output current of the detector is electronically prefiltered by a band-pass filter (Mini-
Circuits, 9.5-11.5 MHz, 50 Ω) before being sent to a fast lock-in amplifier (HF2LI, 50 MHz, Zurich 
Instruments) with 50 Ω termination for signal demodulation. The in-phase X-output of the lock-in amplifier 
is fed back into the analog interface box of the microscope to form SRS images. The fast acquisition of the 
SRS spectrum in each window is achieved by simply adjusting the arrival time of the Stokes beam through 
a motorized delay stage inside SF-TRU. The delay stage position was calibrated to wavenumber by 
comparing hyperspectral SRS spectra with spontaneous Raman spectra for polymer standards.  Proper 
calibration is important for consistent matching of the spectrum throughout time. The detailed imaging 
conditions for different experiments are listed below. All the power is determined after the objective. Unless 
otherwise mentioned, all SRS images of nanoparticles are acquired with a pixel size of 199 nm. 

In the measurement of standard polystyrene (PS) to determine the sensitivity, the central wavelength of the 
pump beam was 793 nm. Pump power of 120 mW and Stokes power of 214 mW were used for nanosphere 
measurement and the pixel dwell time settings were in a range of 2 μs - 3x8 μs, with a corresponding time 
constant from lock-in amplifier to be 2 μs - 6 μs. Lower power (Ppump= 60 mW, PStokes= 129 mW) was used 
for PS microsphere measurement to avoid burning of the particles with a pixel dwell time and time constant 
of 2 us, and their ΔI/I ratios were converted to the same power condition of the PS nanosphere imaging 
using the linear relationship of the beam power and SRS signal. The noise threshold was determined under 
the imaging condition for measuring PS nanosphere of 130 nm and 240 nm (Ppump= 120 mW, PStokes= 214 
mW, the pixel dwell time of 8 μs, time constant 6 μs, averaging 3 times). Resolution is measured by imaging 
240 nm PS nanosphere under the same condition with a much smaller pixel size of 16 nm.  

In the measurement of library spectra, the central wavelengths we used were 793 nm (spectral window: 
3000 cm-1 – 3110 cm-1), 804 nm (spectral window: 2800 cm-1 – 2980 cm-1), 886 nm (spectral window: 1670 
cm-1 – 1770 cm-1), and 897 nm (spectral window: 1580 cm-1 – 1660 cm-1), with the stepsize on the delay 
scanning of 0.02 mm, which corresponds to ~3 cm-1 converting to the unit of wavenumber. The pump power 
of Ppump = 20 mW and Stokes power of PStokes= 21-63 mW were used to image micron flakes/fibers of all 
plastic standards (PE, PP, PA66, PVC, PS, PET, and PMMA), and pump power of Ppump = 80 mW and 
Stokes power of PStokes= 171 mW were used for E. coli sample, which represents possible nonplastic 



material from biological components. The pixel dwell time for all the measurement of the library spectrum 
were 4 μs with a time constant from the lock-in amplifier of 3 μs. All the FOVs are averaged for each 
polymer material to obtain the corresponding standard SRS spectra used in the library. When measuring 
the testing data set, a pixel size of 2 um is used in microplastic imaging with scaling and pixel dwell time 
adjusted to mimic the imaging condition for SRS imaging of nanoplastics.  

In the measurement of bottled water samples, Ppump = 120 mW and PStokes= 214 mW were used with a pixel 
dwell time of 8 μs, time constant of 6 μs, and three times averaging. The central wavelength was the same 
as the standard measurement with a larger step size of the delay scanning (0.1 mm, ~15 cm-1).  

Sample preparation of plastic standards for SRS measurement 
PS standards of micro-nanospheres in different sizes were bought from Thermo Fisher Invitrogen (0.1 μm: 
Lot# 2170524, 0.2 μm: Lot# 2299810, 0.3 μm: Lot# 2344121, 0.5 μm: Lot# 2230856, 0.7 μm: Lot# 2320039, 
1 μm Aliphatic Amine latex: batch # 2476-HMD-2,1, 3 μm: Lot# 2145532, 10 μm: Lot# 2392901). Standard 
PS micro-nanospheres were diluted 100-1000 times with RO water (Sigma Aldrich, Milli-Q) before being 
spread and dried on the surface of the coverslip with an imaging spacer (Sigma Aldrich, GBL654008). 1% 
Agarose gel (thermos scientific, Lot# 01162528) was prepared with D2O (Sigma, 151882-100G) at 95 °C. 
5-10 μL of prepared agarose gel was added before the sample was sandwiched between the glass slide and 
coverslip for SRS imaging. 

Microplastic standards of PET, PP, PE, PVC, and PA were obtained from Polymer Kit 1.0 (Hawaii Pacific 
University).  These sub-cm sized plastic pallets were crushed by freeze mill (SPEX SamplePrep 6875D 
Freezer/Mill Dual Chamber Cryogenic Grinder, 2 rounds for each sample of around 10 pallets, 12 cycles 
per round with 1 min run time and 1 min cool time at rate 15 CPS per cycle) into powders with irregular 
particles in micron size. The obtained particles are embedded in the agarose gel described above for SRS 
imaging.  

Another PET standard (GoodFellow, LS567754) used in the spectra library measurement was obtained in 
fibers with a diameter of 14 microns, which are directly embedded for SRS imaging. PMMA (Sigma 
Aldrich, 910716, 90875, 73371) and another type of PVC (Sigma Aldrich, 346764), obtained with granules 
in micron size, are directly embedded for SRS imaging as well.   

E∙ coli cells were fixed with 4% PFA and washed three times before being embedded in the gel for SRS 
imaging as the control standard representing biomass. 

SRS-tailored spectral matching algorithms and synthetic data generation 
The calculation of the SMCSRS employed the Optimization Toolbox implemented in Matlab. An SRS 
spectrum 𝒙 from detected plastic particles could be decomposed according to eq.1 in Figure 2. The basic 
premise was that the plastic particle spectrum 𝒙 should have the same spectral shape as the corresponding 
normalized standard spectrum 𝒔 but with different SRS intensity α depending on the particle size. The 
contribution from the background β𝐛 should also be considered. The background spectrum 𝐛 was obtained 
from cropping a particle-free area in the same imaging stack. If the particle size was large enough to fill the 
focal volume, the contribution from the environmental background 𝛽 ൌ 0 ; In most cases, particles 
underfilled the focal volume; thus, the contribution of the background is 0  𝛽 ൏ 1. The constrained 
optimization was then applied to find the corresponding α and β so that the reconstructed spectrum  (α𝐬 
β𝐛) matched the original particle spectrum as well as possible. Mathematically,  the optimized solution was 
the minimal spectral distance min

ఈ,ஸఉழଵ 
‖𝒙 െ ሺα𝐬  β𝐛ሻ‖ଶ, denoted as SMCSRS. 



In Matlab, the SRS spectra of plastic nanoparticles were synthesized by randomly scaling the normalized 
standard spectrum 𝐬 within the range of digital SRS images and applying the estimated noise fluctuation 
based on our understanding of the instrumentation. Algorithms were developed to mimic the two main 
noise sources in a typical hyperspectral SRS spectrum. The fundamental noise on the SRS intensity as a 
shot-noise-limited technique was determined from the intensity distribution of a cropped area in particle 
images where no particles are detected. A normal distribution was generated based on this intensity 
distribution and is later applied to the scaled standard spectrum.  The possible laser wavelength fluctuation 
was simulated from the fine-scanned standard spectrum (Figure 2 A, ~3 cm-1) by resampling the spectrum 
in a way to include the local fluctuation for our instrumentation (Figure S 10).  

Bottled water sample preparation  
All the filtration experiments were carried out in a clean lab with fume hood. All glass apparatuses were 
thoroughly rinsed with chromic acid before filtration to oxidize and remove any organic substances that 
might cause possible contamination. Then the precleaned apparatuses were then carefully rinsed with the 
same brand of bottled water to wash away the acid residue and prepare the apparatus for immediate filtration. 
Water samples were filtered through Al2O3 membrane filters (Cytiva Whatman, Anodisc 25 mm, 0.2 µm 
pore-size). A cover made of clean aluminum foil is always applied to the funnel to minimize possible 
airborne particulate contamination. Only when filling the water analyte, the cover is carefully removed and 
the funnel is then quickly filled with the water pour directly out of the original water bottle, after the bottled 
water was thoroughly shaken to resuspend the possible particles inside. For each membrane sample, two 
entire bottles of commercial purified water (in the same pack acquired from a large retailer) were filtrated 
to avoid possible errors introduced by non-uniform subsampling of water analyte within one bottle. After 
the filtration was finished, the filter was carefully placed in a clean glass petri dish and moved to another 
room, where the filter was quickly mounted to a coverslip with the upper surface sealed by a trimmed 
imaging spacer and 1% Agarose gel in 90 µL D2O. The covered sample was then stored at room temperature 
in a sealed petri dish with enough D2O to keep the sample humid by soaking the bottom side of the 
membrane in the D2O. Before SRS imaging, the covered sample was mounted on a glass slide, on top of 
which about 80 µL of D2O is added to fill the gap between the membrane and the glass slide. Then the 
excess D2O on the periphery was wiped out before the application of nail polish on all sides of the coverslip 
to seal the sample and secure it on the glass slide for hyperspectral SRS imaging. The blank samples were 
prepared by sandwiching the Anodisc filter in the same way as the bottled water samples described above. 

Automated micro-nano plastic detection from hyperspectral SRS images 
The obtained hyperspectral SRS images were first aligned in the ImageJ (Plugins: align_slice,  
https://imagejdocu.list.lu/plugin/aligning/align_slice/start) to correct possible pixel drifts across spectral 
points. The registered stack of SRS images and a selected region with no particles cropped as the 
background was then imported into Matlab for further automated image processing. For each type of plastic, 
possible particle candidates were segmented as regions of interest at the on-resonance images based on the 
corresponding standard SRS spectrum. Each segmented region of interest first went through a crude 
screening to make sure there were SRS peaks in the target spectral window. For each obtained crude particle 
candidate, SMCSRS was then calculated using the optimization algorithms from the corresponding standard 
spectrum before the threshold (Supplementary Note 2) was applied to give a final decision for plastic 
identification. If the particle is identified to be positive for more than one polymer in the library, the particle 
will be identified as the polymer with the smallest SMCSRS calculation.      

Statistical analysis 
For each bottled water sample, 5-8 fields of view were imaged for each sample. For blank analysis, four 
fields of view were imaged for each sample. At each field of view, duplicates of 5 samples were made and 



the average of measures was used to produce reliable quantification statistics. The number of micro-nano 
particles detected was analyzed using the generalized linear mixed model analysis assuming a Poisson 
distribution or a negative binomial distribution to account for overdispersion in the count data. The 
generalized linear mixed models also take into account the correlation between multiple fields of view from 
the same bottled water sample. Bonferroni correction was used to adjust the significance level of each 
hypothesis test to control the overall probability of the type I error for multiple hypothesis tests in the 
statistical conclusions. The value of the adjusted p-values is denoted using *p<0.05, **p<0.01, ***p<0.001. 
The generalized linear mixed model analyses were conducted using SAS version 9.4 (SAS Institute Inc.). 

 

 

 

  



Supplementary Figures 
 

 

Figure S1. Raman spectra of plastic standards (PS, PP, PE, PET, PVC, PMMA, and PA) and biomass standard (E. coli) 

  



 

Figure S2. Comparison of SRS spectra of PS nanospheres in agarose gel prepared by a) H2O or b) D2O. 

 

  



 

 

Figure S3. Raman spectra of H2O and D2O.   

  



 

Figure S4. High throughput PS nanosphere measurement enabled by single-channel narrow-band 
SRS imaging. 

Roughly a thousand 240 nm PS nanoparticles in one FOV (51 µm x 51 µm) could be measured under high 
resolution (pixel size 199 nm) in 1.2 s. Each particle with imaging of a diffraction-limit pattern was analyzed 
to measure the distribution of SRS intensity for single particles of this specified size. Scale bar: 5 µm.  

 

 

  



 

Figure S5. SRS intensity distribution of PS nanospheres with different sizes from single particle 
imaging.  

Figure 1 a-g shows characteristic images for particles with corresponding sizes. For particles below the 
diffraction limit, only the particles with images of diffraction-limit patterns were counted. The intensity 
readings for particles of each size were fitted with Gaussian distribution to obtain the mean and standard 
deviation for analyzing the linear dependence of stimulated Raman loss signals with the particle size in 
diameter in the log-log scale (Figure 1 J-K). 

 

 

 



 

Figure S6. Spectral sampling from the standard library for high-throughput hyperspectral particle 
imaging with SRS microscopy.  

The standard SRS spectra in Figure 2A were re-sampled at an interval of 5 spectral points, corresponding 
to a spectral interval of ~ 15 cm-1. For each spectrum, the corresponding central wavelength for spectral 
windows from left to right was 897 nm, 886 nm, 804 nm, and 793 nm, respectively. The position was 
adjusted to best account for the differences in the spectral shape between the spectral standards.  



 

Figure S7. SRS imaging of PS nanospheres on Anodisc aluminum oxide membrane filter 

a. Representative SRS images (3050 cm-1) of standard 500 nm PS nanospheres on an Anodisc aluminum 
oxide membrane filter. The  SRS images with and without a filter were identical (Figure 1 D), confirming 
the presence of the filter does not distort the particle images under the transmissive SRS imaging. Scale bar, 
0.6 µm; b. Distribution of SRS intensity of standard 500 nm PS nanospheres measured in agarose gel on 
the cover glass and on Anodisc filters, respectively. c. The bar chart summarizing the measurement of SRS 
intensity in b indicates ~70% signal retention of the original signal. 

 

 

 



 

 

Figure S8. The spectral variation observed for PET particles.  

a-d. SRS spectra of the representative PET particles with varied spectral features on the high-frequency C-
H region, most likely due to the presence of heteroaggregates. The blue lines are the spectra of detected 
particles. The orange lines are the correspondingly scaled standard PET spectrum. e-h. SRS images of the 
PET heteroaggregates at C=O vibration (1730 cm-1) corresponding to the spectrum above a-d.  i-l. SRS 
images of the PET heteroaggregates at C-H vibration corresponding to the spectrum above a-d. From 
Figure S8 a, e , and i, spatial chemical heterogeneity within the aggregates can be clearly observed as the 
SRS images at C=O vibration show clear differences from SRS images at C-H vibration. Scale bar, 0.6 µm. 

  

 

  



  

Figure S9. Corresponding SRS spectrum of representative plastic particles with various shapes 
indicated by different aspect ratios in Figure 6. 

a. Corresponding SRS spectrum of the particle in Figure 6 I, which is identified as PET; b. Corresponding 
SRS spectrum of the particle in Figure 6 J, identified as PA; c. Corresponding SRS spectrum of the particle 
in Figure 6 K, identified as PVC. d. Corresponding SRS spectrum of the particle in Figure 6 L identified 
as PE. e. Corresponding SRS spectrum of the particle in Figure 6 M, identified as PP. The blue lines are 
the spectrum of detected particles. The orange lines are the matched standard spectrum.   



Supplementary Notes: 

Supplementary Note 1: Estimation of the number of repetitive units of 100 nm plastic 
nanoparticles  

Table S1. Number of Repeating units in 100 nm particles from common plastic types  

Plastics 
polymer 

Chemical structure 
Unit 
M.W. 

Density 
(g/cm3) 

100 nm nanoplastics (assuming solid 
sphere) 

Mass 
(x10-16 g) 

Number of 
repeating units 
(x106) 

Polyethylene 
(PE)  

28.05 
0.87-0.96 
0.95* 
 

4.6-5.0 9.8-10.8 

Polypropylene 
(PP) 

 

42.08 
0.84-0.91 
0.91* 

4.4-4.8 6.3-6.8 

Polyamide 66 
(PA) 
  

226.32 
1.05-1.14 
1.14* 

5.5-6.0 1.5-1.6 

Polystyrene 
(PS) 

 

104.15 
1.02-1.06 
1.02* 

5.3-5.6 3.1-3.2 

Poly(methyl 
methacrylate) 
(PMMA) 

 

100.12 
1.17-1.20 
1.18* 

6.1-6.3 3.7-3.8 

Polyvinyl 
chloride 
(PVC) 

 

62.50 
1.37-1.43 
1.38* 

7.2-7.5 6.9-7.2 

Polyethylene 
terephthalate 
(PET)  

192.17 
1.3-1.4 
1.38* 

6.8-7.3 2.1-2.3 

All the density information is obtained from ref [1]. For polymers that have a range of density depending 
on the different forms of existence, * is utilized for the following mass calibration  



Supplementary Note 2: Data-driven learning process for polymer identification 

Making a nonarbitrary binary judgment for polymer identification requires a learning process based on a 
large enough dataset. With only PS nanoparticles available as the model, we first explored the simulation 
condition with the PS nanoparticles. The noise on SRS intensity and the frequency uncertainty imposed by 
SRS instrument is proposed to be the two key parameters in our model to simulate possible SRS spectra of 
plastic nanoparticles from the corresponding polymer standards. The intensity fluctuation can be directly 
measured from the noise in the acquired SRS images. For each FOV measurement, there might be slight 
changes in the laser profile and the delay stage position, which can result in fluctuation of the actual 
frequency excited in each measurement around the preset spectral points. Assuming the exact vibrational 
energy excited at the moment for each measurement follows a Gaussian distribution, the range of 
uncertainty is modeled by checking the consistency in SMCSRS calculation from the synthetic spectra and 
measured spectra of PS nanoparticles. A Gaussian profile with FWHM of 10 cm-1 is utilized to account for 
the frequency fluctuation in particle measurements according to the best overlaps between the simulated 
data and the experimental measurement from the PS nanoparticles (Figure S10). 

Then the same parameter is used to generate thousands of datapoints for the learning process to find the 
thresholds for unambiguous identification of all plastic polymers in the library (Described in the methods 
and pictured in Figure 2 F, and Figure S11). The threshold condition is determined by fitting a logarithmic 
function (a*log(x-c)+b) that enables the best separation between the target polymer and another polymer 
in the library that has the closest distribution on the scatter plot.  

With the threshold determined for identifying polymer type (Table S2), a new set of data with a thousand 
synthetic data points for each chemical component in the library was generated to evaluate the accuracy of 
the boundary condition acquired from the learning process. The results after evaluation were summarized 
in the confusion matrix (Figure S12). The performance using SRS-tailored Spectral Matching algorithms 
with the learning-assisted threshold determination is compared with the performance from conventional 
spectral matching algorithms based on the simulated data set. For conventional spectral matching 
algorithms commonly used in the library searching with FTIR and spontaneous Raman, Pearson’s 
Correlation (PC) measurement and Squared Euclidean Cosine (SEC) measurement are presented as the 
typical examples to make the point. With the measured similarity of 1 to indicate perfect matching, a 
threshold of 0.7 is most widely used in practice to make a call. Here, with a narrower spectral window and 
fewer vibrational signatures, the similarity measurement from SRS spectra in the library is generally high 
(Figure 2 D,E). A threshold of 0.7 would create unnecessarily more false positives. We, therefore, optimize 
the numeric threshold of similarity for SRS spectra matching based on PS nanoparticles, which is the only 
particle model of nanoplastics available. The threshold is determined to the quartile of PS similarity 
measurement that ensured a 95% identification rate for PS.  

From the confusion matrix, SRS-tailored Spectral Matching algorithms clearly outperform the conventional 
way of spectral similarity measurement (Figure S12), with a maximum of only around 5% misidentification 
rate in the most challenging case. To further resolve the 5% chance of a particle simultaneously identified 
as two polymer kinds in the library, we introduce another step in the data analysis workflow to screen for 
particles that have more than one positive call and identify them as the polymer that gives the smallest 
SMCSRS value. The performance of the entire identification workflow gives over 96% identification rate for 
all plastic types and less than 1% false positive rate validated by both the simulation data set (Figure S12) 
and experimental data set (Figure S12).   

  



 

Figure S10. Finding the optimal parameter to simulate frequency uncertainty: A scatter plot of 
ln(SMCSRS) against  SRS intensity α for other plastic standards was generated to compare the 
experimentally measured PS nanoparticles with simulated PS spectrum on the condition of 
assuming the instrumental frequency fluctuation is a gaussian distribution with FWHM of  a) 5 
cm-1, b) 10 cm-1, c) 15 cm-1. Trend lines are fitted with the logarithmic function of  a*log(x-c)+b 
to indicate the trend of the scattered data points. 

   

Tabel S2. Threshold condition determined for polymer identification 

Plastics 
polymer 

a b c 
Minimum 
Intensity 
(a.u.) 

PA 2.39493828359969 -8.84510720757748 -526.399223635400 200 

PP 2.44961340422964 -9.35922153090780 -544.0442436072430 200 

PE 2.12960918950470 -5.98617382548675 -260.292871332060 200 

PMMA 2.15491387069439 -6.04211379746063 -310.263017959368 200 

PVC 2.29359461274251 -8.20796628579386 -532.177529823619 200 

PS 2.14297210667609 -6.12510016496094 -343.305676145489 200 

PET 2.24627056905323 -6.12616605713827 -265.672011592878 200 



  

 

Figure S11. The learning process indicated by scatter plot of ln(SMCSRS) against  SRS intensity α for 
other plastic standards: a) Polyamide 66 (PA), b) Polypropylene (PP), c) Polyethylene (PE), d) 
Polymethyl methacrylate (PMMA), e) Polyvinyl chloride (PVC), f) Polyethylene terephthalate (PET). Data 
of E. coli are also included for comparison. In the legend, the subscript T indicates the synthetic spectral 
data points of the target polymer in the matching algorithms to evaluate the false negative. The subscript F 
indicates synthetic spectral data points generated from other polymer types to evaluate the false positive. 
The red solid lines in each plot are the threshold lines learned from the distribution of labeled synthetic data 
points. The circular data points are experimental data from hyperspectral SRS imaging of corresponding 
microplastics.  

  



 

Figure S12. Confusion matrix on plastic identification performance. a) Plastic identification using 
Pearson’s correlation as similarity measurement. b) Plastic identification using Squared Euclidean cosine 
as similarity measurement. c) Plastic identification based on SMCSRS measurement with the threshold 
determined from the data-driven learning process. d) Plastic identification based on final data analysis 
workflow. After applying the determined threshold on SMCSRS measurement for each polymer, particles 
identified to be with more than one plastic type are re-evaluated to be the polymer that gives the smallest  
SMCSRS measurement.  

  



Supplementary Note 3: Quantification analysis using SRS intensity 

Good linearity between linear stimulated Raman loss signals (
∆𝐼

𝐼
൘ ) and the cubic of particle size (slope 

of 2.97 for the linear trendline fitted under log-log scale ) was shown in Figure 1 J. To better understand 
the linear dependence of SRS signal amplitude vs particles’ volume for sizes, a simulation is done to further 
verify the experimental measurement.  

Assuming an identical Gaussian profile for both pump and Stokes beams at the focal volume, we first 
identify the individual beam profile to generate a product of the two beam profiles with FWHM of ~400 
nm(Figure S13 a,b). The individual beam is found to have an intensity distribution with FWHM of 550 
nm(Figure S13 c,d).  

 

 

Figure S13. Simulated intensity profile. a) Simulated focal intensity map from the product of the two 
beams  𝐼 ∙ 𝐼௦. b) The intensity profile suggests a Gaussian distribution with FWHM of ~400 nm, which 

matches the experimental measurement. c) Simulated focal intensity map of individual beam 𝐼 or 𝐼௦ .d) 

The corresponding intensity profile of individual beam (𝐼 or 𝐼௦ሻ  suggest a Gaussian distribution with the 

FWHM of 550 nm.  

 

Assuming the PS particles are perfect solid spheres with diameters of the given sizes, we denote the SRS 

signal of the particle, measured as stimulated Raman loss signals (
∆𝐼

𝐼
൘ ), as  

𝐶 ∙
 𝐼ሺ𝑥,𝑦, 𝑧ሻ𝐼௦ሺ𝑥,𝑦, 𝑧ሻ𝑆ሺ𝑥,𝑦, 𝑧ሻ𝑑𝑉

 𝐼ሺ𝑥, 𝑦, 𝑧ሻ𝑑𝑉
 



𝐼ሺ𝑥,𝑦, 𝑧ሻ, 𝐼௦ሺ𝑥,𝑦, 𝑧ሻ is the spatial distribution of the pump and Stokes intensity profile in three dimensions 

(FHWM: 550 nm in x, y dimensions; 1.5 µm in z dimension). 𝑆ሺ𝑥,𝑦, 𝑧ሻ maps a 3-dimensional solid sphere 
with a diameter of the given size at the center of the beam.  𝐶 includes all other constant parameters needed 

to convert the integration results to the expected 
∆𝐼

𝐼
൘ , which is calculated by dividing the expected SRL 

for 100 nm PS particles (5 × 10–6, detailed estimation process in the second section of the main manuscript) 

by the integral 
 ூሺ௫,௬,௭ሻூೞሺ௫,௬,௭ሻௌభబబ ሺ௫,௬,௭ሻௗ

 ூሺ௫,௬,௭ሻௗ
.  

Note that in the actual plastic particle imaging experiment, 0.2 µm pixel size is used to enable high-
throughput imaging. As most of the PS nanoparticles measured have sizes of a few hundred nanometers, 
the effect on the signal from continuous galvo scanning during the 200 nm step size should not be ignored. 
Assuming the galvo continuously scans in the x dimension when measuring particles, the scanning process 
creates a homogeneous intensity distribution along the x-axis to interact along the particle within this 200 
nm sampling step. Taking this into account, we modify the intensity profile (Figure S14 d) and simulated 
the SRS signal(Figure S14 a-c). Consistent with our experimental measurement, a good linear dependence 
of SRS signal amplitude vs particles’ volume for sizes up to 0.7 microns is observed. Going above 0.7 µm, 
SRS signal gradually saturates as the particle fills the focal volume. Full saturation is expected for particles 
with a size above 1.5 µm, where the particle entirely fills the focal volume in all three dimensions. 

 

Figure S14. Simulating dependence of SRS signal amplitude vs particles’ sizes. a-c) Simulated 
dependence of SRS signal amplitude vs particles’ sizes in diameter plotted in log-log scale. The linear trend 
line is fitted with data points from particle sizes smaller than a) 500 nm, b) 700 nm, and c) 1.5 µm. A good 
linear dependence (>0.99) is observed for data points from particle sizes up to 700 nm. d) Effected intensity 
profile of individual beam interacting with particle used in the simulation,  considering the continuous galvo 
scanning behavior across the particle measurement within the 200 nm sampling pixel size.  

 

 



 

The validated linear dependence of stimulated Raman loss signals (3050 cm-1) on the cubic of particle size 
in diameter (µm3) can be readily used to estimate the size of PS particles below the diffraction limit.  Based 

on the density of PS polymer from Table S1, the linear dependence of 
∆𝐼

𝐼
൘  with cubic of size in diameter 

(µm3) (Figure S16 a) can then be easily converted to the calibration curve for mass estimation of individual 
particles(Figure S16 b): 
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𝑘 – The linear relationship (𝑦 ൌ 𝑘𝑥) of stimulated Raman loss signals with the cubic of particle size in 
diameter measured from standard PS nanospheres in Figure S16 a.  

𝜌ௌ – The density of the PS polymer (Table S1), which is 1.02 g/cm3 used in the calculation.  

 

Note that such linearity fundamentally comes from the linear dependency of SRS signal and the 
concentration of the target analyte, which in principle, can be applied to other plastic polymers. With no 
standard nanosphere available for direct measurement, we can quantify the relative intensity of other 
polymers versus PS polymer (RIP). The calibration curve measured from standard PS nanosphere can be 
transformed easily to characterize both particle size (Figure S16 a) and mass (Figure S16 b) for other 
plastic polymers: 
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𝑅𝐼𝑃  - Relative intensity of polymer X vs PS. 

𝜌௫ – The density of the polymer X (Table S1).  

 

 

 

 

 



 

Figure S15. Representative SRS images of plastic standards for each polymer in the library.  

The SRS intensity of the plastic standard was measured through imaging at the characteristic peak position 
of the standard spectrum (Figure 2 A). We notice that for most micron particles obtained from crushing the 
large pallets by freeze mill, the SRS intensity does not present a uniform distribution within the particle. 
We reason that the brightest signal comes from the situation where the entire focal volume is filled with the 
target polymer, while other peripheral regions with dim SRS signals might come from compromised solidity 
in certain areas of the particles. Therefore, we segmented the brightest areas for each plastic standard to 
measure the RIP for each polymer (Table S3).  

 

 

  



Table S3.  Relative SRS intensity of plastic polymer standards compared with PS  

Plastics polymer Chemical bonds Wavenumber 
Relative intensity vs PS 
(RIP) 

Polyamide 66 
(PA) 

sp3 C-H vibration 2897 cm-1 0.59 

Polypropylene 
(PP) 

sp3 C-H vibration 2881 cm-1 0.94 

Polyethylene 
(PE) 

sp3 C-H vibration 2851 cm-1 0.91 

Poly(methyl 
methacrylate) 
(PMMA) 

sp3 C-H vibration 2941 cm-1 0.45 

Polyvinyl chloride 
(PVC) 

sp3 C-H vibration 2933 cm-1 0.32 

Polystyrene 
(PS) 

sp2 C-H vibration 3050 cm-1 1 

Polyethylene 
terephthalate 
(PET) 

C=O vibration 1728 cm-1 0.42 

 

  



 

 

Figure S16. Calibration curves for particle size extrapolation (a) and mass estimation (b) for plastic 
polymers in the library.  

The solid line is converted from the experimental measurement of standard PS nanospheres in Figure 1J. 
The other calibration curves in dashed lines are converted from the calculation described above. Calibration 
curves in Figure S16 a are employed for extrapolation of the particle sizes below the diffraction limits, 
assuming nanoparticles below the diffraction are a solid nanosphere, whose size is measured in diameter. 
Calibration curves in Figure S16 b are utilized for mass estimation of individual particles, where pixel 
intensities within the region of interest for each particle are integrated to account for the particles with 
possible irregular shapes.  

 

 

 

  



Supplementary Note 4: Comparison with other analytical techniques for micro-nanoplastics 
analysis  

Without complicated sample preprocessing, the original composition of the micro-nano plastics in bottled 
water was preserved to the largest extent. The particle imaging nature of our technique empowers us to 
analyze plastic particles based on their morphological information. From our result, the analysis of 
microplastics is readily available with an applied size threshold.  

Various techniques have been utilized for micro-nano plastic characterization (Figure S18). The capability 
of detecting plastic particles differs with variations in the specificity, sensitivity, and resolution of applied 
technologies. Unsurprisingly as a result, the reported levels of microplastics from different analytical 
methods in bottled water are inconsistent, varying in orders of magnitude (Table S4).  

To better compare the results with previous studies, we counted the microplastic abundance under different 
size thresholds (Figure S17 ). In consideration of detection sensitivity and specificity for various techniques 
utilized in the reported studies, our results on the microplastics abundances were roughly within the same 
order of magnitude (Table S4), confirming the legitimacy of our learning-assisted hyperspectral SRS 
imaging platform for micro-nano plastics analysis. 

 

Figure S17. Microplastic abundance in the bottled water. 

a-c. The average number of microplastic particles estimated in 1 L of the bottled water. Particles were 
counted with sizes larger than a) 1 µm, b) 2 µm, a) 5 µm. Error bars, mean ± SEM.  

 



 

Figure S18. Summary of current techniques on micro-nano plastics analysis 

a. Current techniques used in combination to characterize the nanoplastics in an ensembled way. 
Nanoplastics in the sample are usually first concentrated through filtration with a certain size threshold. 
Then the quantification is commonly done by measuring the dry mass of the recovered particles before 
divided into aliquots for different characterization. Chemical composition can be characterized by 
measuring the FTIR or Raman spectrum of the recovered particle retentates. Mass spectrometry is also 
commonly used to characterize the chemical composition of the recovered particles and quantification on 
different polymers can be also obtained with certain optimized methods. For particle morphological 
characterization, one aliquot is commonly taken for dynamic light scattering (DLS) measurement to map 
the size distribution of the particles with another aliquot used for particle imaging techniques to show the 
shape of some representative particles. b. Summary of particle imaging-based micro-nano plastic analytical 
techniques on sensitivity, specificity, and throughput for particle-based quantification. Techniques and 
representative references are listed here and in Table S4: Atomic force microscopy-based infrared 
spectroscopy (AFM-IR, ref [2]); Scanning transmission X-ray microscopy (STXM, ref [3,4]); Optical-
photothermal infrared microspectroscopy (O-PTIR, ref [5]); Correlative Raman Imaging and Scanning 
Electron Microscopy (RISE, ref [6]); Scanning electron microscopy (SEM, ref [7]); Transmission electron 
microscopy (TEM, ref [3]). 



 

Year Technique Detecting sizes 
Abundance 
(counts/L) 

Identification rate Reference 

2018 
micro-Raman 
spectroscopy 

 1 𝜇𝑚 ሺ2.6 െ 6.3ሻ ൈ 10ଷ Not disclosed 8 

2018 

Nile Red staining + 
Fourier-transform 
infrared 
microscopy (FTIR) 

 100 𝜇𝑚 0 െ 253 20% 

9 

Nile Red staining * 6.5 െ 100 𝜇𝑚 ሺ0 െ 10.3ሻ ൈ 10ଷ  Not apply 

2018 
micro-Raman 
spectroscopy 

 3 𝜇𝑚 14 െ 118 1% 10 

2019 

Scanning electron 
microscopy with 
energy dispersive 
X-Ray analysis 
(SEM-EDX)* 

1.28 െ 4.2 𝜇𝑚 ሺ3.2 െ 11ሻ ൈ 10  Not apply 11 

2021 FTIR  11 𝜇𝑚 75 െ 700 <1% 12 

2021 
Nile Red staining 
+FTIR 
+Raman 

 3 𝜇𝑚 52 െ 140 38% 13 

Table S4: Microplastics detection from bottled water in previous studies.  

Depending on the techniques employed in different research groups for microplastic analysis, the reported 
abundances of microplastics in bottled water vary in order of magnitude. As some of the techniques do not 
contain enough chemical specificity to distinguish between natural organic matter and plastic particles 
(labeled  * in the table above), they tend to report microplastics in orders of magnitude higher than the 
results from FTIR and micro-Raman. Limited by the resolution, FTIR analysis only includes microplastics 
that are relatively large in size (> 10 µm) with very low abundance (several hundred counts / L), which is 
consistent with our results on the large microplastics in Figure S17 c. Overall, our results match with the 
ones reported from micro-Raman analysis in roughly the same order of magnitude (Figure S17 b), 
considering particles of sizes around 1 µm are at the edge of the detection limit for micro-Raman (> 1 µm) 
and can be easily missed by conventional optical imaging. 

  



Supplementary Note 5: Nanoplastics exposure extrapolation 

The number of plastic particles in 1 L of bottled water was estimated from the average number of plastic 
particles observed in each FOV. The legitimacy of the estimation was based on the following assumptions, 
which we carefully validated with experiments using standard fluorescent beads.  

Assumption 1: Particles uniformly distributed on the membrane surface 
Volumetric fluorescence imaging of PS nanospheres indicates a planar particle distribution on the surface 
of the Anodisc filter membrane (Figure S19 a). The particles appear stochastically on the surface plane in 
a relatively uniform manner across the membrane, as indicated by the distribution of averaged fluorescence 
intensity of individual field of views on the membrane (Figure S19 b, c). 

Assumption 2: The actual spreading area of particles is consistent with the circular area of the inner 
circle of the filtration apparatus (a circular area with a diameter of 13 mm) 

The intensity profile of the fluorescence signal across the filter indicates that the circular area where 
particles concentrate has the diameter of 13 mm (Figure S19 d), which is the same diameter as the opening 
of the glass funnel in the filtration assembly.  

 

Figure S19. Particle distribution on the Anodisc filter with 0.2 µm pore size indicated by 
fluorescence PS nanosphere (500 nm).   

a. Volumetric fluorescence imaging of PS nanospheres on the membrane. b. Histogram plotting the 
averaged fluorescence intensity measured from individual field of views on the membrane. c. Particle 
distribution of fluorescent PS nanospheres across the entire filter. Scale bar, 3mm. d. The intensity profile 
of the fluorescence signal across the filter. The yellow dots indicate the fluorescence reading from 
individual pixels across the red dashed line in panel c. The red line indicate the smoothed profile across the 
membrane.   



Supplementary Note 6: Using Fluorescent PS beads as the internal standard for plastics 
quantification 

At the beginning of this work, we attempted to use the fluorescent PS beads as an internal standard for 
plastic quantification, but the approach was not selected due to discovered contamination issues. Here, we 
discuss the results and issues when using this internal standard and Milli-Q water, hoping to provide some 
insights and guidance for other researchers who might want to explore similar things.  

Methods 

Each bottle/flask of 500 mL water was added with 5 uL 10000x dilution 500 nm yellow-green PS beads 
(Invitrogen by Thermo Fisher Scientific, Lot# 2295026, ~ 2.9x105 particles added per sample). The water 
was fully mixed and filtrated through the Al2O3 membrane filters (Cytiva Whatman, Anodisc 25 mm, 0.2 
µm pore-size). After filtering two bottles/flasks, the filter was then embedded the same way in 1% Agarose 
gel in D2O for fluorescence and SRS imaging. Fluorescence imaging of the PS internal standard particles 
was enabled by two-photon fluorescence functionality under the same SRS microscope. The PS particles 
from bottled water can be distinguished from the PS particles introduced as internal standards through 
fluorescence imaging. Micro-nano plastics quantifications were extrapolated based on the relative numbers 
of target plastic particles detected versus the number of internal standard particles detected in the same 
FOV. For each brand of water, 3 duplicate samples were made (Brand B only 2 samples are imaged), and 
in each sample, 4 FOVs were sampled for imaging for micro-nano plastic analysis.  

Results and Discussion 

A. Adding fluorescent particles introduce contamination. 

Compared with the data without the addition of internal standard, the average number of particles detected 
per FOV (Figure S20 a, excluding particles as internal standard) was 2-3 times more than the number 
detected from samples of only bottled water (Figure 5A). With exactly the same filtration process and 
bottled water samples, we reasoned the extra particles come from internal standards added to the bottled 
water samples. The contamination was so overwhelming that the exposure of micro-nano plastics from 
bottled water is hard to be analyzed by comparing the blank samples of RO water from the Milli-Q system 
(CDUFBI001). Eventually, we discarded the idea of adding any internal standard to prevent introducing 
contamination and extrapolated the plastic particle exposure based on the area under the assumption 
described in Supplementary Note 5. This failed experiment also teach us a lesson on the very liability to 
introduce contamination upon adding any external reagents to the samples for nanoplastics analysis.  

B. RO water from the Milli-Q system is not a perfect blank for nanoplastics analysis.  

MilliQ water seems to have the same level of plastic contamination compared with bottled water measured 
(Figure S20 a). Particularly, there were actually more polyamide plastic particles detected from the Milli-
Q water than one of the brands of bottled water (Figure S20 d). Despite the contamination issue, the 
qualitative comparison gives a consistent result to the one without internal standard (Figure 5 B): Brand A 
is the brand with the most PA particles (Figure S20 d), Brand B is the brand with the most PVC particles 
(Figure S20 b), and Brand C is the brand with most PET particles (Figure S20 c) among the analysis 
comparing three different brands of bottled water. Therefore, we started to question whether Milli-Q water, 
the golden blank for microplastic analysis, is still the perfect blank when it comes to nanoplastic analysis. 
Plastics are major components in many parts of the entire water purification system. Especially, polyamides 
are the most common material used as the RO membranes widely adopted in water treatment. Since the 
system is not specially designed for nanoplastic analysis, our results suggest that it is very likely Milli-Q 



water contains nanoplastics and can no longer be used as the lab blank for nanoplastic studies. To make 
sure the blank samples taken as reference are with minimize contamination, we eventually used Anodisc 
Al2O3 membrane filters as the blank for bottled water analysis this time. We believe more efforts are needed 
to establish a contamination-free water sample in the future as a perfect blank sample for procedure control. 

C. Estimation from internal standards supported the legitimacy of direct particle extrapolation based 
on area.  

No PET particles were found in the Milli-Q water sample with the internal standard, making PET analysis 
in the bottled water possible with no concern about contamination from the internal standard, Milli-Q water, 
or airborne plastic particles. The estimated number of PET particles in 1 L bottled water was on the order 
of 104-105, which is consistent with the results estimated from extrapolation based on the area (Figure 5 C, 
D). Such consistency from another angle supported the legitimacy of direct particle extrapolation methods 
for micro-nano plastics quantification.  

 

Figure S20. Micro-nano plastics quantification from analysis using fluorescent PS beads as the 
internal standard. a. The average number of plastic particles detected in one field of view. Error bars, 
mean ± SEM. b. The number of PVC plastic particles estimated in 1 L of bottled water. Error bars, 
mean ± SEM. c. The number of PET plastic particles estimated in 1 L of bottled water. Error bars, 
mean ± SEM. d. The number of polyamide plastic particles estimated in 1 L of bottled water. Error bars, 
mean ± SEM. Statistically significant differences were determined using generalized linear mixed model 
analysis with Bonferroni correction. *p<0.05, **p<0.01, ***p<0.001. 
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