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Comprehensive simulation study shows that PICALO robustly identifies 

hidden eQTL contexts 

In order to evaluate the performance of PICALO we employed a simulation study. While simulating 

eQTL effects are straightforward and widely applied, simulating interaction effects is much more 

challenging. Where biologically reliable eQTL betas in an eQTL simulation can simply be drawn from 

a normal distribution, interaction betas cannot. In practice the betas in an interaction model are 

dependent on each other and sampling each from a normal distribution could result in simulated 

expression for which the interaction term explains more variance than the main genotype effect. To 

circumvent this, we used real interactions observed with real genotype, expression, and covariate 

data as a template for generating biologically reliable interaction models. For simulating 𝐾 hidden 

covariates, a template model for each ieQTL is constructed based on  

 

1 𝑀 =  1 + 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 +  𝑋 +  𝑋 ∗ 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝑛𝑜𝑖𝑠𝑒 

 

Where  

• 𝑀 is the interaction eQTL model matrix 

• 1⃑ : a vector of ones of size 𝑛 

• 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒: a vector of size 𝑛 containing the real genotype data for this eQTL 

• 𝑋: covariate matrix of size 𝑛 by 𝐾 where each covariate is normally distributed 

• 𝑋 ∗ 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒: interaction effect between each covariate in 𝑋 and the 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 

 

From this model we store the Minor Allele Frequency (MAF), beta’s (𝛽), standard deviations (𝜎) of all 

terms including the residuals. We then simulate a new genotype vector (𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒̂ ) with the 

observed MAF, and sample 𝐾 covariates where each entry is drawn from 𝑁(0, 1). Let 𝑚 denote the 



number of terms in the model and be equal to 3 + (2 ∗ 𝐾). The ieQTL model (𝑀) for the simulation 

is constructed as: 

 

2 𝑀 =  1 + 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒̂ + 𝑋𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 + 𝑋𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ∗ 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒̂ + 1 

 

The simulated expression is subsequently calculated by: 

 

3 𝐸 = (𝑅 ∗  𝜎 + 𝛽) ∗ 𝑀 

 

Where  

• 𝑅 is a random matrix of size 𝑛 by 𝑚, each entry is drawn from 𝑁(0, 1). 

• 𝜎 is the standard deviation vector of size 𝑚 from the template model. 

• 𝛽 is the beta vector of size 𝑚 from the template model. 

• 𝑀 is the simulated model matrix: 

 

The resulting expression matrix 𝐸 is summed per sample to create the simulated expression for gene 

𝑔. A visual representation of this method is shown in Additional file 1: Fig. S19 and S20.  



Computational efficiency of PICALO 

PICALO is implemented efficiently, using limited memory and computing power requirements. We 

note that the total computation time highly depends on the number of eQTLs, samples, PICs, 

starting positions, and minimum number of optimization rounds. We simulated three hidden 

contexts using our blood dataset consisting of 13,059 eQTLs and 2,932 samples. We ran PICALO 

using 2 cores and observed that PICALO required on average 8 EM iterations to convergence, taking 

±11 minutes per PIC. The maximum memory usage was on average 4.5Gb. The non-simulated results 

presented in this paper were generated enforcing a minimum of 50 optimization rounds which 

increased the computational burden considerably. Generating these results took 18 hours using 2 

CPU cores and 5.3GB of RAM for blood (36 min/PIC), and 9 hours using 2 CPU cores and 3.8GB of 

RAM for brain (26 min/PIC).  



 

PICs identified with PICALO are robust with respect to the starting 

position used for optimization 

Since EM algorithms can yield results that depend on the expectation, in this case the choice of the 

starting position, we evaluated if the PICs were dependent on the starting position used for 

optimization (by default the starting position with most significant ieQTLs). For each of the first five 

PICs in blood, we reperformed the analysis while using each of the first 25 expression PCs as the 

starting positions for optimization and compared the PICs (henceforth referred to as outcomes). For 

PIC1 we found that irrespective of the starting position, all 25 PICALO analyses resulted in near-

identical outcomes (average pair-wise Pearson r=0.9997; Additional file 1: Fig. S7A). We note that 

this was independent of the number of significant ieQTLs that was used to start the optimization 

(between 4 and 2,670, depending on the PC; Additional file 1: Fig. S7B). We then adjusted the 

expression data for PIC1 and its interaction effect with eQTLs and evaluated PIC2. Similarly, we 

observed a robust outcome of PICALO for 21 out of the 25 expression PCs used as starting position, 

with an average pair-wise Pearson r=0.9946. The remaining four PCs resulted in two distinct groups 

of PICALO outcomes: the first group (PC13 and PC20) had a Pearson r of 0.65 and <0.05 with the 

other outcomes, while the second group (PC14 and PC21) had a Pearson r of 0.44 and <0.01 with 

others. Each of these groups had a smaller number of significant ieQTLs than the original PIC2 

(number of ieQTLs; PIC2 equivalents: 1,053 ±27, first group: 209 ±10, second group: 22 ±8). This 

observation confirms that, like other EM methods, PICALO may not always return the global 

optimum but may instead converge to a local optimum. Like for PIC1, we found no relationship 

between the number of eQTLs interacting with the starting position and the resulting PIC (Additional 

file 1: Fig. S7B). Since this step yielded multiple solutions, we selected the PIC with the largest 

number of ieQTLs before optimization as PIC2, identical to a normal PICALO procedure. For the 

subsequent PICs we observed that an increasing number of uncorrelated PICALO outcomes were 

identified dependent on the initial guess that was used for optimization. Notably, we observed that 



the four local optimums identified in the PIC2 analyses are rediscovered as local optimums in PIC3, 

an example of which is shown in Additional file 1: Fig. S7C. In other words: the influence of the 

starting position on the resulting PIC increases as the local optimums in the data capture decreasing 

proportions of interaction variance. These observations suggest that PICs capture unique effects that 

can be robustly identified using PICALO, but that the order in which PICs are identified can be 

dependent on the starting position.  

  



Low ieQTL PICs are biologically relevant but should be interpreted with 

caution 

In this manuscript we restricted ourselves to PICs with at least 40 ieQTLs as our robustness analyses 

have indicated this to be the lower bound for replication. However, it can be that true eQTL context 

only affects a small set of genes, for example in a specific stimulation condition. Here we describe a 

few examples such PICs in blood and brain; yielding less than 40 ieQTL but having a notable 

biological signal. The annotation of these PICs should be interepreted with caution. 

 

In blood we observed two PICs with a small number of eQTLs that showed high specificity for specific 

cell types. The negatively correlating genes for PIC26 (6 ieQTLs) and PIC29 (11 ieQTLs) both showed 

strong enrichment for B-cells (ToppCell enrichment p-value <8.4×10-173 for PIC26 and p-value 

<6.2×10-147 for PIC29). Moreover, single-cell expression showed that these genes are specifically 

expressed in B-cells, further confirming that these PICs capture B-cell differences.  

 

In brain we also observed PICs that interact with only a limited set of eQTLs capturing less frequent 

cell types. For PIC13, interacting with 13 eQTLs, while we observed a low but significant correlation 

with predicted microglia proportion (Pearson r=0.08), we did observe a clear enrichment for 

microglia in the single-cell data, as well as an enrichment of microglial genes (ToppCell enrichment 

p-value <1.4×10-165). Finally, genes negatively correlating with PIC14, which interacts with 17 eQTLs, 

showed enrichment for endothelial cells in single-cell data as well as when using gene set 

enrichment (ToppCell enrichment p-value <1.2×10-51). However, similar as PIC13, only a weak 

correlation was observed between PIC14 and the predicted endothelial cell counts (Pearson r=-0.07).  
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