

Supplementary Materials

Improved mammalian family phylogeny using gap-rare multiple

sequence alignment: A timetree of extant placentals and marsupials

Gao-Ming Liu¹, Qi Pan^{1,2}, Juan Du^{1,2}, Ping-Fen Zhu¹, Wei-Qiang Liu^{1,2}, Zi-Hao Li^{1,2}, Ling Wang^{1,2}, Chun-Yan Hu^{1,2}, Yi-Chen Dai¹, Xiao-Xiao Zhang^{1,2}, Zhan Zhang^{1,2}, Yang Yu³, Meng Li¹, Peng-Cheng Wang^{1,4}, Xiao Wang¹, Ming Li¹, Xu-Ming Zhou^{1,*}

¹Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
²University of Chinese Academy of Sciences, Beijing 100049, China
³School of Life Sciences, University of Science and Technology of China, Hefei, Anhui
230026, China
⁴College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China

*Corresponding author, E-mail: zhouxuming@ioz.ac.cn

Supplementary Figure S1 RF distance and BS value under different percentages of missing data

Different line colors indicate different number of taxa and different shape indicates different alignment lengths.

Supplementary Figure S2 Posterior 95% HPD width plots against mean posterior divergence times for two datasets under AR and IR clocks

Fitted solid line with confidence interval (CI) (gray shadow) is the regression between posterior mean and 95% HPD width.

Supplementary Figure S3 Vital internode divergence time comparison between this and other studies

Supplementary Figure S4 Lineage-through-time (LTT) plot of mammalian and large group lineages Different colors indicate timetree of different mammalian lineages.

Supplementary Figure S5 Lineage-through-time (LTT) plots of placentals and marsupials

A: Mean and 95% CI of LTTs of placentals and marsupials. B: LTT plots for mammals, placentals, and marsupials with different sources.

Supplementary Figure S6 Branch-specific rate of mammalian lineages inferred from BAMMtools (left), RevBayes (middle), and RPANDA (rights) Diversification rate is represented by varying colors. Central left portion displays density of the diversification rate, while color gradient in the central and right portions indicates diversification rate from low to high..

Supplementary Figure S7 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from DNA alignments of Dataset A under an IR clock

Time (Ma)

Supplementary Figure S8 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from DNA alignments of Dataset A under an AR clock

Supplementary Figure S9 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from Dataset A protein sequences under an IR clock

Time (Ma)

Supplementary Figure S10 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from protein sequences of Dataset A under an AR clock

Supplementary Figure S11 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from DNA sequences of Dataset B under an IR clock

Supplementary Figure S12 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from DNA sequences of Dataset B under an AR clock

Supplementary Figure S13 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from protein sequences of Dataset B under an IR clock

Supplementary Figure S14 Prior (purple) and posterior (green) distribution of fossil calibration (dashed line) nodes from protein sequences of under an AR clock

Species_famalily	ADORA3	ADRB2	APP	ATP7A	BCHE
Ailurus fulgens_Ailuridae	+	+	+	+	+
Chrysochloridae_Chrysochloridae	+	+	+	+	+
Aplodontia rufa_Aplodontiidae	+	+	+	+	GCA_004027875.1
Arctocephalus forsteri_Otariidae	+	+	+	+	+
Bradypus tridactylus_Bradypodidae	+	+	+	+	+
Capromys pilorides_Capromyidae	+	+	GCA_004027915.1	+	+
Ceratotherium simum_Rhinocerotidae	+	+	+	+	+
Chinchilla lanigera_Chinchillidae	-	GCF_000276665.1	+	+	+
Chrysochloris asiatica_Chrysochloridae	+	+	+	+	+
Craseonycteris thonglongyai_Craseonycteridae	+	+	+	+	GCA_004027555.1
Cricetus cricetus_Cricetidae	+	+	+	+	GCF_000223135.1
Dasyprocta punctata_Dasyproctidae	+	+	+	+	+
Dasyuridae_Dasyuridae	+	+	+	+	+
Didelphidae_Didelphidae	+	+	+	+	+
Dinomys branickii_Dinomyidae	+	+	+	+	+
Dipodomys_Heteromyidae	+	+	+	+	GCF_000151885.1
Elephas maximus_Elephantidae	+	GCA_014332765.1	+	+	+
Emballonuridae_Emballonuridae	+	+	+	+	-
Eschrichtius robustus_Eschrichtiidae	+	+	GCA_002189225.1	+	+
Viverridae_Viverridae	+	GCA_004024585.1	+	+	+
Gliridae_Gliridae	+	+	+	+	+
Heterocephalus glaber_Bathyergidae	+	+	+	+	+
Jaculus jaculus_Dipodidae	+	+	+	GCA_000280705.1	+
Peramelidae_Peramelidae	GCA_904811065.1	+	+	+	GCA_904811065.1
Manis pentadactyla_Manidae	+	+	AY011374.1	+	+
Manis tricuspis_Manidae	+	+	+	+	+
Mustelidae_Mustelidae	+	+	+	+	+
Miniopterus_Vespertilionidae	+	+	+	+	GCF_001595765.1

Supplementary Table S1. Sequence origins and gap information of 162 mammalian lineages in dataset A.

Myocastor coypus_Myocastoridae	+	+	GCA_004027025.	1 +	+
Myotis lucifugus_Vespertilionidae	+	+	GCF_000147115.2	1 +	+
Myzopoda aurita_Myzopodidae	+	+	+	+	-
Nandinia binotata_Nandiniidae	+	-	+	+	+
Noctilio_Noctilionidae	+	+	+	+	GCA_004026585.1
Ochotona_Ochotonidae	+	+	+	+	+
Ctenomyidae_Ctenomyidae	+	GCA_004027165.1	+	+	+
Odobenus rosmarus_Odobenidae	+	GCF_000321225.1	+	+	GCF_000321225.1
Ornithorhynchus anatinus_Ornithorhynchidae	+	-	-	+	+
Nesomyidae_Nesomyidae	+	+	GCA_004027575.	1 +	-
Erinaceidae_Erinaceidae	+	+	+	+	GCF_000296755.1
Viverridae_Viverridae	+	+	+	+	+
Procyon lotor_Procyonidae	+	+	+	+	+
Rhinopoma hardwickii_Rhinopomatidae	+	+	+	+	-
Solenodon paradoxus_Solenodontidae	+	+	+	+	+
Sorex_Soricidae	+	+	+	+	+
Spalacidae_Spalacidae	+	+	GCF_000622305.2	1 +	GCF_000622305.1
Suricata suricatta_Herpestidae	+	+	+	+	+
Talpidae_Talpidae	+	+	+	+	+
Tapirus indicus_Tapiridae	+	+	+	+	+
Thryonomys swinderianus_Thryonomyidae	+	GCA_004025085.1	+	+	+
Sample gap information (continuous)			1		
Species_famalily	BDNF	BMI1	BRCA1	CNR1	CREM
Ailurus fulgens_Ailuridae	+	+	+	+	+
Chrysochloridae_Chrysochloridae	+	+	+	+	+
Aplodontia rufa_Aplodontiidae	+	GCA_004027875.2	1 +	+	+
Arctocephalus forsteri_Otariidae	+	+	+	+	+
Bradypus tridactylus_Bradypodidae	+	+	+	+	+
Capromys pilorides_Capromyidae	GCA_004027915.1	GCA_004027915.2	1 +	+	GCA_004027915.1
Ceratotherium simum_Rhinocerotidae	+	GCF_000283155.1	. +	+	+

Chinchilla lanigera_Chinchillidae	GCF_000276665.1	+	+	+	+
Chrysochloris asiatica_Chrysochloridae	+	+	+	+	GCF_000296735.1
Craseonycteris thonglongyai_Craseonycteridae	+	+	+	+	+
Cricetus cricetus_Cricetidae	+	+	+	+	+
Dasyprocta punctata_Dasyproctidae	GCA_004363535.1	+	+	+	+
Dasyuridae_Dasyuridae	+	+	+	+	+
Didelphidae_Didelphidae	+	+	+	+	+
Dinomys branickii_Dinomyidae	+	+	+	GCA_004027595.1	+
Dipodomys_Heteromyidae	+	+	+	+	+
Elephas maximus_Elephantidae	+	+	+	+	+
Emballonuridae_Emballonuridae	+	+	+	+	+
Eschrichtius robustus_Eschrichtiidae	+	+	+	+	+
Viverridae_Viverridae	+	+	+	+	+
Gliridae_Gliridae	+	GCA_004027185.1	+	GCA_004027185.1	-
Heterocephalus glaber_Bathyergidae	GCA_000247695.1	+	+	+	+
Jaculus jaculus_Dipodidae	GCA_000280705.1	GCA_000280705.1	+	+	+
Peramelidae_Peramelidae	+	+	+	+	+
Manis pentadactyla_Manidae	+	+	+	+	+
Manis tricuspis_Manidae	+	+	+	GCA_004765945.1	+
Mustelidae_Mustelidae	+	GCA_000215625.1	+	+	+
Miniopterus_Vespertilionidae	+	+	+	GCF_001595765.1	+
Myocastor coypus_Myocastoridae	+	+	+	+	+
Myotis lucifugus_Vespertilionidae	+	+	+	+	+
Myzopoda aurita_Myzopodidae	+	+	AY834649.1	-	+
Nandinia binotata_Nandiniidae	+	+	+	+	-
Noctilio_Noctilionidae	+	+	+	+	+
Ochotona_Ochotonidae	+	+	+	+	+
Ctenomyidae_Ctenomyidae	-	GCA_004027165.1	+	+	+
Odobenus rosmarus_Odobenidae	+	+	+	+	+
Ornithorhynchus anatinus_Ornithorhynchidae	+	GCA_004115215.4	-	+	GCA_004115215.4

Nesomyidae_Nesomyidae	+	+	+	+	+
Erinaceidae_Erinaceidae	+	+	+	+	+
Viverridae_Viverridae	+	GCA_004024585	5.1 +	+	+
Procyon lotor_Procyonidae	+	+	+	+	+
Rhinopoma hardwickii_Rhinopomatidae	+	+	+	+	+
Solenodon paradoxus_Solenodontidae	+	+	+	+	+
Sorex_Soricidae	+	+	+	+	+
Spalacidae_Spalacidae	+	+	+	+	+
Suricata suricatta_Herpestidae	+	GCA_006229205	5.1 +	+	+
Talpidae_Talpidae	+	+	+	+	+
Tapirus indicus_Tapiridae	+	+	+	+	+
Thryonomys swinderianus_Thryonomyidae	GCA_004025085	.1 +	+	+	-
Sample gap information (continuous)	·	·	·	· · ·	
Species_famalily	DMP1	EDG1	FBN1	GHR	PLCB4
Ailurus fulgens_Ailuridae	+	GCA_002007465.1	+	+	GCA_002007465.1
Chrysochloridae_Chrysochloridae	+	+	GCF_000296735.	1 +	+
Aplodontia rufa_Aplodontiidae	+	+	+	+	+
Arctocephalus forsteri_Otariidae	+	+	GU931076.1	+	+
Bradypus tridactylus_Bradypodidae	+	GCA_004027775.1	+	+	+
Capromys pilorides_Capromyidae	+	+	+	+	+
Ceratotherium simum_Rhinocerotidae	+	+	+	+	+
Chinchilla lanigera_Chinchillidae	+	GCF_000276665.1	+	+	+
Chrysochloris asiatica_Chrysochloridae	+	+	+	+	+
Craseonycteris thonglongyai_Craseonycteridae	GCA_004027555.1	+	+	+	+
Cricetus cricetus_Cricetidae	+	+	+	+	+
Dasyprocta punctata_Dasyproctidae	+	+	+	+	+
Dasyuridae_Dasyuridae	+	+	+	+	+
Didelphidae_Didelphidae	+	+	+	GCF_000002295.2	+
Dinomys branickii_Dinomyidae	+	GCA_004027595.1	+	+	+
Dipodomys_Heteromyidae	+	+	+	+	+

Elephas maximus_Elephantidae	+	+	+	+	+
Emballonuridae_Emballonuridae	+	AY834563.1	+	+	+
Eschrichtius robustus_Eschrichtiidae	+	+	+	+	+
Viverridae_Viverridae	+	+	GCA_004024585.1	+	+
Gliridae_Gliridae	+	+	+	+	+
Heterocephalus glaber_Bathyergidae	+	+	+	+	+
Jaculus jaculus_Dipodidae	+	GCA_000280705.1	+	+	+
Peramelidae_Peramelidae	+	+	+	+	+
Manis pentadactyla_Manidae	+	+	+	+	+
Manis tricuspis_Manidae	+	+	+	+	+
Mustelidae_Mustelidae	+	+	+	+	+
Miniopterus_Vespertilionidae	+	GCF_001595765.1	+	+	+
Myocastor coypus_Myocastoridae	+	+	+	+	+
Myotis lucifugus_Vespertilionidae	+	+	+	+	+
Myzopoda aurita_Myzopodidae	+	+	-	+	+
Nandinia binotata_Nandiniidae	+	-	GU931063.1	+	+
Noctilio_Noctilionidae	+	+	GCA_004026585.1	GCA_004026585.1	+
Ochotona_Ochotonidae	+	+	+	+	GCF_000292845.1
Ctenomyidae_Ctenomyidae	+	GCA_004027165.1	+	+	+
Odobenus rosmarus_Odobenidae	+	+	+	+	+
Ornithorhynchus anatinus_Ornithorhynchidae	+	+	GCA_004115215.4	+	-
Nesomyidae_Nesomyidae	+	+	+	+	+
Erinaceidae_Erinaceidae	+	+	GCF_000296755.1	+	+
Viverridae_Viverridae	+	+	+	+	+
Procyon lotor_Procyonidae	+	+	+	+	GCA_015708975.1
Rhinopoma hardwickii_Rhinopomatidae	+	AY834561.1	-	+	+
Solenodon paradoxus_Solenodontidae	+	+	GCA_004363575.1	+	+
Sorex_Soricidae	+	+	+	+	+
Spalacidae_Spalacidae	+	+	+	+	+
Suricata suricatta_Herpestidae	+	+	+	+	+

Talpidae_Talpidae	+	+		GCF_000	260355.1	+		+
Tapirus indicus_Tapiridae	+	+		+		+		+
Thryonomys swinderianus_Thryonomyidae	+	+		+		+		+
Sample gap information (continuous)	1					I		I
Species_famalily	PNOC		RAG2		TYR1		VW	/F
Ailurus fulgens_Ailuridae	+		+		GCA_002	2007465.1	+	
Chrysochloridae_Chrysochloridae	+		+		+		+	
Aplodontia rufa_Aplodontiidae	+		+		+		+	
Arctocephalus forsteri_Otariidae	+		+		+		+	
Bradypus tridactylus_Bradypodidae	+		+		-		+	
Capromys pilorides_Capromyidae	+		+		-		+	
Ceratotherium simum_Rhinocerotidae	+		+		+		+	
Chinchilla lanigera_Chinchillidae	-		GCF_00027666	65.1	GCF_000	276665.1	+	
Chrysochloris asiatica_Chrysochloridae	+		+		+		+	
Craseonycteris thonglongyai_Craseonycteridae	+		+		GCA_004	027555.1	+	
Cricetus cricetus_Cricetidae	GCF_000223135.1		+		+		+	
Dasyprocta punctata_Dasyproctidae	-		+		GCA_004	363535.1	+	
Dasyuridae_Dasyuridae	GCF_902635505.1		+		+		+	
Didelphidae_Didelphidae	+		+		+		+	
Dinomys branickii_Dinomyidae	+		+		+		+	
Dipodomys_Heteromyidae	+		+		+		+	
Elephas maximus_Elephantidae	GCA_014332765.1		+		+		+	
Emballonuridae_Emballonuridae	AY834587.1		+		+		+	
Eschrichtius robustus_Eschrichtiidae	+		+		+		+	
Viverridae_Viverridae	+		+		+		+	
Gliridae_Gliridae	-		+		+		+	
Heterocephalus glaber_Bathyergidae	+		+		+		+	
Jaculus jaculus_Dipodidae	+		GCA_0002807	05.1	+		+	
Peramelidae_Peramelidae	+		+		+		+	
Manis pentadactyla_Manidae	+		+		-		+	

Manis tricuspis_Manidae	+	GCA_004765945.1	+	+
Mustelidae_Mustelidae	GCA_000215625.1	+	+	+
Miniopterus_Vespertilionidae	GCF_001595765.1	+	+	+
Myocastor coypus_Myocastoridae	+	+	+	+
Myotis lucifugus_Vespertilionidae	+	+	+	+
Myzopoda aurita_Myzopodidae	+	+	-	-
Nandinia binotata_Nandiniidae	+	+	+	+
Noctilio_Noctilionidae	+	+	GCA_004026585.1	+
Ochotona_Ochotonidae	+	+	+	+
Ctenomyidae_Ctenomyidae	-	+	GCA_004027165.1	+
Odobenus rosmarus_Odobenidae	+	+	+	+
Ornithorhynchus anatinus_Ornithorhynchidae	-	+	+	+
Nesomyidae_Nesomyidae	+	GCA_004027575.1	+	+
Erinaceidae_Erinaceidae	-	+	+	+
Viverridae_Viverridae	+	+	+	+
Procyon lotor_Procyonidae	+	+	+	+
Rhinopoma hardwickii_Rhinopomatidae	+	+	+	+
Solenodon paradoxus_Solenodontidae	+	+	+	+
Sorex_Soricidae	GCF_000181275.1	+	+	GCF_000181275.1
Spalacidae_Spalacidae	+	+	+	+
Suricata suricatta_Herpestidae	+	+	+	+
Talpidae_Talpidae	-	+	+	+
Tapirus indicus_Tapiridae	+	+	GCA_004024905.1	+
Thryonomys swinderianus_Thryonomyidae	-	+	+	+

Note: #, the sample sequence has been used in Meredith et al. (6); -, the sample sequence is still gap.

Sample name	Tissue	Origin	Donate	Accession No.
	or blood		d or	
			collecte	
			d	
Nycticebus sp.	blood	Shijiazhuang ZOO,	donated	OR503106,OR503119,OR503153,OR503165,OR503182,OR503193,OR503203,OR503216,OR50322
		China		9,OR503240,OR503252,OR503265,OR503290,OR503297,OR503315,OR503330,OR503341,OR503
				421,OR503432,OR503444,OR503457,OR503466,OR503486,OR503499,OR503518,OR503530,OR5
				03548,OR503559,OR503569,OR503577,OR503587,OR503599,OR503611,OR503631,OR503639,O
				R503650,OR503660,OR503671,OR503680,OR503691,OR503703,OR503710,OR503720,OR503729,
				OR503739,OR503750,OR503757,OR503769,OR503779,OR503790,OR503800,OR503812,OR50382
				2,OR503830,OR503850,OR503859,OR503868,OR503880,OR503888,OR503898,OR503911,OR503
				920,OR503930,OR503940,OR503950,OR503961,OR503968,OR503978,OR503988,OR503998,OR5
				04009,OR504022,OR504032,OR504042,OR504053,OR504060
Paguma larvata	blood	Shijiazhuang ZOO,	donated	OR503110,OR503123,OR503132,OR503144,OR503155,OR503168,OR503186,OR503196,OR50320
		China		7,OR503220,OR503232,OR503244,OR503256,OR503269,OR503285,OR503300,OR503307,OR503
				322,OR503334,OR503344,OR503355,OR503372,OR503384,OR503391,OR503400,OR503407,OR5
				03424,OR503435,OR503447,OR503460,OR503468,OR503478,OR503489,OR503502
Ateles geoffroyi	muscle	Beijing ZOO, China	collecte	OR503107,OR503120,OR503129,OR503141,OR503154,OR503166,OR503173,OR503183,OR50319
			d	4,OR503204,OR503217,OR503241,OR503253,OR503266,OR503282,OR503291,OR503298,OR503
				316,OR503320,OR503331,OR503342,OR503352,OR503365,OR503381,OR503405,OR503414,OR5
				03422,OR503433,OR503445,OR503458,OR503467,OR503476,OR503487,OR503500,OR503511,O
				R503519,OR503531,OR503541,OR503549,OR503560,OR503570,OR503578,OR503588,OR503600,
				OR503612,OR503622,OR503632,OR503640,OR503651,OR503661,OR503672,OR503681,OR50369
				2,OR503704,OR503711,OR503721,OR503730,OR503740,OR503751,OR503758,OR503770,OR503
				780,OR503791,OR503801,OR503813,OR503831,OR503841,OR503851,OR503860,OR503869,OR5
				03881,OR503889,OR503899,OR503912,OR503921,OR503931,OR503941,OR503951,OR503962,O
				R503969,OR503979,OR503989,OR503999,OR504010,OR504023,OR504033,OR504043,OR504054,
				OR504061
Chiropotes israelita	muscle	Beijing ZOO, China	collecte	OR503108,OR503121,OR503130,OR503142,OR503167,OR503174,OR503184,OR503195,OR50320
			d	5,OR503218,OR503230,OR503242,OR503254,OR503267,OR503277,OR503283,OR503299,OR503

Supplementary Table S2. The species name, tissue and origin of sample.

				306,OR503317,OR503321,OR503332,OR503343,OR503353,OR503366,OR503382,OR503406,OR5
				03423,OR503434,OR503446,OR503459,OR503477,OR503488,OR503501,OR503512,OR503520,O
				R503532,OR503542,OR503550,OR503561,OR503571,OR503579,OR503589,OR503601,OR503613,
				OR503623,OR503633,OR503641,OR503652,OR503662,OR503673,OR503682,OR503693,OR50370
				5,OR503712,OR503722,OR503731,OR503741,OR503752,OR503759,OR503771,OR503781,OR503
				792,OR503802,OR503814,OR503823,OR503832,OR503842,OR503852,OR503861,OR503870,OR5
				03882,OR503890,OR503900,OR503906,OR503913,OR503922,OR503932,OR503942,OR503952,O
				R503963,OR503970,OR503980,OR503990,OR504000,OR504011,OR504018,OR504024,OR504034,
				OR504044,OR504055,OR504062
Suricata suricatta	muscle	Beijing ZOO, China	collecte	OR503117,OR503139,OR503151,OR503163,OR503191,OR503201,OR503214,OR503227,OR50323
			d	8,OR503250,OR503263,OR503275,OR503280,OR503304,OR503313,OR503328,OR503339,OR503
				350,OR503363,OR503379,OR503397,OR503412,OR503442,OR503455,OR503484,OR503497,OR5
				03509,OR503516,OR503528,OR503539,OR503557,OR503567,OR503585,OR503597,OR503609,O
				R503620,OR503630,OR503648,OR503658,OR503669,OR503678,OR503689,OR503701,OR503727,
				OR503737,OR503748,OR503767,OR503777,OR503788,OR503810,OR503821,OR503839,OR50385
				7,OR503866,OR503878,OR503918,OR503938,OR503948,OR503959,OR503966,OR503986,OR503
				996,OR504007,OR504041,OR504051
Herpestes sp.	muscle	Beijing ZOO, China	collecte	OR503118,OR503128,OR503140,OR503152,OR503164,OR503181,OR503192,OR503202,OR50321
			d	5,OR503228,OR503239,OR503251,OR503264,OR503276,OR503281,OR503296,OR503305,OR503
				314,OR503329,OR503340,OR503351,OR503364,OR503380,OR503389,OR503398,OR503404,OR5
				03413,OR503431,OR503443,OR503456,OR503475,OR503485,OR503498,OR503510,OR503517,O
				R503529,OR503540,OR503558,OR503568,OR503586,OR503598,OR503610,OR503621,OR503649,
				OR503659,OR503670,OR503679,OR503690,OR503702,OR503719,OR503728,OR503738,OR50374
				9,OR503768,OR503778,OR503789,OR503799,OR503811,OR503840,OR503858,OR503867,OR503
				879,OR503887,OR503897,OR503905,OR503919,OR503929,OR503939,OR503949,OR503960,OR5
				03967,OR503977,OR503987,OR503997,OR504008,OR504017,OR504031,OR504052,OR504059,O
				R504069
Typhlomys	muscle	Sichuan Academy	donated	OR503109,OR503122,OR503131,OR503143,OR503175,OR503185,OR503206,OR503219,OR50323
daloushanensis		of Forestry, China		1,OR503243,OR503255,OR503268,OR503284,OR503333,OR503354,OR503383,OR503390,OR503 399
Taphozous	muscle	Xishuangbanna	collecte	OR503111,OR503133,OR503145,OR503156,OR503176,OR503197,OR503208,OR503221,OR50323

melanopogon		National Nature	d	3,OR503257,OR503270,OR503286,OR503292,OR503301,OR503318,OR503323,OR503345,OR503
		Reserve, China		356,OR503367,OR503373,OR503385,OR503392,OR503401,OR503415,OR503448,OR503461,OR5
				03469,OR503479,OR503490,OR503503,OR503521,OR503533,OR503543,OR503551,OR503562,O
				R503572,OR503580,OR503590,OR503602,OR503614,OR503624,OR503634,OR503642,OR503653,
				OR503663,OR503674,OR503683,OR503694,OR503706,OR503723,OR503732,OR503742,OR50375
				3,OR503760,OR503772,OR503782,OR503803,OR503815,OR503833,OR503843,OR503862,OR503
				871,OR503923,OR503933,OR503943,OR503953,OR503971,OR503981,OR503991,OR504001,OR5
				04012,OR504025,OR504035,OR504045,OR504063
Aselliscus stoliczkanus	muscle	Xishuangbanna	collecte	OR503112,OR503124,OR503134,OR503146,OR503157,OR503169,OR503177,OR503187,OR50320
		National Nature	d	9,OR503222,OR503234,OR503245,OR503258,OR503271,OR503278,OR503293,OR503302,OR503
		Reserve, China		308,OR503324,OR503346,OR503357,OR503368,OR503374,OR503386,OR503393,OR503402,OR5
				03416,OR503425,OR503436,OR503449,OR503470,OR503480,OR503491,OR503504,OR503522,O
				R503534,OR503552,OR503563,OR503573,OR503591,OR503603,OR503615,OR503625,OR503635,
				OR503643,OR503654,OR503664,OR503675,OR503684,OR503695,OR503713,OR503733,OR50374
				3,OR503754,OR503761,OR503783,OR503793,OR503804,OR503816,OR503824,OR503834,OR503
				844,OR503872,OR503891,OR503901,OR503907,OR503914,OR503924,OR503934,OR503944,OR5
				03954,OR503972,OR503982,OR504002,OR504013,OR504026,OR504036,OR504046,OR504064
Chaerephon plicatus	muscle	Xishuangbanna	collecte	OR503113,OR503135,OR503147,OR503158,OR503170,OR503178,OR503188,OR503198,OR50321
		National Nature	d	0,OR503223,OR503235,OR503246,OR503259,OR503272,OR503287,OR503294,OR503303,OR503
		Reserve, China		309,OR503319,OR503325,OR503335,OR503347,OR503358,OR503369,OR503375,OR503387,OR5
				03394,OR503403,OR503408,OR503417,OR503426,OR503437,OR503450,OR503462,OR503471,O
				R503481,OR503492,OR503505,OR503513,OR503523,OR503535,OR503544,OR503553,OR503564,
				OR503574,OR503581,OR503592,OR503604,OR503616,OR503626,OR503636,OR503644,OR50365
				5,OR503665,OR503676,OR503685,OR503696,OR503707,OR503714,OR503734,OR503744,OR503
				755,OR503762,OR503773,OR503784,OR503794,OR503805,OR503817,OR503825,OR503835,OR5
				03845,OR503853,OR503863,OR503873,OR503883,OR503892,OR503902,OR503908,OR503915,O
				R503925,OR503935,OR503945,OR503955,OR503964,OR503973,OR503983,OR503992,OR504003,
				OR504014,OR504019,OR504027,OR504037,OR504047,OR504056,OR504065
Hipposideros larvatus	muscle	Xishuangbanna	collecte	OR503114,OR503125,OR503136,OR503148,OR503159,OR503171,OR503179,OR503199,OR50321
		National Nature	d	1,OR503224,OR503247,OR503260,OR503288,OR503310,OR503326,OR503359,OR503370,OR503

				03482,OR503493,OR503506,OR503524,OR503536,OR503545,OR503554,OR503565,OR503575,C
				R503582,OR503593,OR503605,OR503617,OR503627,OR503637,OR503645,OR503656,OR503666
				OR503677,OR503686,OR503697,OR503708,OR503715,OR503724,OR503735,OR503745,OR5037
				6,OR503763,OR503774,OR503785,OR503795,OR503806,OR503818,OR503826,OR503836,OR503
				846,OR503854,OR503864,OR503874,OR503884,OR503893,OR503903,OR503909,OR503916,OR5
				03926,OR503936,OR503946,OR503956,OR503974,OR503984,OR503993,OR504004,OR504015,C
				R504020,OR504028,OR504038,OR504048,OR504057,OR504066
Myocastor coypus	muscle	Pet market, China	collecte	OR503115,OR503126,OR503137,OR503149,OR503160,OR503189,OR503212,OR503225,OR5032
			d	6,OR503248,OR503261,OR503273,OR503279,OR503289,OR503311,OR503327,OR503336,OR503
				348,OR503360,OR503377,OR503388,OR503396,OR503410,OR503419,OR503428,OR503439,OR5
				03452,OR503464,OR503473,OR503494,OR503514,OR503525,OR503537,OR503546,OR503555,O
				R503566,OR503576,OR503583,OR503594,OR503606,OR503618,OR503628,OR503646,OR50365
				OR503667,OR503687,OR503698,OR503709,OR503716,OR503725,OR503746,OR503764,OR5037
				5,OR503786,OR503796,OR503807,OR503819,OR503827,OR503837,OR503847,OR503855,OR50
				865,OR503875,OR503885,OR503894,OR503910,OR503917,OR503927,OR503937,OR503947,OR
				03957,OR503975,OR503985,OR503994,OR504005,OR504016,OR504021,OR504029,OR504039,O
				R504049,OR504058,OR504067
Petaurus breviceps	muscle	Pet market, China	collecte	OR503116,OR503127,OR503138,OR503150,OR503161,OR503172,OR503180,OR503190,OR5032
			d	0,OR503213,OR503226,OR503237,OR503249,OR503262,OR503274,OR503295,OR503312,OR50
				337,OR503349,OR503361,OR503371,OR503378,OR503411,OR503420,OR503429,OR503440,OR5
				03453,OR503495,OR503507,OR503526,OR503556,OR503584,OR503595,OR503607,OR503699,O
				R503717,OR503747,OR503765,OR503797,OR503808,OR503828,OR503848,OR503876,OR50388
				OR503895,OR503904,OR503928,OR503958,OR503965,OR503976,OR503995,OR504006,OR5040
				0,OR504040,OR504050,OR504068
Graphiurus kelleni	muscle	Pet market, China	collecte	OR503162,OR503338,OR503362,OR503430,OR503441,OR503454,OR503465,OR503474,OR5034
			d	3,OR503496,OR503508,OR503515,OR503527,OR503538,OR503547,OR503596,OR503608,OR503
				619,OR503629,OR503638,OR503647,OR503668,OR503688,OR503700,OR503718,OR503726,OR
				03736,OR503766,OR503776,OR503787,OR503798,OR503809,OR503820,OR503829,OR503838,O
				R503849,OR503856,OR503877,OR503896

No.	Marker	Forward Primer $(5 \rightarrow 3)$	Reverse Primer (5`→3`)	PL	AT
				(bp)	(°C)
1*	ANKHD1	AACAGATYCGGCATCCTC	GGTGGYAAAGAYTTATTTGCTGG	1011	61
2*	ZNF281	CTAGTGCRGAACCTGGGTC	TGGCAACACTGAGGTAACAG	1063	59
3*	KLHL25	ATGTGYGACAAGATYTACCAGG	GTGGGGATGAGBGARTARGG	817	61
4*	TAB2	CATCTTTGCACATACATGGTGTACC	CAGGKGGYTTATTDGGAGAAAC	848	59
5*	ADNP	GCACCTTACATAGCAAAGGC	GATGTGCAAGTGCATCAGA	1359	59
6*	ARHGAP35	GAGCGGTACATTMGAGAT	TGACATTSCCYTCTATTGG	1314	55
7*	LRRC8A	TGGARCACTTTGTBTCTATCC	TGCTGGAARCTGATGATCTC	1452	59
8*	PROX1	CGAAAAGAACAGAAGCGAGAGGAG	TGRGATGACATCTTGGTCCTCAGACT	910	59
9*	RBBP6	GTTCCAAACGDAGAGATGAAAGG	TGTTTTTGGCTYTTTTCCAATTCT	849	61
10*	FZD4	ATGTGCCAATGTGCACRGAGAAGATCAAC	GCMGACCARATCCACATGCC	910	59
11*	ZBTB6	CTGCTTGYTCHACTTTCATGAGAG	TGYTTYTTGAGRGCAGATTTGTG	1044	61
12*	SP3	CAAGTCCAGGTTCAGGGAGTTRCAATTGGTGG	TGTAGATTTGGCAACTGACCAGTGCTTAGAC	877	55
13*	TRIM13	AACAARATCAARRTCTCTCCCAAAATGCC	TCCCAYTGACTRGTATCAAARTTYTT	613	61
14*	TTC30B	GTSACCYTGCACAACCAGGC	GAARCATCTTTTGGCRTARTACCAGG	908	61
15*	NR3C1	ATTYCCWCARCAGGGCCAAA	TCATCKCCAGATCCYTGGCA	827	57
16*	GJC1	GGYTATGCCATYCAYAAGATTGCC	GAYTTGCTRCTRGCACTGCT	886	61
17*	MARCH7	CARGGAGCRAGACCAAAAGA	AGAAATCKAAATCCYTGAG	514	53
18*	NFE2L2	GCTTCAGYGATTCTGARATGGAAG	AGCATGCTGAASACYTCDAGAT	594	61
19*	GJA1	CAGTGGTACATCTAYGGMTTCAGC	GCTGGCTCTRCTKGAAGG	589	61
20*	CEBPZ	ACARARCHTTGGCTCAGAA	AGKGCACTDAGCATTTTWGA	846	57
21*	DET1	TACCAGGGCTGCCARGCA	AGSAGGTCATCCTCATAGC	538	59
22*	PLXNB2	CAGCCTCTTCAAGGGCATCTG	TGGCACTSCAGGTCCAYCTC	479	61
23*	HIPK2	CCTTCAATCAAGTGCCTTCTGTAGTGTGAAG	CCTTCAATCAAGTGCCTTCTGTAGTGTGAAG	475	61
24*	НІРКЗ	ATGTTGCARACMAACATGGGAAATCCAGTGAC	TTCTCTGGTTTRAGGTCAGCATGAATTAAACCAAG	523	61
25*	TMEM168	GGATTTGCYATTGCYAGYAC	CGCATYCCTTTRGATGCCAT	559	61
26*	WDR89	ATTTGTGCTGGYACWGAAAAAKTTG	TGTGCATCYTCTCCWCCAG	643	59
27*	ACKR4	TCTGGRATGCAGTTTCTGGC	TGKATGGCVACATCYATGCG	484	57
28*	Fbxo42	GATYTGAATTGGGAYCTRAA	GGATAGTACTTCACATTCTGYTTCTTGTCCATGAG	613	57

Supplementary Table S3. The designed PCR primers information in this study.

29*	1 EDG1	CGCTAYATCACSATGCTSAAGATG	GTGTARATGATGGGGTTGG	511	61
30*	MAPK6	CAAAGCAAAGAAAARTCTGATAAGARAGGCAAGTC	GGGAYGCCTATRGAYTCAAGCTGC	598	61
31*	RNF146	AAAGGTAAAAAGARCACTGAAATGTTAATTGCYGG	ATCCTCACTATCACTACTVGCRTCTG	554	61
32*	ZNF768	GGYATCTGYGGRAAGAGCTT	GGRCACTTRAAGGGCTTYTC	505	61
33#	CASR	TCCGYTGGAACTGGGTGGGCACMATTGCAGC	CTGCCAVGCCTCAACYTTCTTGATGTCTGCACAGG	770	63/55
34#	KERA	GAGCTAGAGGAGGTACCTTCTCCATTGCCAAGAAG	AAGGTGCTGCAGRTKAGCAYTGATT	468	63/55
35#	KLHL28	CCCCGACCTACATGCTTGCTAACTTAACCCACT	GGAGCACAGCGAGGTCGTGTCATCAAGACTGTCTG	832	63/55
36#	BCHE2	TGGAATGCCACAAAATATGCAAATTC	TCATARCCATGCATCACTCCCATCCAT	1175	63/55
37#	BTBD3	ATCTATTGTGATGAAATTGAYTTGGCTGCYGACAC	GAGAAGTACTTGCTBARGTTCTGCCC	794	63/55
38#	MYPN	AGTCGAGCDGARCCYTCCTCCAACCCT	GGTGGAATTCCTACCACTATRCAATCCAACTG	824	63/55
39#	STON2	ACATCATGTCCTCYAGGCACTGGGGACC	CCAAAACTYGCCCCCGGTTCACTTTGGCTTTC	976	63/55
40#	ZNF318	GAGAGAGCTAGCCAGGAYGGCAGTGG	GCTGCATATGCCATGTARTGCCTATAKGCATCA	938	63/55
41#	MED13L	CCAAGAACTCCCAGAGGWGGGGGGCACTGCYAGTGG	TGRTTCTGVARGAGGAGGAGRAGGCT	539	63/55
42#	KCNJ2	CGCTGGMGGTGGATGCTGGTYATCTTCTG	CTGGGCTCTAGAGGYACRCTKGCCTGGTTGTG	1022	63/55
43#	ZNFX1	TGAGRGCCTCTGGKGTTRACATARAAG	AGGCTTCCATYTGRGAGTCATCCAGC	987	63/55
44#	BMP2	CACCGAATTAATATTTATGAAATYATAAARCCTGC	CCCTCSACRACCATGTCCTGAT	671	63/55
45#	PLAGL2	TGGCCACCCACTCAGCCCAGAAACCCCACCAGTG	GGCCGCAGCTGCYGCCGGCTGAGGTGAG	905	63/55
46#	CHRNA6	GACAAAGCTGAAATTGAYCTTCTMATCATTGG	TCTTCATGTTTTCYGCTATGA	802	63/55
47#	ZC3H12C	GGCCTTCCATCTGGAGTTCAYTTCCCASCTCAGG	TGGCKGCRGCSAGCTGCTGGGCRTC	1018	63/55
48#	KCNJ1	GGAAGGTGYAACATHGARTTTGGCA	TGGGARCAAAVCGGTARCCCCARAGCAC	844	63/55
49#	SETBP1	CTCCAGCCCATCAGTGCTCTTCCAACCAAAACCC	TGGCTGGAGAAGCCWGTGGCTTTGCCTGC	1130	63/55
50#	KCNJ6	GTGGCCATYCACCAGCCWAAGTTGCCTAAGC	TTGGAGATCTCCCAGAARGGACTCTG	809	63/55
51#	BMP10	GGAACCAACAGTGAGTGGGAGAC	AGGTGACGACRCCYTTRTCTAAATAGAGGATGGAG	652	63/55
52#	ZNF691	CCYTGGAGAGTGGATGRCTCHRAGG	AGCTGGARCTGTTGCTRAAGCTCT	574	63/55
53#	FRMD7	TGTGAATGGAGTGCACGC	AGGTCAGCTTTACGACTSAGAGYAGGRCAAGGCCC	792	63/55
54#	KIAA0355	AARCTGACMTCCCGSTTCACMAAGAA	AGCTGCTCACYAGACCCAAGCTGTAYAAGTCAG	793	63/55
55#	CDKN2AIP	TGTTGAAAKCMAGTRTGAATAGTCA	TTGCTTTTTCCACAGCCRGTGCCCAAAT	832	63/55
56#	NP_689653.3	GGAGGRCAGTCTCAGAAGGCYGTKCAGCC	AGGAARGAAATAAARTGGGAGTCTCT	545	63/55
57#	DMRTA1	TGGAATCAGGAAATGAAAGTGAGTGG	CCYGAAAAGGCATAATCCARAGCWGG	532	63/55
58#	C3orf59	TGCGCCACTCAGCCTTRTGYCACTCTTGGC	GCTCCAGCGTCAGCCKGTTGGCYGCCTTGACGTGC	870	63/55
59#	GRIN2A	CCAAAGSGAGCTCSCCCAGGGACAAGATCTACACC	AGGCATTTTCTTGTACACRCGTCTAYTGCTGCAGG	1073	63/55

60#	COG8	GCATTGTGAAYGAAGTGCGCCARTCCATGCAGCTG	GGGCAGCARAGRCGCAGATCA	778	63/55
61#	ENPP4	TCCTTYGAYGGYTTCAGAGCTGACT	GARCACTGGGTCATCCCRTGRTCRCT	620	63/55
62#	FAM135A	GCCTAAATCTYTGTGCAAATTTGTCCATTTCAGG	GTCCAAGTTAGGTTTGGAG	1052	63/55
63#	FBX040	CATGTCCCGCCACAAGCTGGCCAAGC	CGAGCCCGCTTYCCACAGTAGCTCAC	867	63/55
64#	FZD6	TGGTGTCCMAGGCATCTYAAGACTTCTGG	AGGCCACTRAAGACTCCWATKCGAATCAT	791	63/55
65#	MET	CTGTGCTTRCACCTGGCRTYCTTGTGCTTCTG	GCMCCAGGCTTACTGACATABGCAGCTTG	970	63/55
66#	KIAA010	TGGAGCCCMCCAGATCACATG	GCCCGGCGCATRGGYGTGTTGCCATAGAGACGACG	878	63/55
67#	CASR2	AGTGCCCHGATGACTTCTGGTCCAATGARAACCAC	CTGCAGCGCACCTCCTCGATGGTG	874	63/55
68#	GPRC5C	CTGCTGGGGACCCTGGGCCTCTTCTGCCTCG	GAGGCTGGCTCRTCCATGGAAAABGCCTTG	788	63/55
69#	NPAS4	GAGGCTGTGCYTTCCTCTTYAGCCTCCAYGAGCCC	AGGGGAATGCTGAGACACCTGTCTCAAAGGCGG	1023	63/55
70#	PAPPA	CGTGACCGAGGATGGGTYGTGGGMATTCACACC	GCCAGCTGCYGGTGCTGGAAGTCRATCTGCTG	713	63/55
71#	POLR1B	CTCTGCCAYGATGCBACMCCCTTCA	TGTTCATAGCTGCCAGYTCRGCTACAAAATACCG	556	63/55
72#	SCN8A	TGGCCCGTATTGGGCGCATCYTGCGTCTGATC	GCCACGAACCKCTCCTCCATCTG	763	63/55
73#	STOX2	CGCCSTCTGCCTCAGGCTGCRTCAGGGAAAG	CGGTCCTGGGTATGGCTGTGGCTTCGGTG	898	63/55
74#	SYT11	GTRCTGGTGGTGTGYGTSTCRGTGAC	TGCAGSACCAGGTCYTGSAGCTGGCTG	656	63/55
75#	C60RF60	TGATGAGCAYGAATCTGCAATTCAAGCCCTCA	CCTATGGTTTTTCGYAAAATTGCTTCTTG	723	63/55
76#	NEDD9	AAGCCYGTGGAGAAYGACATCTC	TCTTGAGCTGYTCGCABAGCTGGTTGCTGGAG	334	63/55
77#	KL	GCTCAYGCCAAAATCTGGCATCTCTAC	TCTTGGTGGTCCCKGARACRAACCAGC	454	63/55
78#	GGPS1	ATTGAAGTGACDGARATGTTRCATA	CTTTTGTTTTCRCTRTATTCTTTGGAGTG	461	63/55
79#	MRPL16	TGAAATGATGCGCCTGACRATCAACCGCT	AGCATGTTGGCRGTGRCKATGCGCTC	366	63/55
80#	SIPA1L1-exon8	GTGGCYGTSACCAGGTCCAGAG	GTCCACCCKATCACRTCTCTGCAGG	467	63/55
81#	GPR987-intro6	ATTCAACTGAAAAGTGTRGAAGGAGGAGCTG	GCCAACATCTGCCCTTGTGCAAAATGSAGAACTCC	966	63/55
82#	HAS3	AGCGGGCYTGCCAGTCCTACTTTGGCTGYGTGCAG	AAGCTATACTGYTCTGGCTTCTTCCC	835	63/55
83#	MED13	GATCAAGAATATGGYCCTGCTTAYACACCTCA	TGACGYCCATGTTCTAATGCAAGGTAGCA	818	63/55
84#	PPARGC1A	TCCACCCACAACTCCTCCTCAYAAAGCCAACCAAG	GATCTACTGCCTGGGGACCKWGATCTTGACCTGG	912	63/55
85#	EHBP1	TCTCTATCAAATMAGRGCACATTTCAGYGGCCAAG	TCTGRATCAGAYTCTGTYTGCCTCAGGG	765	63/55
86#	NR4A2	AGGCGCAGTATGGGTCCTCGCCTCAAGGAGCCAGC	AGCAGCTGCGACGCGTGGCCGATCTGCAG	718	63/55
87#	TRIP12	CCACARCCASAGGAYCCAGACAGAGCC	GATGTYTCTGACTTAGAAGACCCTGGAAGAGACAG	743	63/55
88#	C17orf71	TGAACCAAGTACTCCAGATCCTGCWCCTGC	AAAGGAGCATCRGGAACYACAACAAAMAGCCTCAT	798	63/55
89#	GRM5	GAGCCCATTGCWGCWGTGGTGTTTGCCTGCCT	GTGGTGAAGGCGCTGCGYAC	782	63/55
90#	HAS2	CCTGGATCTCYTTCCTCAGCAGTGTGAGATACTGG	ATGGTTTTCCTTCCAGATGTGCCCCACCCAGC	664	63/55

91#	VCPIP1	TCTGCCTGGCAAAACMTTTGTCTATAATGCTTCTG	CAGCATCTTGRCTATCCATCTCTTCRGGCTCCTCC	803	63/55
92#	ZNF192	AGGCAGCGRGGRAATCCCACCCARGAGAGACG	AGGCCAGTGTTCCCATTGAARGCTTTCCCACATTC	668	63/55
93#	ZNF652	AGCAGGRATGGCACAAGA	CTTCTCCTTYTTCTTCTGCCT	499	63/55
94#	TRPS1	AGCCATTCTGCTCAGCAGCCRGTCCTGGTCAGCC	TGTCCGTGCAAAGATGCTGGCATATGCTGCACTG	727	63/55
95#	PCDH9	TCTGAGAATCTGCCAAAGTATAGTACTGTGGGGG	AGCCTCCTTGGGAACTGCACTCTGAGGCACTGAAG	1261	63/55
96#	KLHL15	TCAAGCCGCATCCGYTCTGCCAAACC	GAATCGCTGTAATGACCRTTGTAGCAAAGGCCTCC	863	63/55
97#	KLHL23	TTTCTGGATGCATTCAGAACATTTTACTTGGATGG	TGGGKCCCAAACAYGTAACRCCATAGCTCTCCC	898	63/55
98#	HDX	ACGTGGGTYGGCAATAARAGAAGAAAAATGAG	TCATCARCATCTCCAGTCTCCATTGCA	788	63/55

Note: *, newly designed primers in this study. #, the primers from the Zhou et al. (Zhou et al., 2011).

Tree topology	In L	$\Delta \ln L$	SH	AU
			probability	probability
Laurastheria				
(Chroptera, (Artiodactyla, (Perissodactyle, Ferae)))	-1243820.9	Best	0.894	0.763
(Ferae, (Chiroptera, (Perissodactyle, Artiodactyla)))	-1243828.1	7.2	0.506	0.433
(Chiroptera, ((Perissodactyle, Artiodactyla), Ferae))	-1243830.0	9.1	0.480	0.240
(Chroptera, (Perissodactyle, (Artiodactyla, Ferae)))	-1243834.6	13.7	0.279	0.102
((Chiroptera, Perissodactyle), (Artiodactyla, Ferae))	-1243835.0	14.1	0.294	0.189
Paenungulata				
(Sirenia, (Proboscidea, Hyracoidea))	-1243819.9	Best	0.783	0.703
(Proboscidea, (Sirenia, Hyracoidea))	-1243823.7	3.7	0.499	0.421
(Hyracoidea, (Proboscidea, Sirenia))	-1243830.0	10.0	0.238	0.130
Placentia root				
Afrotheria	-1243828.5	Best	0.722	0.618
Atlantogenata	-1243830.0	1.5	0.571	0.510
Xenartheria	-1243835.2	6.7	0.291	0.150
Rodentia				
(Sciuromorpha, (Mouse-related clade,	-1243817.5	Best	0.806	0.810
Hystricomorpha))				
(Mouse-related clade, (Sciuromorpha,	-1243830.0	12.5	0.194	0.190
Hystricomorpha))				
Scandentia				
Sister to Glires	-1243830.0	Best	0.791	0.788
Sister to Primatomorpha	-1243838.2	8.2	0.209	0.212

Supplementary Table S4. Likelihood ratio test of alternative topologies for dataset A DNA alignments as implemented in CONSENL package.

Tree topology			In L	$\Delta \ln L$	SH	AU
					probability	probability
Laurastheria						
(Ferae, (Chiroptera, (Pe	erissodactyle, /	Artiodactyla)))	-	Best	0.951	0.858
			660387.6			
(Chiroptera, ((Perissod	actyle, Artioda	ictyla), Ferae))	-	12.4	0.354	0.134
			660400.0			
(Chroptera, (Artiodacty	yla, (Perissoda	ctyle, Ferae)))	-	14.4	0.299	0.244
			660401.7			
(Chroptera, (Perissoda	ctyle, (Artioda	ctyla, Ferae)))	-	25.7	0.052	0.041
			660413.3			
((Chiroptera, Perissoda	actyle), (Artiod	actyla, Ferae))	-	28.5	0.047	0.022
			660416.1			
Paenungulata						
(Sirenia, (Proboscidea,	Hyracoidea))		-	Best	0.787	0.683
			660393.7			
(Hyracoidea, (Probosc	idea, Sirenia))		-	6.3	0.505	0.434
			660400.0			
(Proboscidea, (Sirenia,	Hyracoidea))		-	11.8	0.364	0.242
			660405.5			
Placentia root						
Atlantogenata			-	Best	0.931	0.883
			660400.0			
Afrotheria			-	14.0	0.186	0.165
			660414.0		0.474	0.454
Xenartheria			-	14.6	0.171	0.154
			660414.6			
Rodentia				Dest	0 700	0.001
(Sciuromorpha,	(IVIOUSe-relat	ed clade,		Best	0.783	0.801
Hystricomorpha))			000385.0	111	0.017	0 1 0 0
(Mouse-related	clade,	(Sciuromorpha,	-	14.4	0.217	0.199
Hystricomorpha))			660400.0			
Sister to Clires				Post	0 600	0.600
			-	DESL	0.099	0.033
Sister to Primatomorp	ha		-	57	0 301	0 301
	na		-	J.1	0.001	0.301
			000403.7			

Supplementary Table S5. Likelihood ratio test of alternative topologies for dataset A protein sequences as implemented in CONSENL package.

Tree topology	ln L	$\Delta \ln L$	SH	AU
			probability	probability
Laurastheria				
(Chroptera, (Perissodactyle, (Artiodactyla, Ferae)))	-	Best	0.965	0.895
	1120805.2			
(Chroptera, (Artiodactyla, (Perissodactyle, Ferae)))	-	18.7	0.323	0.191
	1120823.9			
(Chiroptera, ((Perissodactyle, Artiodactyla), Ferae))	-	20.2	0.275	0.144
	1120825.4			
((Chiroptera, Perissodactyle), (Artiodactyla, Ferae))	-	24.6	0.218	0.211
	1120829.8			
(Ferae, (Chiroptera, (Perissodactyle, Artiodactyla)))	-	27.0	0.168	0.192
	1120832.2			
Paenungulata				
(Sirenia, (Proboscidea, Hyracoidea))	-	Best	0.844	0.774
	1120813.3			
(Proboscidea, (Sirenia, Hyracoidea))	-	7.4	0.419	0.348
	1120820.7			
(Hyracoidea, (Proboscidea, Sirenia))	-	12.1	0.272	0.166
	1120825.4			
Placentia root				
Xenartheria	-	Best	0.734	0.632
	1120820.6			
Atlantogenata	-	1.9	0.579	0.475
	1120822.5			
Afrotheria	-	4.8	0.453	0.298
	1120825.4			
Rodentia				
Sciuromorpha, (Mouse-related clade,	-	Best	0.580	0.602
Hystricomorpha)	1120825.4			
Mouse-related clade, (Sciuromorpha,	-	2.7	0.420	0.398
Hystricomorpha)	1120828.1			
Scandentia				
Sister to Glires	-	Best	0.680	0.681
	1120825.3			
Sister to Primatomorpha	-	3.9	0.320	0.319
	1120829.2			

Supplementary Table S6. Likelihood ratio test of alternative topologies for dataset B DNA sequences as implemented in CONSENL package.

L probability probability Laurastheria - Best 0.974 0.948 (Ferae, (Chiroptera, (Perissodactyle, Artiodactyla)) - Best 0.974 0.948 (Chiroptera, ((Perissodactyle, Artiodactyla), Ferae)) - 9.5 0.522 0.106 (Chiroptera, Perissodactyle), (Artiodactyla, Ferae)) - 21.6 0.230 0.113 (Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 21.6 0.162 0.103 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 24.3 0.006 <0.001 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 8est 0.835 0.753 Paenungulata - 10.7 0.393 0.287 (Proboscidea, (Sirenia, Hyracoidea)) - 10.7 0.393 0.281 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 (Hyracoidea, (Proboscidea, Sirenia)) - 8est 0.690 0.565 Atia320.5 - - 10.7 0.603 0.477
Laurastheria - Best 0.974 0.948 (Ferae, (Chiroptera, (Perissodactyle, Artiodactyla))) - Best 0.974 0.948 (Chiroptera, ((Perissodactyle, Artiodactyla), Ferae)) - 9.5 0.522 0.106 (Chiroptera, Perissodactyle), (Artiodactyla, Ferae)) - 21.6 0.230 0.113 ((Chiroptera, Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001 413366.9 - 49.5 0.006 <0.001 413366.9 Paenungulata - 49.5 0.835 0.753 413296.2 (Sirenia, (Proboscidea, Hyracoidea)) - 10.7 0.393 0.287 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 Placentia root - 8est 0.690 0.565 Afrotheria - 15 0.603 0.477 413311.0 - 17
(Ferae, (Chiroptera, (Perissodactyle, Artiodactyla))) - Best 0.974 0.948 (Chiroptera, ((Perissodactyle, Artiodactyla), Ferae)) - 9.5 0.522 0.106 (Chiroptera, Perissodactyle, Artiodactyla, Ferae)) - 21.6 0.230 0.113 ((Chiroptera, Perissodactyle), (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
413317.4 (Chiroptera, ((Perissodactyle, Artiodactyla), Ferae)) - 9.5 0.522 0.106 413326.9 - 21.6 0.230 0.113 (Chiroptera, Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0001
(Chiroptera, ((Perissodactyle, Artiodactyla), Ferae)) - 9.5 0.522 0.106 ((Chiroptera, Perissodactyle), (Artiodactyla, Ferae))) - 21.6 0.230 0.113 ((Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 ((Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 26.2 0.106 <0.001
413326.9 ((Chiroptera, Perissodactyle), (Artiodactyla, Ferae))) - 21.6 0.230 0.113 (Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
((Chiroptera, Perissodactyle), (Artiodactyla, Ferae))) - 21.6 0.230 0.113 (Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
(Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
(Chroptera, (Perissodactyle, (Artiodactyla, Ferae))) - 26.2 0.162 0.133 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
413343.6 413343.6 (Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
(Chroptera, (Artiodactyla, (Perissodactyle, Ferae))) - 49.5 0.006 <0.001
Paenungulata - Best 0.835 0.753 (Proboscidea, (Sirenia, Hyracoidea)) - Best 0.835 0.287 (Sirenia, (Proboscidea, Hyracoidea)) - 10.7 0.393 0.287 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 Placentia root - Best 0.690 0.565 Xenartheria - Best 0.603 0.477 Afrotheria - 1.5 0.603 0.477 Atlantogenata - 17.4 0.086 0.020
(Proboscidea, (Sirenia, Hyracoidea)) - Best 0.835 0.753 (Sirenia, (Proboscidea, Hyracoidea)) - 10.7 0.393 0.287 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 Placentia root - 8est 0.690 0.565 Xenartheria - Best 0.603 0.477 Afrotheria - 1.5 0.603 0.477 Atlantogenata - 17.4 0.086 0.020
(Froboscidea, (Sirenia, Hyracoidea)) - best 0.033 0.733 (Sirenia, (Proboscidea, Hyracoidea)) - 10.7 0.393 0.287 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 Placentia root - 8est 0.690 0.565 Xenartheria - Best 0.603 0.477 Afrotheria - 1.5 0.603 0.477 Atlantogenata - 17.4 0.086 0.020
(Sirenia, (Proboscidea, Hyracoidea)) - 10.7 0.393 0.287 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 (Hyracoidea) - 30.7 0.046 0.021 Placentia root - Best 0.690 0.565 Xenartheria - Best 0.603 0.477 Afrotheria - 1.5 0.603 0.477 Atlantogenata - 17.4 0.086 0.020
(Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 (Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 Placentia root - Best 0.690 0.565 Xenartheria - 1.5 0.603 0.477 Afrotheria - 17.4 0.086 0.020
(Hyracoidea, (Proboscidea, Sirenia)) - 30.7 0.046 0.021 413326.9 413326.9 - <t< td=""></t<>
413326.9 Placentia root Xenartheria - Best 0.690 0.565 413309.5 Afrotheria - 1.5 0.603 0.477 413311.0 Atlantogenata - 17.4 0.086 0.020
Placentia root - Best 0.690 0.565 Xenartheria - Hasses 413309.5 0.603 0.477 Afrotheria - 1.5 0.603 0.477 Atlantogenata - 17.4 0.086 0.020
Xenartheria - Best 0.690 0.565 Afrotheria - 1.5 0.603 0.477 Atlantogenata - 17.4 0.086 0.020
Afrotheria 413309.5 - 1.5 0.603 0.477 413311.0 - 17.4 0.086 0.020
Afrotheria - 1.5 0.603 0.477 413311.0 Atlantogenata - 17.4 0.086 0.020
413311.0 Atlantogenata - 17.4 0.086 0.020
Atlantogenata - 17.4 0.086 0.020
413326.9
Rodentia
(Sciuromorpha, (Mouse-related clade, – Best 0.763 0.738
Hystricomorpha)) 413326.9
(Mouse-related clade, (Sciuromorpha, - 10.9 0.237 0.262
Hysuicomorpha) 413337.8
Sister to Cliros Rost 0.800 0.825
- Dest 0.009 0.025
Sister to Primatomorpha - 8.5 0.191 0.175
413335.4

Supplementary Table S7. Likelihood ratio test of alternative topologies for dataset B protein sequences as implemented in CONSENL package.

Supplementary Table S8. Guanine-cytosine (GC) along with the third position of codon (GC3) content

of two	datasets.
--------	-----------

Dataset A	GC	GC3	014_comb	0.4419	0.5364	(058_comb	0.5409	0.5392
A2AB	0.6005	0.8393	015_comb	0.4454	0.4221	(059_comb	0.4541	0.4197
ADORA3	0.4569	0.6664	Dataset B	GC	GC3	- (060_comb	0.4879	0.6157
ADRB2	0.5325	0.7666	016_comb	0.4475	0.4880	- (061_comb	0.4611	0.3475
АроВ	0.4315	0.4610	017_comb	0.3919	0.2313		Dataset B	GC	GC3
APP	0.3691	None	018_comb	0.4295	0.3975	(062_comb	0.5448	0.7562
ATP7A	0.4063	0.3453	019_comb	0.5035	0.5634	(063_comb	0.5478	0.7229
BCHE	0.4134	0.3506	020_comb	0.4164	0.4259	(064_comb	0.5608	0.6771
BDNF	0.5558	0.6688	021_comb	0.5378	0.6734	(065_comb	0.4205	0.4961
BMI1	0.3259	None	022_comb	0.6303	0.8764	(066_comb	0.3715	0.2407
BRCA1	0.4180	0.3435	023_comb	0.5581	0.6454	(067_comb	0.4993	0.5357
BRCA2	0.3488	0.2666	025_comb	0.3907	0.3433	(068_comb	0.4200	0.4622
CNR1	0.5304	0.7352	027_comb	0.3514	0.3303	(069_comb	0.4514	0.4466
CREM	0.4333	None	028_comb	0.4066	0.3498	(070_comb	0.5213	0.5479
DMP1	0.5136	0.5250	029_comb	0.4472	0.5570	(071_comb	0.5799	0.8603
EDG1	0.5624	0.8367	030_comb	0.5737	0.5662	(072_comb	0.6199	0.8567
ENAM	0.4470	0.3444	031_comb	0.5905	0.8931	(073_comb	0.5756	0.6338
FBN1	0.3425	None	033_comb	0.4212	0.4365	(074_comb	0.5848	0.7557
GHR	0.4886	0.4779	034_comb	0.4896	0.3402	(075_comb	0.5019	0.5387
IRBP	0.6099	0.7530	036_comb	0.6333	0.8130	(076_comb	0.5268	0.7368
PLCB4	0.4013	None	037_comb	0.5145	0.6142	()77_comb	0.5055	0.5739
PNOC	0.6150	0.7479	038_comb	0.4224	0.4587	(078_comb	0.5471	0.6794
RAG1	0.5192	0.6270	039_comb	0.4061	0.3468	()79_comb	0.4292	0.4432
RAG2	0.4391	0.4105	040_comb	0.4177	0.3308	(080_comb	0.5544	0.7640
TTN	0.4175	0.3156	041_comb	0.5418	0.6467	(082_comb	0.4432	0.4759
TYR1	0.4746	0.5678	042_comb	0.4768	0.4351	(084_comb	0.4148	0.3861
vWF	0.5928	0.7890	043_comb	0.5217	0.6665	(085_comb	0.5590	0.6301
Dataset B	GC	GC3	044_comb	0.5045	0.4279	(086_comb	0.4919	0.6069
000_comb	0.4931	0.3702	045_comb	0.5056	0.5874	(087_comb	0.3504	0.2900
001_comb	0.4128	0.4109	046_comb	0.4854	0.5952	(089_comb	0.5390	0.7256
002_comb	0.6337	0.8548	047_comb	0.4792	0.5621	(090_comb	0.4343	0.2972
003_comb	0.4792	0.4463	048_comb	0.5171	0.6304	(091_comb	0.4901	0.5122
004_comb	0.4735	0.4631	049_comb	0.5744	0.6951	(092_comb	0.4177	0.3546
005_comb	0.4604	0.5287	050_comb	0.4497	0.5605	(093_comb	0.5911	0.8014
006_comb	0.5860	0.9082	051_comb	0.5272	0.5658	(094_comb	0.4950	0.4067
007_comb	0.5861	0.6485	052_comb	0.4583	0.5487	(095_comb	0.4465	0.3198
009_comb	0.4273	0.3854	053_comb	0.5249	0.6360	(096_comb	0.4781	0.6368
010_comb	0.4955	0.5893	054_comb	0.4963	0.6716	(097_comb	0.4645	0.5763
011_comb	0.4076	0.3877	055_comb	0.5111	0.6163	(098_comb	0.4488	0.3124
012_comb	0.4276	0.3033	056_comb	0.5756	0.7108	(099_comb	0.4831	0.5193
013_comb	0.4251	0.4938	057_comb	0.4699	0.4320	-	100_comb	0.4601	0.5153

101_comb	0.4527	0.4038
102_comb	0.4708	0.5108
103_comb	0.4582	0.4770
104_comb	0.3819	0.3596
105_comb	0.4059	0.3703

Dataset A -	(1) concatenation	2 gene	3coding+	(4)codon1/2+ codon3+	⑤gene+codon1/2 +	⁶ Partition -
DNA			noncoding	noncoding	codon3 + noncoding	Finder2
GC-rich	0.0061	0.0061	0.0061	0.0183	0.0183	0.0000
0		0.0000	0.0000	0.0183	0.0183	0.0061
2			0.0000	0.0183	0.0183	0.0061
3				0.0183	0.0183	0.0061
4					0.0000	0.0183
5						0.0183
Dataset B -	(1) concatenation	2 gene	3codon1/2 +	④gene+ codon1/2 + codon3	⑤PartitionFinder2	
DNA			codon3			
GC-rich	0.0342	0.00855	0.0513	0.0256	0.0256	
1	0.0000	0.0256	0.0427	0.0256	0.0427	
2		0.000	0.0427	0.0171	0.0171	
3			0.0000	0.0513	0.0598	
4				0.0000	0.0171	

Supplementary Table S9. The Robinson-Foulds (RF) distance between the tree without GC-rich genes and the trees under multiple partition strategies.

Numbe	Clade	MinAg	MaxAg	Reference
r		е	е	S
1	Caenolestidae	0	15.97	Meredith
				et al.,
				2011
2	Peramelidae			Meredith
		4.36	23.8	et al.,
				2011
3	Peramelemorphia			Meredith
		4.36	54.65	et al.,
				2011
4	Phalangeridae+Burramyidae			Meredith
		25	54.65	et al.,
_				2011
5	Petauridae+Pseuocheiridae	c= -		Meredith
		25.5	54.65	et al.,
				2011
6	Macropodoidea+Potoroidae	c · -		Meredith
		24.7	54.65	et al.,
_				2011
7*	Placentalia			Meredith
		65.2	131.5	et al.,
-				2011
8*	Vombatiformes			Springer
		25.5	54.65	et al.,
-				2017
9*	Australidelphia +Didelphimorphia			Springer
		65.18	83.8	et al.,
10				2017
10	Vermilingua	4 5 0 7	C1 1	Meredith
		15.97	b1.1	et al.,
11.				2011
$\perp \perp *$		15.07	41.0	Springer
	Pnyllopnaga	15.97	41.3	et al.,
10				2017
12*	Dilaca		66	Springer
	PIIOSa	31.5	60	et al.,
10.				2017 Continents
⊥ 3 *	Venerthre	47.0	66	Springer
	xenarthra	47.8	60	et al.,
11	Drohossidas			
14	Proposciaea	6.8	23.03	ivieredith
				et al.,

Supplementary	v Table S10.	Calibrations used	l in m	nolecular	dating	analyses	_
Supplementur	y 10010 010.	oundrations asce		loiccului	auting	unuryses	•

				2011	
15*	Hyracoidea			Spring	ler
		6.08	11.62	et	al.,
				2017	
16	Sirenia			Merec	lith
		31.4	40.6	et	al.,
				2011	
17	Macroscelidea			Merec	lith
		15.97	56	et	al.,
				2011	
18	Chrysochloridae			Merec	lith
		1.7	33.9	et	al.,
				2011	
19*	Paenungulata			Spring	ler
		55.6	71.2	et	al.,
				2017	
20				Merec	lith
	Lagomorpha	53.7	61.6	et	al.,
				2011	
21				Merec	lith
	Emballonuroidea	47.8	59.2	et	al.,
				2011	
22				Merec	lith
	Hipposideridae+Rhinolophidae	38	56	et	al.,
				2011	
23				Merec	lith
	Craseonycteridae+Megadermatidae	33.9	47.8	et	al.,
				2011	
24	Molossidae+Vespertilionidae+Miniopteridae			Merec	lith
		38	56	et	al.,
05				2011	
25		00.1	41.0	Merec	lith
	Phyliostomidae+Mormoopidae	28.1	41.3	et	aı.,
20				2011	1:+l-
20		E 222	22.0	iviered	
	Fullptendae+Noctilionidae	0.002	33.9	el 2011	dI.,
27.				2011 Spring	or
21*	Chiroptora	17 0	66	spring	ler al
	Chiroptera	47.0	00	el 2017	aı.,
28+				Spring	or
201	Vangochirontera	/7 Q	61.6	oping	ات ام
	rangoonnoptera	ט. זד	01.0	2017	aı.,
29*	Caniformia	37 1	56	Spring	Ier
		J		Spring	

				et 2017	al.,
30	Procyonidae+Mustelidae			Mered	lith
		27.6	40.6	et	al.,
				2011	
31*				Spring	er
	Otariidae+Odobenidae	15.97	34	et 2017	al.,
32*				Spring	er
	Pinnipedia	20.43	34	et 2017	al.,
33				Mered	lith
	Felidae+Prionodontidae	28.1	41.3	et	al.,
				2011	
34*				Spring	er
	Herpestidae+Eupleridae	15.97	34	et	al.,
				2017	
35*				Spring	er
	Ferae	64	83.8	et	al.,
				2017	
36*				Spring	er
	Carnivora	38	66	et	al.,
				2017	
37*				Spring	er
	Lorisidae+Galagidae	38	56	et	al.,
				2017	
38*				Spring	er
	Haplorrhini	38	59.2	et	al.,
				2017	
39*				Mered	lith
	Anthropoidea	28.3	56	et	al.,
				2011	
40*				Spring	er
	Primatomorpha	65.2	83.8	et	al.,
				2017	
41*				Spring	er
	Primates	38	66	et	al.,
				2017	
42				Mered	lith
	Catarrhini	20.55	37.3	et	al.,
				2011	
43*				Spring	er
	Strepsirrhini	38	56	et	al.,
				2017	

44*				Mered	ith
	Scandentia	34	66	et	al.,
				2011	
45*				Spring	er
	Perissodactyla	55.5	61.1	et	al.,
				2017	
46*				Spring	er
	Erinaceidae+Soricidae	61.6	83.8	et	al.,
				2017	
47				Mered	ith
	Erinaceidae	28.1	47.8	et	al.,
				2011	
48*				Spring	er
	Artiodactyla	52.5	65.8	et	al.,
				2017	
49*				Spring	er
	Giraffidae+Antilocapridae	17.8	34	et	al.,
50				2017	
50*		7.0	00.00	Spring	er
	Balaenopteridae+Eschrichtiidae	7.3	23.03	et	al.,
F 4				2017	•
51		10	0.4	Mered	ith
	Bovidae+Moschidae	18	34	et	al.,
F 2 .				2011 Service	- ×
52*	Cuidee Terreservidee	1 0 0 7	27.2	Springe	er
	Suidae+Tayassuidae	15.97	37.3	el 2017	al.,
F2+				2017 Spring	or
J2×	Whippomorpha	52 F	61 1	ot	
	Whippomorpha	52.5	01.1	ει 2017	al.,
51*				Spring	or
J+*	Cetacea	33.8	18.8	opinig	al
		00.0	-0.0	2017	аг.,
55*				Spring	≏r
00	Mysticeti	20.43	34	et	al
	wyou oo u	20.10	01	2017	un.,
56				Mered	ith
	Physeteroidea	11.608	28.5	et	al
				2011	,
57*				Sprina	er
	Phocoenidae+Monodontidae	12.1	28.5	et	al.,
				2017	
58*		50	<u></u>	Spring	er
	Rodentia	56	66	et	al.,

				2017
59				Springer
	Sciuridae+Aplodontiidae	45.7	59.2	et al.,
				2017
60*				Springer
	Sciuromorpha	47.8	61.1	et al.,
				2017
61*				Springer
	Octodontoidea+Ctenomyidae+Octodontidae	24.5	38	et al.,
				2017
62*				Springer
	Ctenomyidae+Octodontidae	9.07	33.9	et al.,
				2017
63*				Springer
	Chinchillidae+Dinomyidae	24.5	38	et al.,
				2017
64				Meredith
	Hydrochoeridae+Caviidae	11.8	34	et al.,
				2011
65				Meredith
	Caviidae+Dasyproctidae	24.5	38	et al.,
				2011
66*				Springer
	Anomaluromorpha+Myomorpha	54	61.6	et al.,
				2017
67				Meredith
	Anomaluromorpha	37.1	56	et al.,
				2011
68				Meredith
	Geomyoidea	31.4	41.3	et al.,
				2011
69*				Springer
	Castorimorpha+Heteromyidae	52.4	61.1	et al.,
				2017
70*				Springer
	Myomorpha	45	59.2	et al.,
				2017
71			. – .	Meredith
	Ctenodactylidae	28.3	47.8	et al.,
				2011
72	Anomaluromorpha+Castorimorpha+Mvomor			Meredith
	pha	54	66	et al.,
70		40.45	007	2011
/3*	Mammalia	164.9	227	Springer

				et	al.,
				2017	
74				Mered	lith
	Amniota	318	332.9	et	al.,
				2011	
75				Mered	lith
	Tetrapoda	337	351	et	al.,
				2011	
76				Mered	lith
	Sarcopterygii + Actinopterygii	420.7	444.9	et	al.,
				2011	

Note: *, the shared calibration fossil record between two datasets

Data	Clocks	-logL	S.E.	BF	Pr(M D)
Dataset A AA	CLK	5882.798	2.214	0.000	0.000
	IR	1195.989	2.220	4686.809	0.000
	AR	1128.256	2.568	4754.542	1.000
Dataset B DNA	CLK	10552.860	1.672	0.000	0.000
	IR	976.233	1.807	9576.627	0.000
	AR	957.524	2.118	9595.336	1.000
Dataset B AA	CLK	3012.954	1.707	0.000	0.000
	IR	708.276	1.886	2304.678	0.976
	AR	711.996	1.767	2300.958	0.024

Supplementary Table S11. Bayesian selection of molecular clocks for dataset A and B amino acid alignments.

Note: **BF**: Bayes factors, **CLK**: strict clock, **IR**: Independent-rates model under log-normal distribution, **AR**: Autocorrelated-rates model under geometric Brownian motion.

Order	Class	Me an	Lo we r	Up pe r	Wi dt h	Class	Me an	Lo we r	Up pe r	Wi dt h	∆mea n	Δwidt h
Agreod ontia	26DN A_ne w	55. 04	49 .6 9	61. 33	11 .6 4	26DNA_ meredit h	53. 56	51 .4 4	55. 99	4. 55	3.60	7.09
Eomarsu pialia	26DN A_ne w	56. 61	51 .3 7	62. 76	11 .3 9	26DNA_ meredit h	54. 02	51 .9 5	56. 44	4. 49	2.59	6.9
Australi delphia	26DN A_ne w	59. 88	54 .4 0	66. 39	11 .9 9	26DNA_ meredit h	55. 76	53 .6 5	58. 31	4. 66	6.23	7.33
Xenarthr a	26DN A_ne w	60. 33	51 .7 2	66. 70	14 .9 8	26DNA_ meredit h	61. 57	58 .4 3	66. 79	8. 36	-1.24	6.62
Paenun gulata	26DN A_ne w	63. 42	55 .5 1	70. 18	14 .6 7	26DNA_ meredit h	63. 60	59 .0 4	68. 78	9. 74	4.38	4.93
Afroinse ctivora	26DN A_ne w	73. 25	61 .5 1	79. 63	18 .1 2	26DNA_ meredit h	77. 13	72 .0 9	93. 94	21 .8 5	-3.88	-3.73
Afroinse ctiphilia	26DN A_ne w	75. 78	64 .3 7	81. 88	17 .5 1	26DNA_ meredit h	78. 29	73 .1 9	95. 18	21 .9 9	2.59	-4.48
Ferae	26DN A_ne w	76. 01	72 .0 6	80. 02	7. 96	26DNA_ meredit h	78. 63	73 .5 7	81. 40	7. 83	-2.62	0.13
Glires	26DN A_ne w	76. 99	73 .5 9	80. 54	6. 95	26DNA_ meredit h	81. 25	79 .1 3	83. 47	4. 34	-2.14	2.61
Afrother ia	26DN A_ne w	77. 80	66 .4 5	83. 76	17 .3 1	26DNA_ meredit h	79. 47	74 .4 1	96. 51	22 .1 0	-1.67	-4.79
Primato morpha	26DN A_ne w	79. 40	75 .6 5	83. 63	7. 98	26DNA_ meredit h	83. 37	81 .1 5	85. 75	4. 60	-1.75	3.38
Variama na	26DN A_ne w	80. 39	76 .9 3	83. 84	6. 91	26DNA_ meredit h	81. 48	76 .5 6	83. 90	7. 34	-1.09	-0.43

Supplementary Table S12. The divergence time difference between this study and Meredith et al. (2011) from DNA alignments.

Marsupi alia	26DN A_ne w	80. 44	72 .7 5	84. 81	12 .0 6	26DNA_ meredit h	71. 68	67 .9 3	75. 33	7. 40	12.51	4.66
Euarcho ntoglire s	26DN A_ne w	81. 30	77 .7 8	85. 05	7. 27	26DNA_ meredit h	83. 89	81 .8 2	86. 16	4. 34	-2.59	2.93
Laurasia theria	26DN A_ne w	84. 09	80 .0 1	88. 50	8. 49	26DNA_ meredit h	84. 05	80 .1 4	86. 39	6. 25	3.95	2.24
Boreoeu theria	26DN A_ne w	91. 84	86 .9 2	97. 03	10 .1 1	26DNA_ meredit h	91. 67	89 .2 3	94. 67	5. 44	0.17	4.67
Placenta lia	26DN A_ne w	10 1.3 7	94 .5 8	10 8.2 1	13 .6 3	26DNA_ meredit h	10 0.9 9	97 .2 0	11 4.6 6	17 .4 6	4.17	-3.83
Eulipoty phla	26DN A_ne w	78. 10	73 .2 9	82. 91	9. 62	26DNA_ meredit h	76. 89	72 .4 8	79. 91	7. 43	1.21	2.19
Rodenti a	26DN A_ne w	67. 02	65 .6 3	68. 84	3. 21	26DNA_ meredit h	72. 95	71 .1 5	74. 80	3. 65	-4.13	-0.44
Afrosori cida	26DN A_ne w	64. 88	54 .1 4	73. 37	19 .2 3	26DNA_ meredit h	70. 75	65 .3 6	87. 96	22 .6	-5.87	-3.37
Artiodac tyla	26DN A_ne w	64. 85	62 .5 0	66. 57	4. 07	26DNA_ meredit h	64. 90	62 .3 4	66. 34	4. 00	2.51	0.07
Primates	26DN A_ne w	64. 70	64 .3 5	67. 43	3. 08	26DNA_ meredit h	71. 90	67 .0 4	75. 35	8. 31	-7.20	-5.23
Chiropte ra	26DN A_ne w	64. 69	61 .4 9	66. 95	5. 46	26DNA_ meredit h	65. 81	62 .7 4	68. 03	5. 29	1.95	0.17
Perissod actyla	26DN A_ne w	57. 62	55 .3 3	60. 85	5. 52	26DNA_ meredit h	55. 87	55 .0 8	57. 37	2. 29	1.75	3.23
Carnivor a	26DN A_ne w	56. 28	50 .7 3	62. 25	11 .5 2	26DNA_ meredit h	50. 37	47 .3 5	53. 41	6. 06	8.93	5.46
Lagomo rpha	26DN A_ne w	55. 69	53 .2 1	59. 80	6. 59	26DNA_ meredit h	51. 52	48 .2 1	54. 45	6. 24	4.17	0.35

Pilosa	26DN A_ne w	52. 56	43 .3 2	60. 59	17 .2 7	26DNA_ meredit h	53. 9	50 .2 8	59. 00	8. 72	2.28	8.55
Scanden tia	26DN A_ne w	52. 40	40 .2 0	64. 10	23 .9 0	26DNA_ meredit h	56. 25	51 .0 0	62. 33	11 .3 3	-3.85	12.57
Macrosc elidea	26DN A_ne w	48. 38	39 .2 3	56. 63	17 .4 0	26DNA_ meredit h	52. 32	46 .2 9	56. 99	10 .7 0	2.09	6.70
Diproto dontia	26DN A_ne w	48. 22	43 .5 6	53. 32	9. 76	26DNA_ meredit h	45. 13	42 .4 2	47. 85	5. 43	3.09	4.33
Didelphi morphia	26DN A_ne w	38. 78	29 .8 4	47. 71	17 .8 7	26DNA_ meredit h	29. 17	25 .6 5	32. 37	6. 72	13.13	11.15
Sirenia	26DN A_ne w	32. 40	30 .5 8	35. 21	4. 63	26DNA_ meredit h	29. 28	24 .9 6	31. 57	6. 61	3.12	-1.98
Pholidot a	26DN A_ne w	27. 87	17 .1 0	39. 42	22 .3 2	26DNA_ meredit h	20. 15	16 .9 1	24. 96	8. 05	10.96	14.27
Dasyuro morphia	26DN A_ne w	27. 01	18 .6 1	34. 18	15 .5 7	26DNA_ meredit h	25. 66	22 .1 5	29. 64	7. 49	1.35	8.08
Peramel emorphi a	26DN A_ne w	26. 47	19 .1 8	34. 06	14 .8 8	26DNA_ meredit h	24. 26	21 .0 5	27. 69	6. 64	5.42	8.24
Paucitu berculat a	26DN A_ne w	11. 81	7. 70	16. 00	8. 30	26DNA_ meredit h	10. 28	7. 96	12. 94	4. 98	1.53	3.32
Dermop tera	26DN A_ne w	11. 10	6. 08	16. 08	10 .0 0	26DNA_ meredit h	7.3 2	5. 91	8.9 6	3. 05	3.78	6.22
Hyracoi dea	26DN A_ne w	7.1 3	5. 72	9.3 3	3. 61	26DNA_ meredit h	4.9 1	3. 87	6.0 7	2. 20	2.22	1.41
Probosci dea	26DN A_ne w	6.0 4	4. 04	7.7 3	3. 69	26DNA_ meredit h	2.4 4	1. 79	3.2 1	1. 42	4.25	2.27
Sum											75.90 (p=4. 56e- 02)	123.7 9 (p=3. 43e- 04)

Note: Δ mean represents the difference mean values of in this study and Meredith et al. (2011); Δ width represents the difference width values of in this study and Meredith et al. (2011). P values was calculated by paired Wilcoxon signed rank test.

	•	N A		lln	\ \ /i	•				\ \ /i		
Order	Class	ea	we	pe	dt	Class	Me an	we	Up	dt	∆mean	∆widt h
		n	r	r	h		an	r	per	h		
Agreodo ntia	21A A_ne w	59 .8 4	54. 7	65. 11	10. 41	21AA_ meredit h	65. 10	60. 01	70. 22	10. 21	-5.26	-0.20
Eomarsu pialia	21A A_ne w	61 .8 3	56. 43	66. 67	10. 24	21AA_ meredit h	66. 38	61. 41	71. 58	10. 17	-4.55	-0.07
Australid elphia	21A A_ne w	64 .8 9	59. 83	69. 83	10. 00	21AA_ meredit h	68. 36	61. 41	71. 58	10. 17	-3.47	0.17
Xenarthr a	21A A_ne w	60 .8 9	51. 30	67. 00	15. 70	21AA_ meredit h	68. 42	63. 11	71. 50	8.3 9	-7.53	-7.31
Paenung ulata	21A A_ne w	63 .6 5	56. 48	70. 56	14. 08	21AA_ meredit h	64. 70	60. 21	69. 41	9.2 0	-1.05	-4.88
Afroinse ctivora	21A A_ne w	66 .6 3	59. 07	74. 38	15. 31	21AA_ meredit h	76. 75	71. 44	80. 90	9.4 6	-10.12	-5.85
Afroinse ctiphilia	21A A_ne w	69 .5 8	61. 76	76. 97	15. 21	21AA_ meredit h	77. 98	72. 89	81. 90	9.0 1	-8.40	-6.20
Ferae	21A A_ne w	73 .4 2	70. 41	76. 59	6.1 8	21AA_ meredit h	80. 56	78. 03	82. 98	4.9 5	-7.14	-1.23
Glires	21A A_ne w	72 .0 0	69. 61	75. 54	5.9 3	21AA_ meredit h	78. 70	79. 13	94. 12	14. 99	-6.70	9.06
Afrotheri a	21A A_ne w	72 .0 8	64. 51	79. 52	15. 01	21AA_ meredit h	81. 77	77. 31	85. 30	7.9 9	-9.69	-7.02
Primato morpha	21A A_ne w	75 .3 8	72. 38	78. 35	5.9 7	21AA_ meredit h	81. 74	79. 33	84. 14	4.8 1	-6.36	-1.16
Variama na	21A A_ne w	76 .7 0	73. 56	80. 04	6.4 8	21AA_ meredit h	82. 33	80. 04	84. 49	4.4 5	-5.63	-2.03
Marsupi alia	21A A_ne w	80 .5 8	76. 48	84. 38	7.9 0	21AA_ meredit h	87. 87	81. 57	96. 45	14. 88	-7.29	6.98

Supplementary Table S13. The divergence time difference between this study and Meredith et al. (2011) from protein sequences.

Euarcho ntoglires	21A A_ne w	77 .8 8	74. 72	81. 08	6.3 6	21AA_ meredit h	83. 26	81. 02	85. 46	4.4 4	-5.38	-1.92
Laurasiat heria	21A A_ne w	79 .1 2	75. 68	82. 94	7.2 6	21AA_ meredit h	84. 64	82. 14	87. 02	4.8 8	-5.52	-2.38
Boreoeu theria	21A A_ne w	85 .8 1	80. 79	90. 99	10. 20	21AA_ meredit h	91. 34	88. 83	93. 85	5.0 2	-5.53	-5.18
Placental ia	21A A_ne w	92 .2 2	85. 11	99. 78	14. 67	21AA_ meredit h	10 0.7 4	97. 37	10 4.1 1	6.7 4	-8.52	-7.93
Eulipoty phla	21A A_ne w	71 .8 2	68. 31	75. 49	7.1 8	21AA_ meredit h	75. 71	72. 07	79. 13	7.0 6	-3.89	-0.12
Rodentia	21A A_ne w	65 .7 1	64. 21	66. 94	2.7 3	21AA_ meredit h	68. 60	67. 00	74. 80	7.8 0	-2.89	5.07
Afrosoric ida	21A A_ne w	58 .2 0	50. 07	66. 57	16. 5	21AA_ meredit h	64. 78	57. 83	69. 8	11. 97	-6.58	-4.53
Artiodac tyla	21A A_ne w	64 .2 3	62. 06	66. 21	4.1 5	21AA_ meredit h	66. 11	64. 64	67. 98	3.3 4	-1.88	-0.81
Primates	21A A_ne w	66 .1 9	63. 89	68. 59	4.7 0	21AA_ meredit h	75. 77	73. 02	78. 43	5.4 1	-9.58	0.71
Chiropte ra	21A A_ne w	64 .9 8	62. 58	67. 12	4.5 4	21AA_ meredit h	66. 39	63. 34	69. 48	6.1 4	-1.41	1.60
Perissod actyla	21A A_ne w	58 .2 8	55. 58	61. 14	5.5 6	21AA_ meredit h	58. 03	55. 47	60. 98	5.5 1	0.25	-0.05
Carnivor a	21A A_ne w	58 .9 1	54. 41	63. 43	9.0 2	21AA_ meredit h	57. 12	53. 68	60. 64	6.9 6	1.79	-2.06
Lagomo rpha	21A A_ne w	54 .6 6	53. 08	56. 95	3.8 7	21AA_ meredit h	49. 07	47. 40	51. 77	4.3 7	5.59	0.50
Pilosa	21A A_ne w	50 .8 1	40. 78	58. 84	18. 06	21AA_ meredit h	57. 93	52. 8	62. 44	9.6 4	-7.12	-8.42

Scanden tia	21A A_ne w	49 .9 1	36. 87	60. 58	23. 71	21AA_ meredit h	57. 54	51. 00	63. 05	12. 05	-7.63	11.66
Macrosc elidea	21A A_ne w	42 .3 7	31. 84	54. 39	22. 55	21AA_ meredit h	45. 70	38. 44	53. 25	14. 81	-3.33	-7.74
Diproto dontia	21A A_ne w	54 .5 1	49. 24	59. 92	10. 68	21AA_ meredit h	56. 32	51. 52	61. 30	9.7 8	-1.81	-0.90
Didelphi morphia	21A A_ne w	37 .8 4	25. 75	49. 13	23. 38	21AA_ meredit h	31. 09	26. 04	36. 45	10. 41	6.75	-12.97
Sirenia	21A A_ne w	33 .8 2	30. 77	38. 26	7.4 9	21AA_ meredit h	31. 86	30. 52	34. 09	3.5 7	1.96	-3.92
Pholidot a	21A A_ne w	29 .9 1	15. 67	42. 99	27. 32	21AA_ meredit h	27. 24	18. 98	35. 44	16. 46	2.67	10.86
Dasyuro morphia	21A A_ne w	29 .5 2	18. 88	39. 35	20. 47	21AA_ meredit h	32. 02	25. 37	39. 6	14. 23	-2.50	-6.24
Peramel emorphi a	21A A_ne w	26 .6 2	16. 18	37. 76	21. 58	21AA_ meredit h	29. 35	24. 59	35. 06	10. 47	-2.73	-11.11
Paucitub erculata	21A A_ne w	13 .0 2	7.3 0	16. 84	9.5 4	21AA_ meredit h	13. 32	8.5 5	16. 18	7.6 3	-0.30	-1.91
Dermop tera	21A A_ne w	17 .1 4	6.5 0	26. 61	20. 11	21AA_ meredit h	7.3 8	5.9 1	10. 12	4.2 1	9.76	10.35
Hyracoid ea	21A A_ne w	7. 98	5.8 1	11. 08	5.2 7	21AA_ meredit h	6.0 9	4.6 2	7.7 5	3.1 3	1.89	-2.14
Probosci dea	21A A_ne w	9. 60	5.7 1	15. 81	10. 1	21AA_ meredit h	5.1 9	3.2 2	7.0 6	3.8 4	4.41	-6.26
Sum											- 124.72 (p = 2.84e- 04)	-65.58 (p=4.4 0e- 05)

Note: Δ mean represents the difference mean values of in this study and Meredith et al. (2011); Δ width represents the difference width values of in this study and Meredith et al. (2011). P value is from paired Wilcoxon Signed Rank Test. P values was calculated by paired Wilcoxon signed rank test.

	Old_da	Old_data_new_c		New_data_old_c		ta_old_cal	New_data_new_c		
	alibratio	on	alibrati	on	ibratio	ר*	alibrati	ion	
Ordor	Mean	95%	Mean	95% HPD	Mean	95%HPD	Mea	95%HPD	
Order		HPD					n		
Agreodont	61.03	55.27-	60.97	56.14-	63.03	61.71-	61.00	55.99-	
ia		66.40		65.07		68.28		65.06	
Eomarsupi	62.34	56.61-	62.35	57.68-	65.01	62.35-	61.38	57.55-	
alia		67.61		66.37		68.88		66.44	
Australidel	64.87	55.34-	65.03	60.51-	66.69	63.88-	65.05	60.42-	
phia		70.16		69.08		70.66		69.16	
Voparthra	60.96	51.15-	63.97	59.49-	64.19	60.18-	63.94	59.39-	
Aenartina		67.04		67.43		68.65		67.27	
Paenungul	63.39	56.21-	65.90	61.65-	65.63	62.77-	65.64	61.16-	
ata		70.78		69.87		69.12		69.63	
Afroinsecti	68.35	60.35-	71.04	66.28-	77.98	74.83-	70.75	65.55-	
vora		75.68		75.29		81.26		74.92	
Afroinsecti	70.33	62.51-	73.03	68.54-	79.10	76.02-	72.78	67.59-	
philia		77.79		77.28		82.33		76.95	
Forac	73.91	70.60-	74.91	72.89-	79.49	77.48-	74.96	72.94-	
Feide		77.23		77.04		81.50		77.31	
Cliron	72.28	69.56-	74.09	72.32-	78.50	76.69-	74.08	72.25-	
Gilles		74.97		75.87		80.23		75.93	
Afrothoria	71.98	64.10-	74.64	70.20-	80.66	77.70-	74.40	69.26-	
Anothena		79.44		78.81		83.78		78.69	
Primatomo	75.24	72.18-	77.11	75.11-	81.69	79.90-	77.09	74.96-	
rpha		78.45		79.14		83.45		79.14	
Variamana	76.60	73.05-	77.87	75.80-	81.71	79.85-	77.94	75.73-	
Vallallalla		80.16		80.08		83.62		80.22	
Marsupiali	79.13	74.71-	80.76	77.40-	82.21	78.81-	80.78	77.28-	
а		84.03		84.11		86.72		84.27	
Euarchont	76.59	73.23-	78.49	76.47-	81.91	80.16-	92.81	88.17-	
oglires		79.91		80.61		83.64		97.36	
Laurasiath	78.53	74.53-	79.94	77.60-	83.81	81.85-	80.00	77.52-	
eria		82.29		82.19		85.81		82.45	
Boreoeuth	85.22	79.67-	86.91	83.93-	90.05	88.06-	86.93	83.74-	
eria		90.56		89.89		92.11		90.25	
Placontalia	92.07	84.35-	94.31	90.17-	99.19	96.55-	94.29	89.75-	
		99.80		98.66		102.00		99.13	
Eulipotyphl	71.88	68.14-	72.90	70.44-	77.02	74.58-	72.98	70.39-	
a		75.93		75.26		79.45		75.51	

Supplementary Table S14. The comparation of the divergence time with different DNA datasets and fossil calibrations under the autocorrelated clock.

Rodentia	65.15	63.33-	65.99	65.10-	68.20	66.70-	66.00	65.06-
		66.51		66.85	-4.05	69.64		66.91
Afrosoricid	62.54	54.70-	65.37	60.77-	71.05	67.11-	74.40	69.26-
а		71.00		69.78		75.01		78.69
Artiodactyl	64.28	62.10-	64.68	63.24-	66.67	65.31-	64.90	63.24-
а		66.17		66.04		68.46		66.07
Primates	66.22	63.82-	69.62	67.45-	75.47	73.42-	69.62	67.52-
		68.73		71.60		77.54		71.76
Chiroptera	71.88	68.14-	72.90	70.44-	66.98	64.96-	65.13	63.29-
onnoptora		75.93		75.26		68.91		66.57
Perissodac	58.37	55.60-	58.45	55.69-	56.07	55.14-	58.38	55.47-
tyla		61.12		61.09		57.81		60.84
Carnivora	59.43	55.04-	58.32	55.40-	57.68	55.29-	58.35	55.29-
Carrivora		63.70		61.41		60.02		61.43
Lagomorp	54.89	53.12-	54.03	52.91-	49.11	47.49-	54.05	52.88-
ha		57.47		55.57		51.78		55.62
Diloco	52.38	42.13-	55.60	50.72-	56.50	18.84-	55.55	50.53-
r 1105a		59.93		59.71		32.41		59.72
Coondontia	49.98	37.14-	54.00	47.78-	56.30	51.51-	53.91	47.29-
Scandentia		60.57		59.90		60.77		60.24
Macrosceli	44.34	34.43-	48.25	41.14-	48.02	38.44-	47.89	40.50-
dea		56.01		54.59		53.25		54.57
Diprotodo	55.50	50.13-	54.93	50.37-	55.74	51.52-	54.92	50.45-
ntia		61.09		59.11		61.30		59.03
Didelphim	38.33	24.64-	43.10	34.50-	34.96	26.04-	42.52	33.83-
orphia		50.94		50.45		36.45		52.94
Sironia	33.98	30.84-	32.18	30.58-	31.35	30.52-	32.19	30.55-
Silellia		38.72		34.43		34.09		34.57
Dhalidata	30.59	15.31-	32.11	22.09-	25.47	19.15-	32.10	22.81-
Pholidola		44.24		40.25		35.44		41.15
Dasyurom	27.99	17.32-	28.15	21.01-	29.72	22.15-	28.32	21.15-
orphia		39.06		34.61		32.32		34.78
Peramele	28.32	17.21-	25.71	19.95-	28.92	21.05-	25.63	19.33-
morphia		39.74		32.61		30.36		32.79
Paucituber	12.81	7.00-	13.49	9.57-	12.49	7.96-	13.47	9.38-
culata		16.93		16.67		13.71		16.57
Dermopter	18.39	6.70-	15.69	10.37-	7.44	5.91-	15.48	10.36-
а		28.65		22.34		10.12		22.62
Hyracoide	8.02	5.89-	6.87	5.66-	5.62	3.87-	6.86	5.65-8.71
а		11.22		8.76		6.94		
Proboscide	10.26	5.85-	7.45	5.46-	2.92	1.79-	7.45	5.40-9.96
а		16.99		9.99		7.21		
Duality	(Δmear	n-oldold/ol	dnew =	86.2; p=7.1	L6e-03);	(Δ95%HPD-	oldold/	oldnew = -
Pvalue	233.46;	p=3.64e-1	L2);					

(Δmean-newold/newnew = -12.81; p=0.283); (Δ95%HPD-newold/newnew =
-16.1; p=6.141e-06);
(Δ mean-oldold/newold = 43.44; p=0.053); (Δ 95%HPD-oldold/newold = -
42.76; p=1.73e-03)
$(\Delta mean-oldnew/newnew = -55.57; p=5.70e-03);95\%HPD-oldnew/newnew$
= 174.6; p=4.00e-10);

Old_data_new_calibration was the Meredith et al.'s (2011) DNA dataset and new (in this study we updated) fossil calibrations; New_data_old_calibration was the new DNA dataset generated in this study and Meredith et al.'s (2011) fossil calibrations; Old_data_old_calibration was Meredith et al.'s (2011) DNA dataset and fossil calibrations and the mean value and 95% was from the Meredith et al. (2011) study; New_data_new_calibration was new dataset and fossil calibration generated in this study. Δ mean-oldold/oldnew and Δ 95%HPD-oldold/oldnew was the comparation of the mean value and 95%HPD between Old_data_old_calibration and Old_data_new_calibration, respectively. The front part of the bracket was the different value and the latter part of the bracket was the p value calculated by paired Wilcoxon signed rank test. *: the results from Meredith et al. (2011) study.

Models	LH	AIC	<i>r</i> 1	r2	r3	Package
PB	-114.036	230.071	0.022			laser
BD	-111.036	232.071	0.022			laser
DDX	-106.394	216.788	0.066			laser
DDL	-95.800	192.598	0.033			laser
yule2rate	-78.601	163.202	0.028	0.001		laser
yule3rate	-69.722	149.444	0.036	0.014	0.002	laser
Models	LH	AICc	Lamb_par	Mu_par		Package
PB	-773.751	1549.528	0.022	0		RPANDA
BD	-773.752	1551.578	0.022	1.310×10^{-08}		RPANDA
B-Exp	-767.392	1538.86	0.017,0.007	0		RPANDA
B-Exp_D	-767.392	1540.936	0.017,0.007	7.209×10 ⁻ ⁰⁹		RPANDA
B_D-Exp	-751.382	1508.916	0.039	8.136×10 ⁰² , 7.431×10 ⁰²	-	RPANDA
B-Exp_D-Exp	-747.715	1503.684	0.012,0.020	1.460×10 ⁻⁰³ , 3.362×10 ⁻⁰²		RPANDA
B-Lin	-752.352	1508.778	0.002,0.001	0		RPANDA
B-Lin_D	-752.352	1510.855	0.002,0.001	4.557×10⁻ ⁰		RPANDA
B_D-Lin	-741.540	1489.232	0.059	1.398×10 ⁰¹ , 4.122×10 ⁰¹		RPANDA
B-Lin_D-Lin	-752.352	1512.958	0.002,0.001	-1.28×10 ⁻⁰² , 7.500×10 ⁻⁰⁴	-	RPANDA

Supplementary Table S15. The likelihood tests of rate-constant (RC) and rate-variable (RV) models of mammalian diversification from R packages.

Abbreviations: LH, log-likelihood; AIC, Aaike Information Criterion; AICc, corrected Akaike

Information Criterion; r1, r2, r3, net diversification rates, as applicable for models; Lamb_par, speciation rate λ parameter; Mu_par, extinction rate μ parameter; PB, pure birth model with constant speciation rate; BD, birth-death model with constant speciation and extinction rate; DDX, fit exponential variants of the density-dependent speciation rate model; DDL, fit logistic variants of the density-dependent speciation rate model; yule2rate, pure birth (Yule) model assumes that the clade has diversified under net diversification rate r1 until some time point *st*, at which point the diversification rate shifts to a new rate r2, yule3rate assumes diversification rate r1 until some time point *st1* shifts to a new rate r2, then to another time point *st2* shifts to a new rate r2; B-Exp, pure birth with exponential variation of the speciation rate; D-Exp, birth-death model with exponential variation of the extinction rate; B-Lin, pure birth with linear variation of speciation rate; D-Lin, birth-death model with linear variation rate.

Dataset	Molecular	Calibration clade	Fossil record	95% HPD of	Lineages
	clock		from Minage to	divergence	types
			Maxage	time	
Dataset	AR	Octodontoidea	(24.5, 38.0)	(19.6, 23.9)	ghost
A DNAs		Lorisidae +	(38.0, 56.0)	(30.2,37.3)	ghost
		Galagidae			
		Primates	(38.0, 66.0)	(67.5,71.7)	zombie
		Haplorrhini	(38.0, 59.2)	(62.2,67.5)	zombie
Dataset B	IR	Scandentia	(34.0, 66.0)	(1.4, 12.2)	ghost
DNAs		Anthropoidea	(28.3, 56.0)	(6.4, 27.5)	ghost
	AR	Scandentia	(34.0, 66.0)	(6.4, 27.5)	ghost
Dataset B	IR	Scandentia	(34.0, 66.0)	(2.5, 16.3)	ghost
proteins		Anthropoidea	(28.3, 56.0)	(6.9, 26.7)	ghost
	AR	Scandentia	(34.0, 66.0)	(5.0, 28.6)	ghost

Supplementary Table S16. The zombie and ghost lineages implied from mammalian timetree.

Abbreviations: AR, autocorrelated rates model; IR, independent rates model; Minage, Minimum Age; MaxAge, Maximum Age; HPD, highest posterior density intervals.

Order	Class	Me an	Lo we r	Up pe r	Wi dt h	Class	Me an	Lo we r	Up pe r	Wi dt h	Δmean	∆widt h
Agreod ontia	26DN A_ne w	55. 04	49. 69	61. 33	11. 64	26DNA_re calibratio n	54. 65	49. 29	61. 05	11. 76	0.39	-0.12
Eomarsu pialia	26DN A_ne w	56. 61	51. 37	62. 76	11. 39	26DNA_re calibratio n	56. 19	50. 87	62. 44	11. 57	0.42	-0.18
Australi delphia	26DN A_ne w	59. 88	54. 40	66. 39	11. 99	26DNA_re calibratio n	59. 45	53. 86	66. 07	12. 21	0.43	-0.22
Xenarthr a	26DN A_ne w	60. 33	51. 72	66. 70	14. 98	26DNA_re calibratio n	60. 58	51. 97	66. 83	14. 86	-0.25	0.12
Paenun gulata	26DN A_ne w	63. 42	55. 51	70. 18	14. 67	26DNA_re calibratio n	63. 90	55. 53	70. 68	15. 15	-0.48	-0.48
Afroinse ctivora	26DN A_ne w	73. 25	61. 51	79. 63	18. 12	26DNA_re calibratio n	73. 52	62. 16	80. 15	17. 99	-0.27	0.13
Afroinse ctiphilia	26DN A_ne w	75. 78	64. 37	81. 88	17. 51	26DNA_re calibratio n	76. 07	65. 25	82. 50	17. 25	-0.29	0.26
Ferae	26DN A_ne w	76. 01	72. 06	80. 02	7.9 6	26DNA_re calibratio n	76. 55	72. 33	80. 69	8.3 6	-0.54	-0.40
Glires	26DN A_ne w	76. 99	73. 59	80. 54	6.9 5	26DNA_re calibratio n	77. 68	74. 15	81. 31	7.1 6	-0.69	-0.21
Afrother ia	26DN A_ne w	77. 80	66. 45	83. 76	17. 31	26DNA_re calibratio n	78. 10	67. 08	84. 31	17. 23	-0.30	0.08
Primato morpha	26DN A_ne w	79. 40	75. 65	83. 63	7.9 8	26DNA_re calibratio n	80. 44	76. 63	84. 19	7.5 6	-1.04	0.42
Variama na	26DN A_ne w	80. 39	76. 93	83. 84	6.9 1	26DNA_re calibratio n	80. 84	76. 91	84. 33	7.4 2	-0.45	-0.51
Marsupi alia	26DN A_ne w	80. 44	72. 75	84. 81	12. 06	26DNA_re calibratio n	79. 72	71. 41	84. 62	13. 21	0.72	-1.15

Supplementary Table S17. The divergence time difference between all and partial calibrations from DNA alignments under the independent clock.

Euarcho ntoglires	26DN A_ne w	81. 30	77. 78	85. 05	7.2 7	26DNA_re calibratio n	82. 19	78. 44	85. 86	7.4 2	-0.89	-0.15
Laurasia theria	26DN A_ne w	84. 09	80. 01	88. 50	8.4 9	26DNA_re calibratio n	84. 46	80. 03	88. 83	8.8 0	-0.37	-0.31
Boreoeu theria	26DN A_ne w	91. 84	86. 92	97. 03	10. 11	26DNA_re calibratio n	92. 33	87. 39	97. 48	10. 09	-0.49	0.02
Placenta lia	26DN A_ne w	10 1.3 7	94. 58	10 8.2 1	13. 63	26DNA_re calibratio n	10 1.6 8	94. 67	10 8.5 8	13. 91	-0.31	-0.28
Eulipoty phla	26DN A_ne w	78. 10	73. 29	82. 91	9.6 2	26DNA_re calibratio n	78. 21	72. 87	83. 09	10. 22	-0.11	-0.60
Rodenti a	26DN A_ne w	67. 02	65. 63	68. 84	3.2 1	26DNA_re calibratio n	67. 28	65. 76	69. 22	3.4 6	-0.26	-0.25
Afrosori cida	26DN A_ne w	64. 88	54. 14	73. 37	19. 23	26DNA_re calibratio n	65. 46	54. 51	73. 61	19. 10	-0.58	0.13
Artiodac tyla	26DN A_ne w	64. 85	62. 50	66. 57	4.0 7	26DNA_re calibratio n	64. 95	62. 76	66. 64	3.8 8	-0.10	0.19
Primates	26DN A_ne w	64. 70	64. 35	67. 43	3.0 8	26DNA_re calibratio n	69. 74	63. 09	78. 18	15. 09	-5.04	- 12.01
Chiropte ra	26DN A_ne w	64. 69	61. 49	66. 95	5.4 6	26DNA_re calibratio n	64. 83	61. 81	67. 06	5.2 5	-0.14	0.21
Perissod actyla	26DN A_ne w	57. 62	55. 33	60. 85	5.5 2	26DNA_re calibratio n	57. 57	55. 33	60. 81	5.4 8	0.05	0.04
Carnivor a	26DN A_ne w	56. 28	50. 73	62. 25	11. 52	26DNA_re calibratio n	56. 64	51. 45	62. 21	10. 76	-0.36	0.76
Lagomo rpha	26DN A_ne w	55. 69	53. 21	59. 80	6.5 9	26DNA_re calibratio n	55. 74	53. 20	59. 92	6.7 2	-0.05	-0.13
Pilosa	26DN A_ne w	52. 56	43. 32	60. 59	17. 27	26DNA_re calibratio n	52. 76	43. 39	60. 82	17. 43	-0.20	-0.16

Scanden tia	26DN A_ne w	52. 04	40. 20	64. 10	23. 9	26DNA_re calibratio n	52. 99	40. 53	63. 88	23. 35	-0.95	0.55
Macrosc elidea	26DN A_ne w	48. 38	39. 23	56. 63	17. 4	26DNA_re calibratio n	48. 43	39. 38	56. 76	17. 38	-0.05	0.02
Diproto dontia	26DN A_ne w	48. 22	43. 56	53. 32	9.7 6	26DNA_re calibratio n	47. 85	43. 19	52. 95	9.7 6	0.37	0
Didelphi morphia	26DN A_ne w	38. 78	29. 84	47. 71	17. 87	26DNA_re calibratio n	37. 48	29. 11	47. 74	18. 63	1.30	-0.76
Sirenia	26DN A_ne w	32. 40	30. 58	35. 21	4.6 3	26DNA_re calibratio n	32. 37	30. 50	35. 10	4.6 0	0.03	0.03
Pholidot a	26DN A_ne w	27. 87	17. 10	39. 42	22. 32	26DNA_re calibratio n	27. 90	17. 48	40. 86	23. 38	-0.03	-1.06
Dasyuro morphia	26DN A_ne w	27. 01	18. 61	34. 18	15. 57	26DNA_re calibratio n	26. 63	18. 92	34. 22	15. 30	0.38	0.27
Peramel emorphi a	26DN A_ne w	26. 47	19. 18	34. 06	14. 88	26DNA_re calibratio n	26. 18	19. 02	33. 04	14. 02	0.29	0.86
Paucitub erculata	26DN A_ne w	11. 81	7.7 0	16. 00	8.3 0	26DNA_re calibratio n	11. 78	7.7 2	16. 07	8.3 5	0.03	-0.05
Dermop tera	26DN A_ne w	11. 10	6.0 8	16. 08	10. 00	26DNA_re calibratio n	10. 96	6.0 1	15. 82	9.8 1	0.14	0.19
Hyracoi dea	26DN A_ne w	7.1 3	5.7 2	9.3 3	3.6 1	26DNA_re calibratio n	7.0 9	5.7 3	9.2 3	3.5 0	0.04	0.11
Probosci dea	26DN A_ne w	6.0 4	4.0 4	7.7 3	3.6 9	26DNA_re calibratio n	5.9 6	4.0 2	7.6 6	3.6 4	0.08	0.05
Sum											-9.57 (p = 8.89e- 01)	- 14.59 (p=2.7 4e- 01)

Pvalues was calculated by paired Wilcoxon signed rank test.

Order	Class	M	Lo we	Up	Wi dt	Class	M ea	Lo we	Up pe	Wi dt	∆mea	Δwidt
	01000	n	r	r	h	01000	n	r	r	h	n	h
Agreodo ntia	21A A_ne w	59 .8 4	54. 70	65. 11	10. 41	21AA_ recalibrat ion	60 .1 1	54. 74	65. 51	10. 77	-0.27	-0.36
Eomarsu pialia	21A A_ne w	61 .8 3	56. 43	66. 67	10. 24	21AA_ recalibrat ion	62 .2 0	56. 81	67. 32	10. 51	-0.37	-0.27
Australid elphia	21A A_ne w	64 .8 9	59. 83	69. 83	10. 00	21AA_rec alibration	65 .3 7	60. 30	70. 31	10. 01	-0.48	-0.01
Xenarthr a	21A A_ne w	60 .8 9	51. 30	67. 00	15. 70	21AA_rec alibration	62 .0 5	53. 09	67. 30	14. 21	-1.16	1.49
Paenun gulata	21A A_ne w	63 .6 5	56. 48	70. 56	14. 08	21AA_rec alibration	65 .5 2	58. 21	71. 26	13. 05	-1.87	1.03
Afroinse ctivora	21A A_ne w	66 .6 3	59. 07	74. 38	15. 31	21AA_rec alibration	68 .7 3	60. 88	75. 32	14. 44	-2.10	0.87
Afroinse ctiphilia	21A A_ne w	69 .5 8	61. 76	76. 97	15. 21	21AA_rec alibration	71 .9 1	64. 15	78. 40	14. 25	-2.33	0.96
Ferae	21A A_ne w	73 .4 2	70. 41	76. 59	6.1 8	21AA_rec alibration	74 .9 2	71. 91	78. 12	6.2 1	-1.50	-0.03
Glires	21A A_ne w	72 .0 0	69. 61	75. 54	5.9 3	21AA_rec alibration	73 .9 3	71. 26	76. 66	5.4 0	-1.93	0.53
Afrotheri a	21A A_ne w	72 .0 8	64. 51	79. 52	15. 01	21AA_rec alibration	74 .6 1	66. 90	81. 20	14. 3	-2.53	0.71
Primato morpha	21A A_ne w	75 .3 8	72. 38	78. 35	5.9 7	21AA_rec alibration	78 .2 8	75. 11	81. 60	6.4 9	-2.90	-0.52
Variama na	21A A_ne w	76 .7 0	73. 56	80. 04	6.4 8	21AA_rec alibration	78 .5 4	75. 30	81. 78	6.4 8	-1.84	0

Supplementary Table S18. The divergence time difference between all and partial calibrations from protein alignments under the autocorrelated clock.

Marsupi alia	21A A_ne w	80 .5 8	76. 48	84. 38	7.9 0	21AA_rec alibration	82 .0 1	78. 33	84. 81	6.4 8	-1.43	1.42
Euarcho ntoglires	21A A_ne w	77 .8 8	74. 72	81. 08	6.3 6	21AA_rec alibration	80 .5 8	77. 31	83. 96	6.6 5	-2.70	-0.29
Laurasia theria	21A A_ne w	79 .1 2	75. 68	82. 94	7.2 6	21AA_rec alibration	81 .1 8	77. 68	84. 88	7.2 0	-2.06	0.06
Boreoeu theria	21A A_ne w	85 .8 1	80. 79	90. 99	10. 20	21AA_rec alibration	88 .6 0	83. 72	93. 28	9.5 6	-2.79	0.64
Placenta lia	21A A_ne w	92 .2 2	85. 11	99. 78	14. 67	21AA_rec alibration	95 .5 3	88. 78	10 2.1 6	13. 38	-3.31	1.29
Eulipoty phla	21A A_ne w	71 .8 2	68. 31	75. 49	7.1 8	21AA_rec alibration	73 .0 1	69. 37	76. 60	7.2 3	-1.19	-0.05
Rodenti a	21A A_ne w	65 .7 1	64. 21	66. 94	2.7 3	21AA_rec alibration	66 .0 9	64. 90	67. 30	2.4 0	-0.38	0.33
Afrosori cida	21A A_ne w	58 .2 0	50. 07	66. 57	16. 5	21AA_rec alibration	59 .8 1	51. 53	66. 97	15. 44	-1.61	1.06
Artiodac tyla	21A A_ne w	64 .2 3	62. 06	66. 21	4.1 5	21AA_rec alibration	64 .7 5	62. 75	66. 47	3.7 2	-0.52	0.43
Primates	21A A_ne w	66 .1 9	63. 89	68. 59	4.7 0	21AA_rec alibration	71 .2 4	67. 50	75. 52	8.0 2	-5.05	-3.32
Chiropte ra	21A A_ne w	64 .9 8	62. 58	67. 12	4.5 4	21AA_rec alibration	65 .3 4	63. 05	67. 38	4.3 3	-0.36	0.21
Perissod actyla	21A A_ne w	58 .2 8	55. 58	61. 14	5.5 6	21AA_rec alibration	58 .2 7	55. 56	61. 13	5.5 7	0.01	-0.01
Carnivor a	21A A_ne w	58 .9 1	54. 41	63. 43	9.0 2	21AA_rec alibration	59 .4 2	55. 55	63. 59	8.0 4	-0.51	0.98
Lagomo rpha	21A A_ne w	54 .6 6	53. 08	56. 95	3.8 7	21AA_rec alibration	54 .6 8	53. 13	57. 05	3.9 2	-0.02	-0.05

Pilosa	21A A_ne w	50 .8 1	40. 78	58. 84	18. 06	21AA_rec alibration	51 .4 5	42. 07	58. 62	16. 55	-0.64	1.51
Scanden tia	21A A_ne w	49 .9 1	36. 87	60. 58	23. 71	21AA_rec alibration	52 .9 9	40. 53	63. 88	23. 35	-3.08	0.36
Macrosc elidea	21A A_ne w	42 .3 7	31. 84	54. 39	22. 55	21AA_rec alibration	48 .4 3	39. 38	56. 76	17. 38	-6.06	5.17
Diproto dontia	21A A_ne w	54 .5 1	49. 24	59. 92	10. 68	21AA_rec alibration	47 .8 5	43. 19	52. 95	9.7 6	6.66	0.92
Didelphi morphia	21A A_ne w	37 .8 4	25. 75	49. 13	23. 38	21AA_rec alibration	37 .4 8	29. 11	47. 74	18. 63	0.36	4.75
Sirenia	21A A_ne w	33 .8 2	30. 77	38. 26	7.4 9	21AA_rec alibration	32 .3 7	30. 50	35. 10	4.6 0	1.45	2.89
Pholidot a	21A A_ne w	29 .9 1	15. 67	42. 99	27. 32	21AA_rec alibration	27 .9 0	17. 48	40. 86	23. 38	2.01	3.94
Dasyuro morphia	21A A_ne w	29 .5 2	18. 88	39. 35	20. 47	21AA_rec alibration	26 .6 3	18. 92	34. 22	15. 30	2.89	5.17
Peramel emorphi a	21A A_ne w	26 .6 2	16. 18	37. 76	21. 58	21AA_rec alibration	26 .1 8	19. 02	33. 04	14. 02	0.44	7.56
Paucitub erculata	21A A_ne w	13 .0 2	7.3 0	16. 84	9.5 4	21AA_rec alibration	11 .7 8	7.7 2	16. 07	8.3 5	1.24	1.19
Dermop tera	21A A_ne w	17 .1 4	6.5 0	26. 61	20. 11	21AA_rec alibration	10 .9 6	6.0 1	15. 82	9.8 1	6.18	10.3
Hyracoi dea	21A A_ne w	7. 98	5.8 1	11. 08	5.2 7	21AA_rec alibration	7. 09	5.7 3	9.2 3	3.5 0	0.89	1.77
Probosci dea	21A A_ne w	9. 60	5.7 1	15. 81	10. 10	21AA_rec alibration	5. 96	4.0 2	7.6 6	3.6 4	3.64	6.46
Sum											-25.22 (p=2.3 0e- 02)	59.09 (p=4.4 6e- 05)

P-values was calculated by paired Wilcoxon signed rank test.

Reference

Meredith RW, Janečka JE, Gatesy J, et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. *Science*, **334**(6055): 521-524.

Springer MS, Emerling CA, Meredith RW, et al. 2017. Waking the undead: Implications of a soft explosive model for the timing of placental mammal diversification. *Molecular Phylogenetics and Evolution*, **106**: 86-102.

Zhou X, Xu S, Zhang P, et al. 2011. Developing a series of conservative anchor markers and their application to phylogenomics of Laurasiatherian mammals. *Molecular Ecology Resources*, **11**(1): 134-140.