SUPPLEMENTARY MATERIALS

Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat *Streptococcus pyogenes* skin and soft tissue infection

Zongsen Zou¹, Chloe L. P. Obernuefemann¹, Pardeep Singh², Jerome S. Pinkner¹, Wei Xu¹, Taylor M. Nye¹, Karen W. Dodson¹, Fredrik Almqvist^{2*}, Scott J. Hultgren^{1*}, Michael G. Caparon^{1*}

¹Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States.

²Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.

*To whom correspondence may be addressed.

SUPPLEMENTARY FIGURES

Fig. S1. GmPcide PS757 demonstrates robust bactericidal activity against the exponential- and stationary-phase of *S. pyogenes* HSC5 cells. (A) Exponential-phase (7 hours post inoculum) *S. pyogenes* HSC5 cells treated under bactericidal (20 μ M) concentration of PS757 for 12 hours were observed with > 6.0 logCFU reduction. (B) Stationary-phase (14 hours post inoculum) *S. pyogenes* HSC5 cells treated under bactericidal (20 μ M) concentration of PS757 for 12 hours were observed with > 6.0 logCFU reduction. (B) Stationary-phase (14 hours post inoculum) *S. pyogenes* HSC5 cells treated under bactericidal (20 μ M) concentration of PS757 for 12 hours were observed with > 5.0 logCFU reduction. Statistics were performed with Mann-Whitney U test. P ≤ 0.05 is considered as statistically significant. *P ≤ 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns indicates not significant.

Fig. S2. Sublethal concentration of GmPcide PS757 against *S. pyogenes* HSC5 was determined in microplate assay using C medium by measuring both **(A)** OD600 and **(B)** CFU, which identified 0.4 μ M as the sublethal concentration of PS757 against *S. pyogenes* HSC5.

Fig. S3. GmPcide PS757 treatment to different phases of *S. pyogenes* biofilm. (A)
GmPcide PS757 treatment to *S. pyogenes* HSC5 biofilm at 4 hrs during initiation phase.
(B) GmPcide PS757 treatment to *S. pyogenes* HSC5 biofilm 7 hrs during maturing development. (C) GmPcide PS757 treatment to mature *S. pyogenes* HSC5 biofilm at 24 hrs.

Fig. S4. Differentially expressed genes (DEGs) induced by PS757 treatment were identified as $log_2(FC) > 0.5$ and P < 0.05 in the comparative RNA-seq analysis. Among DEGs, two more stringent selection criteria, $|log_2(FC)|$ (A) and -log(P) (B) > 99% confidence intervals (CI) upper limits were applied to select the most up-regulated group of genes, which identified 32 most up-regulated genes featuring the involvement of two ribosomal protein-associated pathways, Rpl and Rps.

SUPPLEMENTARY TABLES

Table S1. The list of most down- and up-regulate S. pyogenes genes induced by sublethal

PS757 treatment identified by comparative transcriptomic analysis.

Differentially expressed levels (DELs)	Differentially expressed genes (DEGs)
Most down-regulated	emm5, malQ, udp, malX, nupX, ycjP, arlR, NA, NA
Most up-regulated	rpmD, opuAA, gbuB, isaA, rpsH, rpsS, rplR, rplS, rplE, rplO, secY, rpsC, rpsZ, rplF, cwlO, rplV, rplP, rpsE, rplD, rplW, rplN, rplB, oppF, rplX, rplC, rpsQ, rpoC, atpD, rpsJ, carA, brpA, mrnC, NA