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Supplementary Note

Simulated Data

Our simulation study on quantitative traits with population structure as a latent variable is
constructed in five different ways for three different proportions of variance for genetic effects,
non-genetic effects, and random noise, all of which contribute to the trait. We simulated 100
independent datasets containing m = 10, 000 individuals and n = 100, 000 markers from a quan-
titative trait model 1. Let Z be a latent variable which captures environmental factors that are
affected by population structure. Equation 1 allows interdependence of structure, lifestyle and
environment. We assume E [ϵj |zj ] ∼ N (0, σ2(zj)) allowing for heteroskedasticity of the random

noise variation [2]. Therefore, xj = (x1j , x2j , · · · , xmj)
⊤, while λj and σ2 can be thought of as

functions of zj , where Z = (z1, z2, · · · , zm). λj is unspecified but along with zj , they are assumed
to be dependent, random variables. Thus, the population genetic model is dependent on the
structural variable zj for each individual. We define the corresponding binary trait model as

log

(
Pr (yj = 1)

Pr (yj = 0)

)
= α+

m∑
i=1

βixij + λj (1)

using the Odds Ratio (OR) as the classifier for disease status from the continuous variable

y. We set Var [
∑n

i=1 βixij ], Var
[∑n

j=1 λj

]
, and Var [ϵj ] to (5%,5%,90%), (10%,0%,90%), and

(10%,20%,70%), respectively, using all possible combinations. Thus, we varied the amount of
genetic contribution to the trait for each simulation scenario, capturing variable amounts of pop-
ulation structure. We simulated ten truly associated SNPs, whose effect sizes were distributed
according to a normal distribution and we set βi = 0 for all other non-causal SNPs.

The genotype matrix X ∈ Rm×n consisting of the simulated allele frequencies was generated
using the algorithms of [1, 2]. More specifically, we set F = TS, where T ∈ Rm×d and S ∈ Rd×n,
where d ≤ n is the number of population groups. S is the indicator matrix that encapsulates
structure with n individuals and contained in d populations. On the other hand, T characterizes
how the structure is manifested in the allele frequencies of each SNP [1]. Finally, projecting S onto
the column space of T, we obtain the allele frequency matrix F. We sample X as a special case
of F for Balding-Nichols (BN), Pritchard-Stephens-Donelly (PSD), and TGP (1000 Genomes
Project) models, respectively. We formed T and S for the above five simulations with three
scenarios each and continuous traits, resulting in 15 different evaluation scenarios for continuous
and binary traits. The algorithm for constructing T and S is detailed in reference [1, 2].
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For BN, the allele frequency matrix is simulated from the HapMap phase 3 dataset using
three unrelated populations. The final genotype matrix, X, is drawn independently at random
from the binomial distribution with the parameter n set to two, denoting the allele status (0,1
or 2) corresponding to homozygous major/minor or heterozygous; the probability p is set to the
simulated allele frequency for each individual SNP. For PSD, the allele frequency matrix was
drawn from the BN frequency distribution. We simulate S using i.i.d draws from the Dirichlet
distribution with varying values of α, which denotes the parameter influencing the relatedness
between the individuals. We show results for α = {0.01, 0.1, 0.5}.

Figure 1: PCA plots of simulated data across different models with A. BN with three populations
B. PSD with three populations and α = 0.1 and C. TGP with 4 populations

Model hyperparameters

The best hyperparameters for each of the experiments presented are as follows: Simulated data:

• BN

– 5,5,90

∗ LR: 4.815 e-5

∗ Units: 128

∗ Penalty Multiplier: 0.518

– 10,20,70

∗ LR: 0.0005

∗ Units: 128

∗ Penalty Multiplier: 0.501

– 20,40,40

∗ LR: 0.0007

∗ Units: 4

∗ Penalty Multiplier: 0.710

• PSD

– 5,5,90

∗ LR: 1.257 e-5

∗ Units: 4

∗ Penalty Multiplier: 0.571

– 10,20,70
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∗ LR: 0.0095

∗ Units: 4

∗ Penalty Multiplier: 0.697

– 20,40,40

∗ LR: 0.0023

∗ Units: 256

∗ Penalty Multiplier: 0.523

• TGP

– 5,5,90

∗ LR: 2.667

∗ Units: 8

∗ Penalty Multiplier: 0.548

– 10,20,70

∗ LR: 3.949 e-5

∗ Units: 256

∗ Penalty Multiplier: 0.727

– 20,40,40

∗ LR: 0.0069

∗ Units: 32

∗ Penalty Multiplier: 0.641

UK Biobank data:

• HDL

– LR: 1.013 e-5

– Units: 128

– Penalty Multiplier: 0.546

• LDL

– LR: 3.773 e-5

– Units: 32

– Penalty Multiplier: 0.597

• BMI

– LR: 1.165 e-5

– Units: 4

– Penalty Multiplier: 0.555

• HBA1C

– LR: 4.731 e-5

– Units: 4
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– Penalty Multiplier: 0.515

• Height

– LR: 1.351 e-5

– Units: 4

– Penalty Multiplier: 0.615

Results

ANOVA test

A two-sample ANOVA test was conducted to obtain estimates for FairPRS c(ancestry). The
F-statistic p-value showed the difference in means of different racial categories (ancestries) to be
much smaller in expectation than what was obtained by the original PRS estimates from PRSice2.

Figure 2: p-values from the ANOVA test across different proportions for {vgen : venv : vnoise}

KS test

Simulated Data Kolmogorov-Smirnov (KS) two-sample tests, a goodness of fit test of equality
of the original vs. observed PRS distributions were done to test the null hypothesis of whether the
two distributions were sampled from the same unknown distribution. This resulted in very low
p-values (p < 10−160) across all simulation scenarios which rejected the null hypothesis that the
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FairPRS distributions and the original PRS distribution were sampled from the same distribution.

Proportions mean p-value Model

5 5 90 1.01E-51 BN

10 20 70 5.08E-63 BN

20 40 40 4.09E-75 BN

5 5 90 9.82E-84 PSD

10 20 70 4.33E-31 PSD

20 40 40 1.42E-34 PSD

5 5 90 3.76E-220 TGP

10 20 70 4.31E-43 TGP

20 40 40 1.06E-239 TGP

Table 1: Mean p-values for KS test for simulated data.

Real data We applied KS test on ePRS obtained from UKB across all the five traits. All of
the p-values were very small rejecting the null hypothesis.

traits Mean p-value

HDL 4.54E-66

LDL 2.58E-61

BMI 2.73E-43

Height 9.50E-78

HbA1c 6.48E-41

Table 2: Mean p-values for KS test for UKB data.
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