Supporting information

An Expanded Genetic Toolbox to Accelerate Creation of *Acholeplasma laidlawii* Driven by Synthetic Genomes

Daniel P. Nucifora¹, Nidhi D. Mehta¹, Daniel J. Giguere¹, Bogumil J. Karas^{1*}

¹ Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada

* Corresponding author: Bogumil Karas, bkaras@uwo.ca

Supplementary Figures

aat caa aa aa caa continue to the the the term of term otttaatatgaatgttccccacaattat<mark>tgtccacac</mark>at<mark>tgtggataa</mark>agtttccacatt<mark>ttattcaca</mark>atgttgataagtagcgtaagtatatttaacagccttacaaagcaaatga tacactgaaagttatccacaatttaatatttaaagaacagctaaatcaaaaagttatccacaaataatgtggaaaactttttattaaatttgtcgtttcttatgctatcatagtttta<mark>cata</mark>aattattaactcagggaggcagtc<mark>atg</mark>agtccaaacagcacactatggcagacaatattacaggatttagaaaaactatacaacgaggagacttacaacgagctatttc tactaa a tattcaa gtactccagttag a tattca tatcaca a gagga a gttattga a gaaccagtag cgg a tcg ta a a ttatcg tca a gg ta a ctta a ccattgattatcg tca a gg ta a ctta a ccattgat tatcg tca a gg ta a ctta a ccattgat a ctta a construction of the constructitctacatatacctttgactcttttgttgttggaaaatctaacatgtttgcttttcgtatggcgatgaaggttgctgatcaacctgcagcagtagcaaaccccttctacatatttggtgatgtaggtttaggtaaaacccatcttatgcaagcaataggtaactatattagataatgatgttgaaaaacgtatattatatgttaaagctgataattttattgaagactttgtatcattattatcaagaaacaaaaataagactgaagaattcaatgctaaatataaagatatagatgttatattagtggatgtatattcaaattatggccaacgctagtaaaactcaaatggaattctttaaactctttgactatctatatttaaataataagcaaattgtcattacgtctgataaaccagcttcacaattaacaaatattatgccgcgattaacaacacgttttgaagctggtctctctgtagacatacaaatacctgaattagaacatagaataagcattttaaagagaaaaacagctacattagatgcaaacttagaggtaggaggagatatcttaacctttattgcatctcaatttgcagcaaatattagagaaatggaggggggcactcattcgtttaattagttatgcacaaacctttaatctagaaataacaatggatgttgttgaagaagcacttggtgctgtcttaaaaacaaagaagaaaacaaatcaattaaacgaaaataactacgataagatccaaagtatcgttgcagattacttccaagtgtcattaccagactt aattggtaaaaaaagacatgctaaattcacattacctagacatatcgcaatgtatcttatcaaactcaaattcaatataccttataaaacgattggttctttgtttaatgatagag attaataaaaggggtaaaat

Supplementary Figure 1. Sequence of the *A. laidlawii* **8195 origin of replication.** The CDS of the DnaA gene is shown in grey, with the start codon highlighted in green and the stop codon highlighted in red. Highlighted in yellow are DnaA boxes predicted by Ori-Finder 2022.

Supplementary Figure 2. Comparison between pNZ18 and pNZ18-CAH. Bars represent the average colony counts from 4 independent electroporation experiments to an evolved *A. laidlawii* 8195 strain using 1 microgram of pNZ18 or pNZ18-CAH, with error bars showing standard error of the mean. The difference in mean colony counts between the two plasmids is not statistically significant, as calculated by a two-tailed student's t-test.

Supplementary Figure 3. Cloning a large fragment in *A. laidlawii*. A) Schematic showing the cloning of a 10 kb fragment (highlighted in blue) from the genome of *Mesoplasma florum* in pAL1, resulting in the plasmid pAL1 + 10 kb. MPX 1 screens for the 10 kb fragment, while MPX 2 and MPX 3 are controls that amplify elsewhere in the *M. florum* genome. Created with BioRender.com B) Gel electrophoresis of a multiplex PCR analysis for MPX 1 – 3. Three *A. laidlawii* colonies (AL c1 – c3) were analyzed following transformation with pAL1 + 10 kb. Positive control: *M. florum* genomic DNA. Negative controls: genomic DNA from untransformed *A. laidlawii* (AL gDNA) and sterile water.

Supplementary Tables

Supplementary Table 1. Optimization of *A. laidlawii* **transformation protocol**. Each section represents an independent transformation of pAL1 to strain 8195. All experiments were done with cultures of $OD_{600} = 0.17 - 0.25$, with a recovery time of at least 2 hours at 34°C following transformation. All colonies were counted after 6 days at 34°C.

Condition Tested	Colony Count							
Volume of Culture Used (mL)								
1	44							
1.5	8							
2	7							
3	6							
Number of Washe	s Before Transformation							
1	194							
2	10							
3	11							
Amount of DNA Transformed (µ	ıg) and use of 10 μg yeast tRNA (+ or -)							
2 -	11							
2 +	2							
3 -	20							
3 +	30							
5 -	34							
5 +	36							
10 -	45							
10 +	90							
Cell Pretreatment and Incubation (1)								
Pretreatment- 5 µg/mL chloramphenicol for 1 hour	5							
Pretreatment- 5 μg/mL tetracycline for 1 hour	4							
Pretreatment- 0.25% trypsin for 10 mins	0							
Pretreatment- ~1 mM EDTA for 10 mins	92							
Pretreatment- ~2 mM EDTA for 10 mins	111							
Pretreatment- ~5 mM EDTA for 10 mins	107							
Pretreatment- 30 mins on ice	360							
Electroporation- 400 Ω instead of 200 Ω	70							
After electroporation- 10 mins on ice	266							
After electroporation- 10 mins at room	62							
temperature								
Cell Pretreatment and Incubation (2)								
After electroporation- 10 mins at room	220							
temperature								
After electroporation- 10 mins on ice	329							
Pretreatment- ~5 mM EDTA for 10 mins	306							
Pretreatment: ~5mM EDTA for 10 mins + After	432							
transformation: 10 mins on ice								

Supplementary Table 2. Stability of pAL1 and pNZ18 in *A. laidlawii*. Plasmid stability was analyzed after 50 hours of growth at 37°C.

pNZ18									
Grown with antibiotic			Grown without antibiotic						
No selection	Neo 200	Ratio	No selection	Neo 200	Ratio				
158	180	114	613	60	10				
	pAL1								
	Grown with antibioti	с	Grown without antibiotic						
No selection	Tet 1	Ratio	No selection	Tet 1	Ratio				
184	132	72	725	70	10				

Supplementary Table 3. Comparing wild type and evolved *A. laidlawii* strains. Single-nucleotide substitutions within genes that are common to both evolved strains are shown alongside the resulting amino acid change. Bases always refer to the positive strand, and base positions are in reference to a new version of the wild type genome following resequencing. K numbers are shown for genes that could be identified by the KEGG Assign KO tool. Genes lacking annotation data are labelled CDS.

Base Position	Gene Name	K Number(s)	WT Base	Evolved Base	WT A.A.	Evolved A.A.
44670	ugpB	K10240	G	Т	А	S
79243	mmsB	K00020	G	т	G	С
133815	nusG	K02601	G	т	R	I
208623	aroF	K03856	G	т	А	S
291891	ugpE	K02026	G	т	А	S
296722	murQ	K07106	С	А	А	E
405216	CDS		G	Т	E	*
515634	ackA	K00925	G	т	R	I
571912	CDS		G	т	R	I
600951	CDS	K08153	С	А	А	S
631308	CDS		С	А	I	I
667347	amyA	K01182	С	А	R	S
731159	lolD	K02003, K02004	С	А	D	Y
834394	truB	K03177	G	Т	Р	Н
853889	rnjA	K12574	С	А	D	Y

935397	tcyP	K06956	С	А	V	L
1005041	atpA	K02111	G	Т	L	L
1013669	mdlB	K18889	С	А	E	*
1034829	CDS	K13280	G	Т	L	I
1091422	CDS		G	Т	A	E
1107090	CDS		С	A	G	V
1234106	acrR		С	A	A	D
1321675	pdhA	K00161	С	A	G	С
1401987	CDS		С	A	A	S

Supplementary Table 4. Summary of Tn5 transformation experiments to A. laidlawii.

Experiment #	Strain	OD ₆₀₀	Recovery time	Antibiotic Selection (µg/mL)	# of
			(hours)		Colonies
1	8195 <i>,</i> WT	0.2699	4	Tet1	220
2	8195 <i>,</i> WT	0.2000	2	Tet1	11
3	8195 <i>,</i> WT	0.0900	2	Tet1	0
4	8195 <i>,</i> WT	0.2297	2	Tet1	0
5	8195 <i>,</i> WT	0.2077	4	Tet1	0
6	8195 <i>,</i> WT	0.2216	4	Tet0.75	17
7	PG-8A	0.2200	2.67	Tet1	1
8	8195, Evolved	~0.25	2	Tet1	23

Supplementary Table 5. Summary of PEG transformation experiments to *A. laidlawii*. Shown for each experiment is the strain used, growth of cultures as determined by pH, the volume of cells plated after the transformation, the plasmid used for each transformation, and the colony counts for each technical replicate. Along with each group of experiments is the list of parameters changed from the standard protocol described in the methods section. Strains: WT = wild type 8195, E = strain evolved for improved electroporation, PEG = a strain transformed and cured from an earlier PEG experiment. SP4- : SP-4 lacking serum; SP4+: SP-4 supplemented with 17% horse serum. N/D – no data

			Culture	Volumed Plated		Rep	Rep	Rep		
#	Date	Strain	рН	(μL)	Plasmid	#1	#2	#3	Protocol Notes	
1	2023- 04-26	PEG	7.27	500	pAL1	0	N/D	N/D		
2	2023- 04-26	PEG	7.37	500	pAL1	0	N/D	N/D		
3	2023- 04-26	PEG	7.32	500	pAL1	0	N/D	N/D	• 2 hour DEG incubation	
4	2023- 04-26	E	7.19	500	pAL1	0	N/D	N/D	• 2-hour recovery	
5	2023- 04-26	E	7.26	500	pAL1	0	N/D	N/D		
6	2023- 04-26	E	7.38	500	pAL1	0	N/D	N/D	-	
7	2023- 05-04	PEG	7.20	500	pAL1	6	N/D	N/D	• Cultures were diluted from SP4+ to SP4+	
8	2023- 05-04	PEG	7.35	500	pAL1	10	N/D	N/D		
9	2023- 05-04	PEG	7.43	500	pAL1	20	N/D	N/D		
10	2023- 05-04	OC2	7.12	500	pAL1	1	N/D	N/D	• 1.5-nour PEG incubation • 2-hour incubation	
11	2023- 05-04	E	7.32	500	pAL1	0	N/D	N/D		
12	2023- 05-04	E	7.40	500	pAL1	0	N/D	N/D		
13	2023- 05-12	PEG	7.53	500	pAL1	20	N/D	N/D	 Cultures were diluted from SP4+ to SP4+ 	
14	2023- 05-12	PEG	7.65	500	pAL1	125	N/D	N/D	 1.5-hour PEG incubation 	
15	2023- 05-12	PEG	7.69	500	pAL1	35	N/D	N/D	• 2-hour recovery	
16	2023- 05-12	PEG	7.44	500	pAL1	36	N/D	N/D	 Cultures were diluted from SP4+ to SP4+ 	

17	2023- 05-12	PEG	7.61	500	pAL1	5	N/D	N/D	 1.5-hour PEG incubation
18	2023- 05-12	PEG	7.57	500	pAL1	0	N/D	N/D	 2-hour recovery Used a pool of cured PEG-transformed strains
19	2023- 05-19	WТ	6.89	500	pAL1	0	N/D	N/D	
20	2023- 05-19	WT	7.14	500	pAL1	2	N/D	N/D	
21	2023- 05-19	WT	7.29	500	pAL1	0	N/D	N/D	
22	2023- 05-19	WТ	7.41	500	pAL1	0	N/D	N/D	
23	2023- 05-19	WТ	7.53	500	pAL1	0	N/D	N/D	• Cultures were diluted from SP4- to SP4+
24	2023- 05-19	E	6.69	500	pAL1	2	N/D	N/D	 2-hour PEG incubation 1.5-hour recovery
25	2023- 05-19	E	7.05	500	pAL1	14	N/D	N/D	
26	2023- 05-19	Е	7.27	500	pAL1	0	N/D	N/D	
27	2023- 05-19	E	7.43	500	pAL1	2	N/D	N/D	
28	2023- 05-19	E	7.54	500	pAL1	0	N/D	N/D	
29	2023- 05-19	WT	6.89	500	pAL1	0	N/D	N/D	
30	2023- 05-19	WT	7.14	500	pAL1	0	N/D	N/D	
31	2023- 05-19	WT	7.29	500	pAL1	0	N/D	N/D	
32	2023- 05-19	WT	7.41	500	pAL1	0	N/D	N/D	• Cultures were diluted from SP4- to SP4+
33	2023- 05-19	WТ	7.53	500	pAL1	0	N/D	N/D	incubation
34	2023- 05-19	WT	6.89	500	pNZ18	0	N/D	N/D	
35	2023- 05-19	WT	7.14	500	pNZ18	0	N/D	N/D	
36	2023- 05-19	WT	7.29	500	pNZ18	0	N/D	N/D	

37	2023- 05-19	WT	7.41	500	pNZ18	0	N/D	N/D	
38	2023- 05-19	WT	7.53	500	pNZ18	0	N/D	N/D	
39	2023- 05-19	E	6.69	500	pAL1	0	N/D	N/D	
40	2023- 05-19	E	7.05	500	pAL1	1	N/D	N/D	
41	2023- 05-19	E	7.27	500	pAL1	1	N/D	N/D	
42	2023- 05-19	E	7.43	500	pAL1	1	N/D	N/D	
43	2023- 05-19	Е	7.54	500	pAL1	0	N/D	N/D	
44	2023- 05-19	Е	6.69	500	pNZ18	1	N/D	N/D	
45	2023- 05-19	Е	7.05	500	pNZ18	0	N/D	N/D	
46	2023- 05-19	Е	7.27	500	pNZ18	0	N/D	N/D	
47	2023- 05-19	Е	7.43	500	pNZ18	0	N/D	N/D	
48	2023- 05-19	Е	7.54	500	pNZ18	0	N/D	N/D	
49	2023- 06-01	WT	7.29	200	pAL1	0	0	N/D	
50	2023- 06-01	WT	7.38	200	pAL1	0	0	N/D	
51	2023- 06-01	WT	7.49	200	pAL1	0	0	N/D	
52	2023- 06-01	WT	7.64	200	pAL1	0	0	N/D	• Cultures were diluted
53	2023- 06-01	Е	7.23	200	pAL1	0	0	N/D	from SP4+ to SP4+ • 3-hour PEG incubation
54	2023- 06-01	Е	7.32	200	pAL1	0	0	N/D	• 1-hour recovery
55	2023- 06-01	E	7.40	200	pAL1	0	0	N/D	
56	2023- 06-01	E	7.54	200	pAL1	0	0	N/D	
57	2023- 06-01	PEG	7.43	200	pAL1	0	0	N/D	

58	2023- 06-01	PEG	7.48	200	pAL1	0	0	N/D	
59	2023- 06-01	PEG	7.62	200	pAL1	0	0	N/D	
60	2023- 06-01	PEG	7.74	200	pAL1	0	0	N/D	
61	2023- 06-06	PEG	7.42	200	pAL1	0	N/D	N/D	 Culture was diluted from SP- to SP+ 2x Fusion Buffer contained 250 mM NaCl 2-hour PEG incubation 1.5-hour recovery
62	2023- 06-06	PEG	7.42	200	pAL1	1	N/D	N/D	 Culture was diluted from SP- to SP+ 2x Fusion Buffer contained 250 mM NaCl 2-hour total PEG incubation: 1-hour incubation without DNA, 1-hour incubation after DNA was added 1.5-hour recovery
63	2023- 06-06	PEG	7.42	200	pAL1	0	N/D	N/D	 Culture was diluted from SP- to SP+ 2-hour PEG incubation 1.5-hour recovery
64	2023- 06-06	PEG	7.42	200	pAL1	8	N/D	N/D	 Culture was diluted from SP- to SP+ 2-hour total PEG incubation: 1-hour incubation without DNA, 1-hour incubation after DNA was added 1.5-hour recovery
65	2023- 06-07	WТ	7.13	200	pAL1	0	0	0	
66	2023- 06-07	WT	7.27	200	pAL1	0	0	0	• Cultures were diluted from SP- to SP+
67	2023- 06-07	WT	7.47	200	pAL1	0	0	0	 2-hour PEG incubation 1.5-hour recovery
68	2023- 06-07	E	7.31	200	pAL1	0	0	0	

69	2023- 06-07	E	7.50	200	pAL1	0	0	0	
70	2023- 06-07	E	7.65	200	pAL1	0	0	0	
71	2023- 06-07	PEG	7.10	200	pAL1	0	0	0	
72	2023- 06-07	PEG	7.29	200	pAL1	0	0	0	
73	2023- 06-07	PEG	7.46	200	pAL1	0	0	0	
74	2023- 06-20	PEG	6.90	200	pAL1	0	0	0	• Cultures were diluted
75	2023- 06-20	PEG	7.18	200	pAL1	0	0	0	from SP- to SP+ • 3-hour total PEG
76	2023- 06-20	PEG	7.35	200	pAL1	0	0	0	incubation: 1-hour incubation without DNA,
77	2023- 06-20	PEG	7.47	200	pAL1	1	2	1	2-hour incubation after DNA was added
78	2023- 06-20	PEG	7.58	200	pAL1	0	0	0	• 1-hour recovery
79	2023- 06-21	PEG	6.93	200	pAL1	0	0	0	Cultures were diluted
80	2023- 06-21	PEG	7.15	200	pAL1	0	0	0	from SP- to SP+ • 2-hour total PEG
81	2023- 06-21	PEG	7.34	200	pAL1	1	0	0	incubation: 1-hour incubation without DNA,
82	2023- 06-21	PEG	7.46	200	pAL1	1	1	0	1-hour incubation after DNA was added
83	2023- 06-21	PEG	7.55	200	pAL1	5	1	1	• 1.5-hour recovery
84	2023- 06-23	PEG	7.01	200	pAL1	0	0	0	Cultures were diluted
85	2023- 06-23	PEG	7.19	200	pAL1	1	0	0	from SP- to SP+ •2-hour total PEG
86	2023- 06-23	PEG	7.36	200	pAL1	1	0	0	incubation: 1-hour incubation without DNA,
87	2023- 06-23	PEG	7.44	200	pAL1	2	1	1	1-hour incubation after DNA was added
88	2023- 06-23	PEG	7.52	200	pAL1	2	0	0	• 1.5-hour recovery

Supplementary Table 6. List of primers used for the creation and screening of the Tn5 TetM cassette. Underlined sequences show 19-bp mosaic ends.

Primer Name	Sequence (5' - 3')	Description			
BK2348_F	<u>ctgtctcttatacacatctg</u> cggccgctccctttagtga	<pre>stctcttatacacatctgcggccgctccctttagtgagggttaatgtcgt</pre>			
BK2348_R	<u>ctgtctcttatacacatct</u> gctactagtattattatgt	ctgtctcttatacacatctgctactagtattattatgtgattttgttgaa			
Primer Name	Sequence (5' - 3')	Size (bp)	Description		
BK2580_F	tcacgcattacgtaaaatgg	300 bp	Primer for screening TetM gene		
BK2580_R	aaagaacagttttggaaacgaa	300 bp	Primer for screening TetM gene		

Supplementary Table 7. List of primers used in the construction of pAL1. Underlined sequences show parts of the primer that bind to the template, where the remaining sequence is an overhang that adds an overlapping region of homology.

Name	Sequence (5' - 3')	Description
BK1970_F	acgtatcagtaaagatttaaaaagattaggatttaaatttgggcccgatcg	Amplifies ARSH4
	<u>ccaacaaat</u>	
BK1970 R		Amplifies ARSH4
BRID/0_R	ctgtaactt	
BK1971 F		Amplifies pMB1 replicon, AmpR
	gcctaatgagt	
BK1971 R	taaatacaactttaccggttagcttaaccttatctccatcgggcccgcggaa	Amplifies pBM1 replicon, AmpR
	cccctatt	1 1 1 1.
BK1972 F	tgtatttagaaaaataaacaaataggggttccgcgggcccgatggagata	Amplifies Homology 1
_	aggttaagct	
BK1972_R	caagctcttactatattaccctgttatccctagcgtaact <u>cttaaaagaaag</u>	Amplifies Homology 1
	atactact	
BK1973_F	ttcttttaagagttacgctagggataacagggtaatatag <u>taagagcttggt</u>	Amplifies HIS3, CEN6
	gagcgcta	
BK1978_R	cgctataatgaccccgaagcagggttatgcagcggaagat <u>tttacatcttc</u>	Amplifies HIS3, CEN6
	ggaaaacaa	
BK1981_F	$ataacaaagaagaaataataattaataaaaggggtaaaat \underline{tccctttagt}$	Amplifies TetM
	gagggttaat	
BK1974_R	tcgacctgcaggcatgcaagcttggcgtaatcatggtcatgctactagtatt	Amplifies TetM
	attatgtg	
BK1975_F	cgttatatgttcaacaaaatcacataataatactagtagc <u>atgaccatgatt</u>	Amplifies LacZa
	acgccaag	
BK1975_R	tatatattttacacttatttaatacttaattcaaaaaata <u>ctatgcggcatca</u>	Amplifies LacZα
	gagcaga	
BK1976_F	atggtgcactctcagtacaatctgctctgatgccgcatag <u>tattttttgaatt</u>	Amplifies Puro
	aagtatt	
BK1976_R	ctagttaaagtagacatctacatactccggaaaatctata <u>tttaataataa</u>	Amplifies Puro
	aaaatcggg	
BK1977_F	taacaaaaaatcgggaaatcccgatttttattattaaa <u>tatagattttcc</u>	Amplifies Homology 2
	ggagtatg	

BK1977_R	agagcaaggtaaaaggtagtatttgttggcgatcgggccc <u>aaatttaaatc</u> <u>ctaatcttt</u>	Amplifies Homology 2	
BK1979_F	aattaaagaaaaaatagtttttgttttccgaagatgtaaa <u>atcttccgctgc</u> <u>ataaccct</u>	Amplifies OriT	
BK1979_R	aagaaaagcaaggtttcataagaaaggtggttttttgatt <u>gatcgtcttgcc</u> <u>ttgctcgt</u>	Amplifies OriT	
BK1980_F	gagctgtaagtacatcaccgacgagcaaggcaagacgatc <u>aatcaaaaa</u> <u>accacctttct</u>	caaggcaagacgatc <u>aatcaaaaa</u> Amplifies OriC	
BK1980_R	agggttttcccagtcacgacattaaccctcactaaaggga <u>attttacccctt</u> <u>ttattaat</u>	Amplifies OriC	

Supplementary Table 8. List of primers used to construct and screen pAL1 with a 10 kb fragment cloned from *Mesoplasma florum*. Underlined sequences in assembly primers that amplify the 10 kb fragment show parts that bind to the template, where the remaining sequence is an overhang that adds an overlapping region of homology.

Name	Sequence (5' - 3')		Description
BK3056_F	GGGCCCGATCGCCAACAAATACTACCTTTACCTTGCTCT		Linearizes pAL1
BK3056_R	aaatttaaatcctaatctttttaaatctttactgatacgt		Linearizes pAL1
BK3057_F	gatatatctaaacgtatcagtaaagatttaaaaagattaggatttaaattt <u>at</u>		Amplifies 10 kb fragment from M.
	gaaaaaatgcttttaagcttaactgc		<i>florum</i> genome
BK3958_R	GAGAGCAGGAAGAGCAAGGTAAAAGGTAGTATTTGTTGG		Amplifies 10 kb fragment from M.
	CGATCGGGCCC <u>atcttctcttgtttcaatgtaagcaaataa</u>		<i>florum</i> genome
Primer Name	Sequence (5' - 3')	Product Size (bp)	Description
		218	Primer for screening 10 kb insert
BK3063_F	tgaacaatttgctagagccaga		
		218	Primer for screening 10 kb insert
BK3063_R	ctgcatttgaagaaggcgta		
		349	Control primer for screening M.
BK3064_F	tccaatagaaatgtctccacaaga		<i>florum</i> genome
		349	Control primer for screening M.
BK3064_R	ccaacgtttggtctaccaacta		<i>florum</i> genome
		597	Control primer for screening M.
BK3065_F	agaagcaaaatgactggtgaaa		<i>florum</i> genome
		597	Control primer for screening M.
BK3065_R	cctcgaaagcctgtttacctt		<i>florum</i> genome

Supplementary Methods

Whole-Genome Sequencing.

Cultures of *A. laidlawii* PG-8A and 8195 were grown to a high density, and genomic DNA was extracted using the Monarch High Molecular Weight DNA Extraction Kit (New England Biolabs). Genomic DNA was sequenced using a 9.4.1 Flongle flow cell with the RBK004 rapid barcoding kit following library preparation as instructed by the manufacturer (Oxford Nanopore Technologies). The Flongle flow cell was refueled during the sequencing run to improve output. Runs were basecalled using Guppy v4.5.2 in high-accuracy mode, and the resulting output was assembled using Flye v2.8.1. Genome maps were generated using a custom R script following annotation with Prokka and alignment with minimap2, samtools, and mosdepth^{1–5}. Putative DnaA boxes were identified with Ori-Finder 2022⁶. For identifying restriction genes, draft genomes were annotated with RAST⁷. To compare wild type and evolved strains, genomic DNA was isolated the same way, and all strains were sequenced at Plasmidsaurus (plasmidsaurus.com).

Finding Mutations in Evolved Strains.

Following whole-genome sequencing of wild type and two evolved *A. laidlawii* strains, genomes were aligned using GSAlign⁸. A custom Python script using BioPython⁹ was used to predict amino acid changes from the resulting GSAlign output. A list of common mutations between the two sequenced evolved strains was created. Genes were assigned K numbers using the KEGG Assign KO tool, and corresponding K numbers were submitted to the Reconstruct tool to identify gene pathways and networks¹⁰.

Screening for the Tetracycline Marker and *M. florum* fragments.

Wild type and Tn5-TetM *A. laidlawii* were screened using Multiplex PCR (Qiagen) with primers listed in Supplementary Table 4. 1 μ L of *A. laidlawii* genomic DNA or 1 ng of the Tn5 cassette was used as template. The thermocycler was programmed for 95°C for 5 minutes, 20 cycles of 94°C for 30 seconds, 57°C for 90 seconds, and 72°C for 90 seconds, followed by a final extension of 72°C for 10 minutes. *A. laidlawii* colonies transformed with pAL1 + 10 kb plasmids were screened the same way using primers listed in Supplementary Table 6, but the number of PCR cycles was increased from 20 to 25.

Plasmid Construction.

The plasmid pAL1 was constructed through homologous recombination of overlapping fragments in yeast. All plasmid parts were first PCR-amplified using PrimeSTAR GXL DNA Polymerase (Takara Bio) with primers that added 40 bp of overlapping homology to each end: assembly primers are listed in Supplementary Table 5. The fragments were then combined in roughly equimolar amounts and co-transformed into *S. cerevisiae* spheroplasts; preparation of spheroplasts has been described previously¹¹. Following spheroplast recovery, plasmid DNA was isolated and transformed to *E. coli* Epi300. Individual *E. coli* colonies were screened for the correctly assembled plasmid. The high copy pMB1 replicon, ampicillin resistance gene, and lacZα sequences were amplified from pUC19. The CEN6 and HIS3 sequences were amplified from pDMI2.0 (Karas lab), and the ARSH4 sequence was amplified from pAGE1.0¹². The tetracycline marker, TetM, was isolated from genomic DNA of *Mesoplasma florum* L1-T-ΔRE¹³. *A. laidlawii* sequences (homology 1 and 2, origin of replication) were amplified from *A. laidlawii* 8195 genomic DNA. The origin of transfer was amplified from Pmod-yeast oriT (Karas lab). The puromycin marker was amplified from a previous *A. laidlawii* plasmid version, which was originally amplified from Pmod-yeast (Karas lab).

A version of pAL1 carrying a 10 kb insert was creating by first using PCR to linearize pAL1 between the homology 2 site and the pUC19 backbone. A 10 kb fragment was then PCR amplified from *Mesoplasma florum* L1-T-ΔRE genomic DNA with primers that add 50 - 51 bp of overlapping homology to the plasmid. The fragments were assembled in *S. cerevisiae* as described above.

A. laidlawii Plasmid Recovery and Digest.

Following transformation experiments, 20 *A. laidlawii* transformants from each plasmid were passed on solid media with the appropriate antibiotic. 10 colonies were then inoculated to 10 mL of SP-4 media. Once grown, cells were pelleted, and DNA was isolated using alkaline lysis with Buffers P1, P2, and P3 (Qiagen) followed by alcohol precipitation. Approximately 1 μ L of isolated DNA (~20 – 200 ng) was used to transform *E. coli* as described previously: pAL1 was transformed to strain Epi300, and pNZ18 was transformed to strain MC1061. For each transformation, plasmid DNA was miniprepped from two *E. coli* colonies using EZ-10 Spin Columns (BioBasic). pAL1 and pNZ18 were then digested in a 20- μ L reaction with 6 units of EcoRV-HF and 3 units of PshAI (New England Biolabs), respectively, at 37°C for approximately 1 hour.

Plasmid Stability Assay.

A single colony of *A. laidlawii* 8195 harboring either pAL1 or pNZ18 was grown in SP-4 supplemented with tetracycline and neomycin, respectively. Cultures were grown to a high density before being diluted to OD₆₀₀ = 0.01 in i) SP-4 supplemented with the appropriate selective antibiotic and ii) SP-4 without selective antibiotic. After 50 hours of growth at 37°C, cultures were serially diluted and plated on solid SP-4 with and without selective antibiotics. All colonies were counted after 6 days at 37°C, and the ratio of colonies grown on non-selective and selective media was calculated.

Transformation to E. coli.

Electrocompetent *E. coli* were prepared by washing cells from 50 mL cultures ($OD_{600} = 0.5 - 0.8$) three times with ice-cold ddH₂O and concentrating cells in 10% glycerol. Typically, 30 µL of electrocompetent cells was combined with plasmid DNA in a 1.5 mL tube before transferring the cell/DNA mix to a pre-chilled 2 mm electrocuvette. The cuvette was pulsed using the same conditions described for *A. laidlawii*. Cells were recovered in 750 µL - 1 mL SOC media (5 mL 2M MgCl₂, 10 mL 250 mM KCl, 20 mL 1 M glucose, 0.5 g/L NaCl, 5 g/L yeast extract, 20 g/L Tryptone) with shaking at 225 rpm for 1 hour at 37°C before plating. For some transformations, electrocompetent *E. coli* Transformax Epi300 cells (Lucigen) were used.

PEG Transformation to A. laidlawii.

A culture of *A. laidlawii* 8195 was diluted in SP-4 supplemented with 17% horse serum and grown at 32°C for 16 – 24 hours. 1 mL of culture was centrifuged at 15,596 x g for 5 - 10 minutes at room temperature. Cells were washed with 1 mL of S/T Buffer (250 mM NaCl, 10 mM Tris-HCl [pH = 6.5]) and centrifuged as before. Supernatant was discarded; the cells were resuspended in 200 μ L 0.1 M CaCl₂ and incubated on ice for 30 minutes. Next, the cells were added to a 50 mL conical tube containing 400 μ L of SP-4 minus serum, 1 μ L of yeast tRNA (10 μ g/ μ L), 1 μ g of plasmid DNA, and an equal volume of a modified 2x fusion buffer (500 mM NaCl, 20 mM MgCl₂, 20% PEG 8000, 20 mM Tris-HCl [pH = 6.5]: pH adjusted to 6.5). The cells were pipetted gently to mix and incubated at 32°C for 1 - 3 hours. 5 mL of prewarmed SP-4 plus serum was added, and the cells were left to recover at 32°C for 1 - 2 hours. Finally, the cells were centrifuged at 3,000 x g and 4°C for 20 minutes. Supernatant was discarded, the pellets were resuspended in 1 mL of SP-4 minus serum, and 200 - 500 μ L was plated on SP-4 plates supplemented with appropriate antibiotics. Typically, colonies were counted after 6 days at 32°C.

REFERENCES

- 1. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069 (2014).
- 2. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34, 3094–3100 (2018).
- 3. Li, H. New strategies to improve minimap2 alignment accuracy. *Bioinformatics* **37**, 4572–4574 (2021).
- 4. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, giab008 (2021).
- 5. Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. *Bioinformatics* **34**, 867–868 (2018).
- 6. Dong, M. J., Luo, H. & Gao, F. Ori-Finder 2022: A Comprehensive Web Server for Prediction and Analysis of Bacterial Replication Origins. *Genomics Proteomics Bioinformatics* **20**, 1207–1213 (2022).

- 7. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., *et al.* The RAST Server: Rapid annotations using subsystems technology. *BMC Genomics* **9**, 75 (2008).
- Lin, H. N. & Hsu, W. L. GSAlign: An efficient sequence alignment tool for intra-species genomes. *BMC Genomics* 21, 182 (2020).
- 9. Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., *et al.* Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* **25**, 1422–1423 (2009).
- 10. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* 28, 27–30 (2000).
- 11. Karas, B. J., Jablanovic, J., Sun, L., Ma, L., Goldgof, G. M., *et al.* Direct transfer of whole genomes from bacteria to yeast. *Nat Methods* **10**, 410–412 (2013).
- 12. Brumwell, S. L., MacLeod, M. R., Huang, T., Cochrane, R. R., Meaney, R. S., *et al.* Designer Sinorhizobium meliloti strains and multi-functional vectors enable direct inter-kingdom DNA transfer. *PLoS One* **14**, e0206781 (2019).
- 13. Baby, V., Labroussaa, F., Brodeur, J., Matteau, D., Gourgues, G., *et al.* Cloning and Transplantation of the Mesoplasma florum Genome. *ACS Synth Biol* **7**, 209–217 (2018).