

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Risk Factors and Glycemic Control in Small for Gestational Age Infants Born to Mothers with Gestational Diabetes Mellitus: A Case-Control Study Utilizing Propensity Score Matching Based on a Large Population

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-078325
Article Type:	Original research
Date Submitted by the Author:	30-Jul-2023
Complete List of Authors:	Li, JiaNing; Fujian Medical University School of Nursing; Fujian Maternal and Child Health Hospital, affiliated hospital of Fujian Medical University Pan, Yu-qing; Fujian Provincial Maternity and Children's Hospital Zheng, Qingxiang; Fujian Provincial Maternity and Children's Hospital Chen, Xiao Qian; Fujian Provincial Maternity and Children's Hospital Jiang, Xiu Min; Fujian Maternal and Child Health Hospital, affiliated hospital of Fujian Medical University, Liu, RuLin; Fujian Medical University School of Nursing; Fujian Provincial Maternity and Children's Hospital Zhu, Yu; Fujian Medical University School of Nursing; Fujian Provincial Maternity and Children's Hospital Huang, Ling; Fujian University of Traditional Chinese Medicine; Fujian Provincial Maternity and Children's Hospital
Keywords:	Risk Factors, Diabetes in pregnancy < DIABETES & ENDOCRINOLOGY, Child protection < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		TITLE PAGE
2	Title	
3	Risk Factors and Glycem	ic Control in Small for Gestational Age Infants Born to Mothers with
4	Gestational Diabetes Me	ellitus: A Case-Control Study Utilizing Propensity Score Matching
5	Based on a Large Popula	tion
6	List of all authors	
7	Jianing Li ^{1,2,#}	MSc student, BSc (Nursing)
8	Yuqing Pan ^{2,3,#}	MD, RN, Nurse
9	Qingxiang Zheng ^{2, 3}	MD, RN, Nurse
0	Xiaoqian Chen ^{2,3}	MD, RN, Nurse
1	Xiumin Jiang ^{2, *}	MPA, RN, Associate Professor
12	Rulin Liu ¹	MSc student, BSc (Nursing)
3	Yu Zhu ¹	MSc student, BSc (Nursing)
14	Ling Huang ⁴	MSc student, BSc (Nursing)
15		
6	[#] Jianing Li and Yuqing	g Pan are the co-first authors and contribute equally.
7	¹ School of Nursing, Fuji	an Medical University, Fuzhou City, Fujian Province, China
8	² Fujian Maternity and C	Child Health Hospital College of Clinical Medicine for Obstetrics &
19	Gynecology and Pediatri	cs, Fujian Medical University, Fuzhou City, Fujian Province, China
20	³ Fujian Obstetrics and G	ynecology Hospital, Fuzhou City, Fujian Province, China
21	⁴ School of Nursing, Fuj	ian University of Traditional Chinese Medicine, Fuzhou City, Fujian
22	Province, China	
23		
	* Corresponding author	
24	* Corresponding author Name: Xiu-Min Jiang	
24 25	÷ •	
 23 24 25 26 27 	Name: Xiu-Min Jiang	<u>m</u>

29	
30	Risk Factors and Glycemic Control in Small for Gestational Age Infants Born to
31	Mothers with Gestational Diabetes Mellitus: A Case-Control Study Utilizing Propensity
32	Score Matching Based on a Large Population
33	Abstract
34	Background: Small for gestational age (SGA) poses a significant concern for newborns, being
35	linked to neonatal complications and potential metabolic disorders in adulthood, especially
36	when born to mothers with gestational diabetes, elevating their risk of complications and
37	mortality. However, the pregnancy risk factors and glycemic control associated with SGA
38	infants born to mothers with gestational diabetes mellitus (GDM) remain unclear.
39	Aims: To identify the pregnancy risk factors and glycemic control associated with SGA infants
40	born to mothers with GDM.
41	Method: This case-control study was conducted in Fujian among 1910 women with GDM.
42	Data were collected by the integrated electronic medical record system. Using 1:4 propensity
43	scores matching analysis to adjust gestational age as confounder. Univariate and multivariate
44	analyses were performed to identify risk factors.
45	Results: Risk factors for SGA born to mothers with GDM included a history of low birth weight,
46	gestational hypertension, oligohydramnios, short maternal height, underweight pre-pregnancy
47	BMI, and inadequate weight growth. While SGA was protected by weakly positive ketonuria
48	levels in the first trimester, multiparous, anemia, and previous uterine scar were protective
49	factors for SGA. Moreover, 2h postprandial glucose in the third trimester, as well as the 0 h and
50	2 h 75g Oral Glucose Tolerance Test (OGTT) were linked to a decreased risk of SGA. $_2$

BMJ Open

3		
4		
5		
6		
7		
8		
9		
1	^	
1	0	
1	1	
1	2	
1		
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
י כ	0	
2	1	
2	י 2	
2	2 3	
2	3	
2	4	
2	5	
າ	б	
2	7	
2	8	
2	9	
3	0	
	1	
3	2	
3		
	4	
	5	
3		
3		
3		
3	9	
4	0	
4		
4		
4		
4		
4		
4		
4		
4		
4		
	0	
5	1	
5		
5		
	4	
5		
	5 6	
-		
-		
5		
5		
6	٥	

71

1 2

> 51 Conclusions: SGA infants are the result of multifactorial interactions among GDM pregnant 52 women. Notably, OGTT and glycemic control levels were associated with SGA. There is a 53 need for enhanced perinatal monitoring and antenatal care to reduce SGA. 54 Strengths and limitations of this study 55 Propensity score matching effectively controlled for confounding variables and reduced 56 bias, enhancing the study's result validity. This approach provided credible insights into 57 risk factors and glycemic control for SGA infants born to mothers with GDM. 58 A large population size increases statistical power, enabling the detection of subtle 59 associations and providing more generalizable findings. 60 As a case-control study relying on retrospective data from medical records, there might be 61 incomplete or missing information that could influence the study outcomes. 62 The findings may primarily apply to the specific population from which the data was 63 collected, limiting their generalizability to other regions or diverse populations. 64 Keywords: Gestational diabetes mellitus; Small for gestational age; Pregnancy risk factors; 65 Glycemic control 66 67 Background 68 Gestational diabetes mellitus (GDM) is a glucose intolerance that develops or first 69 becomes detectable during pregnancy [1], which has the most common metabolic disease and 70 affected up to 25% of pregnant women [2]. GDM is becoming more common in China, with

> 72 long-term maternal and fetal health issues, particularly associated with accelerated growth

14.8% of pregnant women suffering from the disease [3]. It causes a slew of short-term and

BMJ Open

velocity. Fetuses receive increased amounts of glucose through maternal hyperglycemia, which promotes insulin secretion and increases fetal growth [4]. Furthermore, hyperglycemia causes placental vascular dysfunction, reducing the supply of oxygen and nutrients to the fetus [5]. There is still 2.7% GDM pregnant women deliver children that have fetal growth restrictions (FGR) [6]. The incidence of small for gestational age (SGA) infants whose mothers had GDM was 6.45% in China [7], but it is little research is known about SGA infants born to Chinese women with GDM.

SGA infants are commonly defined as having birth weight below the 10th percentile for a given gestational age and sex [8], including constitutionally small infants without pathological growth restriction. In China, the total number of SGA births is the fifth highest in the world [9], which imposes a tremendous medical and socioeconomic burden. SGA infants have an increased risk of adverse perinatal outcomes: stillbirth, asphyxia, or birth defects. Additionally, compared to infants of appropriate for gestational age (AGA), SGA infants are prone to have poor cognitive or psychological outcomes as well as metabolic diseases, such as type 2 diabetes, insulin resistance, and arterial hypertension in adulthood [10], [11]. In addition, GDM has been linked to delayed development and stunted fetal growth [12], which may exacerbate the adverse health outcomes of SGA. Epidemiological studies have shown that SGA infants born to mothers with GDM have higher rates of neonatal complications or death [13], [14]. They are also at higher risk of developing long-term cardiovascular offspring hospitalization [15]. Given the seriousness of the consequences, identifying its potential influencing factors is of great significance for the screening and prevention of SGA births among GDM pregnant women.

Maternal glycemia is well known to be associated with perinatal outcomes, including

95	influencing offspring' birthweight [16]. According to Hyperglycemia and Adverse Pregnancy
96	outcomes (HAPO), women with higher glucose levels are considered to be at greater risk.
97	Currently, the goals of prenatal treatment are still tight glucose monitoring and strict glucose
98	control [17], [18]. As a result, the portion of women who experience hypoglycemia is generally
99	deemed to be at low risk for antenatal care. Several investigations have reported an association
100	between maternal hypoglycemia and FGR or SGA [19]-[22]. Particularly, Asian women with
101	low glucose levels are vulnerable to delivering infants with FGR [6]. Whereas other researchers
102	haven't reached a similar conclusion [23]. Presently, the related pregnancy factors for SGA
103	born to women with GDM remain unclear. Moreover, few studies have examined the maternal
104	glycemic level associated with SGA infants born to mothers with GDM. After the diagnosis of
105	GDM, timely recognition of glycemic abnormalities is critical for normal fetal growth and
106	development. Consequently, the purpose of this study was to explore the influencing factors
107	during pregnancy associated with SGA infants born to mothers with GDM in China.
108	Method
109	Study design and population
110	This case-control study included pregnancies affected by GDM who delivered between
111	January 2019 and December 2020 from a tertiary Maternal and Child Health Hospital in Fuzhou
112	City, Fujian Province. All pregnant women followed a routine prenatal care protocol and
113	scheduled frequent visits to the health system to identify risk factors and initiate preventive care
114	measures [24].
115	Eligible participants were pregnant women diagnosed with GDM based on 75 grams oral
116	glucose tolerance test (OGTT) between 24–32 weeks' gestation according to the modified 5

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

117	International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria [25],
118	when one or more of the following glucose levels were elevated: fasting plasma glucose level
119	\geq 5.1 mmol/L, 1 h plasma glucose level \geq 10.0 mmol/L, and 2 h plasma glucose level \geq 8.5
120	mmol/L [25]. The pregnant women with multiple gestations, a clinical diagnosis of
121	pregestational diabetes mellitus (PGDM), or overt diabetes (fasting plasma glucose (FBG) \geq
122	7.0 mmol/L or 2-h \geq 11.0 mmol/L) were excluded. A total of 6,839 participants were enrolled,
123	all of whom had complete demographic and clinical data.
124	All participants included in this study were divided into the SGA group (case group, <10th
125	percentile), AGA group (controlling group, between 10 and 90th percentile), and LGA group
126	(>90th percentile) according to the association between gestational age and birth weight.
127	Finally, for each SGA infant, four gestation age-matched AGA infants were randomly selected
128	using PSM analysis with gestation age-matched (Figure 1).
129	Data collection and study outcomes
130	Maternal demographic characteristics, pregnancy characteristics and pregnancy
131	complications, and outcomes were collected retrospectively by one researcher from the
132	electronic medical record database of the one hospital in our study. In addition, we collected
133	glycemic levels including 75g OGTT glycemia, FPG in the 3rd trimester, and 2-h postprandial

GDM were stratified into 1, 2, or 3 items of abnormal OGTT values, respectively (Supplementary material 1).

glucose in the 3rd trimester. Based on the number of abnormal OGTT values, women with

The primary outcome of this study was SGA babies born to women with GDM.
 Gestational age was determined by subtracting the date of last menstrual period (LMP) reported
 6

139	by the mother or by the first ultrasound scan (USS) from the date of birth. SGA was defined as
140	birth weight below the 10th percentile for gestational age and sex, based on birth weight curves
141	in Chinese [26], [27].
142	Statistical analysis
143	All statistical analyses were performed using IBM SPSS, version 27.0, and R, version
144	4.1.3. We applied a 1:4 nearest-neighbor matching with a caliper of 0.01, a preset value for
145	propensity score matching (PSM), to lessen the potential selection bias and obtain matched data
146	The outcomes were compared between the SGA group and the AGA group among GDM
147	pregnant women. Continuous variables were presented as mean ± standard deviation (SD) or as
148	medians (interquartile range [IQR] 25th percentile-75th percentile), compared by using
149	independent t-test or the Mann-Whitney test Categorical variables were presented as the
150	frequency with percentages and analyzed by the Chi-square test or Fisher's exact test.
151	We examined the risk factors associated with SGA infants born to mothers with GDM
152	using the Binary logistic regression model. Variables were carefully chosen to ensure
153	parsimony of the final model (forward LR, entry 0.05, removal 0.10). Further, to explore the
154	association between maternal glycemic levels and SGA, adjusted for parity, previous uterine
155	scar, history of low birth weight, gestational hypertensive disorder, oligohydramnios, anemia,
156	pre-pregnancy BMI, height, GWG rate, and ketonuria in 1st trimester. A two-sided p-value of
157	< 0.05 was considered statistically significant in all analyses.
158	Ethics approval

This study was approved by the Ethics Committee (No.2019-161). Given all maternal and
 neonatal data were extracted from the hospital EMR system by a unique identifier with no
 7

2	
3	
4 5	
6	
7	
8 9	
10	
11 12	
12 13	
14	
15 16	
17	
18	
19 20	
21	
22 23	
24	
25	
26 27	
28	
29 30	
31	
32	
33 34	
35	
36 37	
38	
39	
40 41	
42	
43 44	
45	
46	
47 48	
49	
50 51	
52	
53	
54 55	
56	
57 58	
50 59	
60	

161 participant involved in the design, the written informed consent was waived.

162 **3 Results**

163 **3.1 Selection of GDM pregnant women**

A total of 6,839 GDM pregnant women were enrolled in the study according to eligible and exclusion criteria, including 382 SGA infants, 964 LGA infants, and 5,493 AGA infants. After the 1:4 PSM analysis, 382 SGA infants were selected and 1,528 AGA infants were randomly matched with the SGA group according to the gestational age at birth (Figure 1). After propensity analysis, the mean (*SD*) gestational age at birth was 38.6 (*SD* = 1.61) weeks in the AGA group and 38.59 (*SD* = 1.62) weeks in the SGA group, there was no evidence of differences in the gestational age between the two groups (P = 0.983).

171 **3.2** Characteristics and univariate analysis of AGA and SGA

The average age of the participants was 31.67 (SD = 4.36) years old. Among all women, Han Chinese accounts for 97.91%. Approximately 50% of the participants in both groups had a college or university education. More than 50% of the women in the SGA group were nulliparous, which was slightly more than the percentage of women in the AGA group (35.3%) who were nulliparous (P < 0.001). The previous uterine scar was shown statistically significant (P < 0.05).

178 Regarding the pregnancy history, there was no statistically significant evidence of 179 differences in the history of abortion or miscarriage, history of preterm delivery, history of fetal 180 distress, and history of GDM. While statistically significant evidence of differences in history 181 of macrosomia (P = 0.012) and history of low birth weight (P = 0.04).differences in 182 oligohydramnios (P < 0.001) and anemia (P=0.034) were statistically significant in terms of the 8

183 pregnancy complications.

In addition, height, pre-pregnancy BMI, and GWG rate were shown statistically significant (all P < 0.05). Regarding the glycemic level, 75g OGTT 0 h and 2 h glycemia, ketonuria in 1st trimester, fasting glucose, and 2-h postprandial glucose in the 3rd trimester were shown statistically significant (P < 0.05). The characteristics of the SGA group and AGA group are presented in Table 1.

3.3 Multivariable logistic regression analysis for the factors of SGA

The multivariable analysis indicated that history of low birth weight (OR=5.01, 95%CI 1.21-20.72, P=0.026) was an independent risk factor for SGA. Mothers with gestational hypertensive disorder were more likely to have SGA (Gestational hypertension: OR=2.78, 95%CI 1.68-4.59, $P \le 0.001$; preeclampsia and eclampsia: OR=6.31, 95%CI 3.35-11.91, $P \le$ 0.001). The risk of SGA was fourfold greater in pregnant women with oligohydramnios than in women with normal amniotic fluid (OR=4.22, 95%CI $2.5-7.12, P \le 0.001$). Mothers with lower height had a higher risk of SGA (150–154.9 cm: OR=2.02,95% CI1.46-2.79, P < 0.001; 145– 149.9 cm: OR=1.95, 95%CI 1.21-3.14, P=0.006; <145 cm: OR =7.42, 95%CI 1.76-31.25, P=0.006) compared with >155cm height. Underweight pre-pregnancy had a 64% more chance of SGA (OR = 1.64, 95%CI 1.17-2.3, P = 0.004) than normal. Also, mothers who had inadequate weight gain during pregnancy had a 37% more chance of SGA than appropriate gain (OR=1.37, 95%CI 1.05-1.8, *P* = 0.023).

However, the multivariate analysis also revealed that multiparous was a protective factor (OR=0.55, 95%CI 0.43-0.71, P < 0.001) compared to nulliparity. The SGA risk was reduced by previous uterine scar experience (OR=0.57, 95%CI 0.39-0.83, P=0.004). Anemia was Page 11 of 34

1 2

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
~	

60

associated with a decreased incidence of SGA (OR=0.71, 95%CI 0.53-0.96, P=0.027). Two or three items with elevated blood glucose values on OGTT showed a lower probability of SGA (OR=0.67,95%CI 0.52-0.86, P=0.002; OR=0.32, 95%CI 0.18-0.55, P < 0.001) than one elevated item. Ketonuria levels ranging from 0.5 to 3.9 mmol/l in the 1st trimester had a lower risk of SGA than < 0.5 mmol/l. (OR=0.59, 95%CI 0.42-0.81, P=0.001). The forest map of multivariate logistic regression analysis is shown in Figure 2. **3.4 Association between Blood glucose level and the risk of SGA**

212 We further explored the relationship between OGTT, glycemic control level in 3rd 213 trimester and SGA. Specifically, multivariate analysis revealed that when adjusted for parity, 214 previous uterine scar, history of low birth weight, gestational hypertensive disorder, 215 oligohydramnios, anemia, pre-pregnancy BMI, height, GWG rate, and ketonuria in 1st trimester. 216 75g OGTT 0 h glycemia, 75g OGTT 2 h glycemia, and 2-h postprandial glucose in 3rd trimester 217 were associated with a decreased risk for SGA (OR=0.44, 95% CI 0.32-0.6, P < 0.001; 218 OR=0.89, 95% CI 0.82-0.96, P=0.003; OR = 0.84, 95% CI 0.76-0.93, P<0.001). Nevertheless, 219 75g OGTT 0 h glycemia had a stronger association with SGA outcomes than 2-h OGTT and 220 2-h postprandial glucose in 3rd trimester did. While there were no significant associations 221 between 75g OGTT 1 h glycemia, FPG in 3rd trimester and SGA (Table 2).

222 4 Discussion

In this retrospective study, some key maternal demographic characteristics (height, BMI, and GWG rate), pregnancy characteristics (parity, previous uterine scar, and history of LBW), pregnancy complications (hypertensive disorders, oligohydramnios, and anemia), OGTT (0h,

2	
3 4	
5	
6 7	
8	
9	
10 11	
12	
13 14	
14 15	
16 17	
17 18	
19	
20 21	
21	
23	
24 25	
26	
27 28	
29	
30	
31 32	
33	
34 35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
46	
47 48	
49	
50	
51 52	
53	
54 55	
56	
57 58	
58 59	
60	

226 2h) and glycemic control level (2-h postprandial glucose in the 3rd trimester) were identified227 as risk factors for SGA in GDM.

228 Maternal height exerts the most significant effect. Our results also confirmed maternal 229 stature <145 cm is a strong indicator for SGA, which was similar to previous studies [28]. This 230 may contribute to inadequate self-nutrition in GDM pregnant women who were short stature, 231 while the shift to a sugar-controlled diet may have a significant impact on the adequate supply 232 of nutrients for fetal growth. Further, GWG and BMI both reflect maternal nutritional status. 233 This study found that inadequate weight gain and underweight BMI were associated with an 234 increased risk of SGA in women with GDM, similar to previous findings. [29]. This may be 235 due to pregnant women who were inadequate weight gain or were underweight may have 236 chronic malnutrition, which is harmful to fetal growth and development. Thus, health 237 education, pregnancy nutrition monitoring, and personalized nutrition therapy should be 238 provided to women diagnosed with GDM by the hospital.

239 Nulliparous pregnant women with GDM were associated with an increased risk of SGA 240 birth outcomes in this study. A retrospective study in Chinese suggested that nulliparity was 241 associated with an increased risk of SGA [30]. This could be explained by multiparous women 242 having higher uteroplacental blood flow, allowing the fetus to access more energy, and a larger 243 uterine cavity creating favorable conditions for fetal growth [30]. While nulliparous women 244 with a higher pulsatility index of uterine artery (UtA-PI) and higher blood impedance than 245 multiparous women, resulting in less uteroplacental perfusion, blood flow and SGA [31], [32]. 246 Apart from physiological reasons, first-time mothers with GDM have even less experience in managing the demands of dietary change and glycemic control. Cesarean sections are preferred 247 11

BMJ Open

by Chinese women. In 2018, the rate of Chinese maternal cesarean section was 36.7%, the highest in Asia [33]. In this research, having a history of previous uterine scar reduced the risk of giving birth to SGA among GDM pregnant women. The reason could be concluded that the previous uterine scar may be the established association between the multiparous and high rate of cesarean section in China.

Women with GDM are also at an increased risk for Hypertensive disorders (HD) due to insulin resistance and underlying pathology of the metabolic syndrome [34]. HD is closely associated with birth weight [35], and GDM combined with HD increases the risk of adverse outcomes. This corresponds with our findings that gestational hypertension as well as preeclampsia and eclampsia are risk factors for delivering SGA in pregnant women with GDM. HD can cause maternal umbilical blood vessel spasms and systemic small arterial spasms, which affect maternal-fetal circulation and insufficient oxygen supply, thus affecting the intrauterine growth and development of the fetus [36]. With hypertensive disorders, the decrease of serum vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) levels and the increase of soluble fms-like tyrosine kinase-1 (sFLT-1) levels may reflect underlying placental dysfunction and are related to fetal growth and development inhibition [37], [38]. Oligohydramnios may be accompanied by complicated pregnancy, such as hypertensive disorders [39]. This could be a sign of chronic suboptimal placental function [40], which might reduce fetal resources and are associated with SGA. Thus, maternal blood pressure should be closely monitored and regular ultrasound examinations should be performed to assess changes in her condition.

269 Contrary to earlier research, this study discovered that maternal anemia during pregnancy 12

270 reduces the incidence of SGA [41]. The reason could be that women with GDM pay close 271 attention to their diet, including supplementation recommended by their obstetrician to correct 272 anemia. As a result, they may be able to reduce the risk of SGA with appropriate nutritional 273 supplementation. Besides, the effect of anemia on pregnancy outcomes varies between 274 gestational periods. Therefore, further research is needed to investigate the effect of hemoglobin 275 concentration on SGA at different gestational ages.

There is no doubt that maternal glycemic parameter levels influence fetal growth [42]. Compared with GDM women having only one hyperglycemic value in OGTT, those with 2 or 3 elevated glucose values may decrease the risk of SGA. This may contribute to a more severe disturbance in glucose metabolism and insulin sensitivity. Blood glucose passes through the placental circulation to the fetus, and extra glucose in the fetus is stored as body fat [43]. Besides, OGTT-0h and OGTT-2h were found to be significant predictors of SGA when the glucose values were analyzed as continuous variables. Therefore, for GDM women with high fasting glucose and 2h OGTT are less likely to deliver SGA infants and therefore need to be aware of their potential to deliver high birth weight newborns. In addition, GDM women with low 0h and 2h OGTT do not need for excessively rigorous strict glucose control throughout pregnancy, but should be concerned about the occurrence of FGR. It is therefore important to adjust their dietary, exercise and insulin management strategies according to their glycaemic status. As a result, their nutritional measures, exercise, and insulin administration must be tailored to their glycemic condition.

The results of the multifactorial analysis showed that 2-h postprandial glucose in the 3rd
 trimester was associated with delivering SGA in pregnant women with GDM. 2-h postprandial
 13

BMJ Open

glucose after GDM diagnosis can reflect the appropriateness of a diet modification plan [44]. In clinical practice, pregnant women are advised to control their glycemic levels when diagnosed with GDM. However, due to fear of insulin and lack of knowledge about GDM treatment options, some women may follow an overly strict diet. Consequently, maternal glucose regulation is inadequate, which can lead to fetal undergrowth [20]. Hence, pregnant women diagnosed with GDM should be warned of the potential risk of SGA if they are found to have low glucose values. Besides, more attention should be paid to glucose status in the practice of maternal and child health care. Understanding the glycemic status is an important step in adjusting the diet and exercise plan, ideally to ensure normal fetal development and avoid SGA.

Limitation

There are a few limitations to our analysis. Firstly, data regarding women's history of smoking and drinking was not recorded. Although the incidence of smoking and drinking among pregnant women is low due to Chinese customs, smoking and drinking experience may be potential contributors to SGA. Secondly, data was collected from a single hospital and may not be representative of other areas. Thirdly, this study is a case-control study even though a PSM analysis was conducted to minimize the bias.

Conclusion

SGA infants born to women with GDM are the result of a multifactorial interaction, including maternal demographic characteristics, pregnancy characteristics, pregnancy complications and clinical and laboratory parameters. Notably, SGA was correlated with OGTT and glycemic control levels. It is difficult to reverse once SGA has occurred, perinatal

314	monitoring and antenatal care are crucial for identifying risk factors that can help predict and
315	prevent SGA.
316	
317	DECLARATION
318	Ethics approval and consent to participate
319	This study was performed in accordance with the Declaration of Helsinki. The study was
320	approved by the Ethical Committee of Fujian Maternal and Child Health Hospital, affiliated
321	hospital of Fujian Medical University, China (No: 2019-161). As this was a retrospective case-
322	control study involving review of medical records, informed consent from individual
323	participants was not obtained. However, all data collected were treated confidentially and used
324	solely for the purpose of this study. Measures were taken to ensure the privacy and anonymity
325	of the patients' information.
326	Consent for publication
327	Not applicable.
328	Availability of data and materials
329	The dataset supporting the conclusions is available from the corresponding author on
330	reasonable request.
331	Conflict of interest
332	No conflict of interest has been declared by the authors.
333	Funding Statement
334	The study was supported by the Nursing Research Fund of Fujian Maternity and Child Health
335	Hospital (YCXH 22-13).

2		
3		
4 5	336	Author contributions
5 6		
7	337	Jianing Li and Yuqing Pan: Writing- Original draft preparation, Writing- Reviewing and
8		
9	338	Editing, Visualization. Xiumin Jiang: Supervision, Conceptualization. Qingxiang Zheng and
10		
11 12	339	Xiaoqian Chen: Methodology, Validation. Yu Zhu, Rulin Liu and Ling Huang: Investigation,
13		
14	340	Data curation.
15	510	
16 17	341	Advanta
18	541	Acknowledgments
19	2.42	
20	342	Thanks to all participants for their valuable contribution to this study.
21		
22 23	343	
24		
25	344	Reference
26	345	[1] L. Reitzle <i>et al.</i> , 'Gestational diabetes in Germany: Development of screening
27 28		
28	346	participation and prevalence', Robert Koch-Institut, report, Jun. 2021. doi:
30	347	10.25646/8325.
31	348	[2] A. A. Choudhury and V. Devi Rajeswari, 'Gestational diabetes mellitus - A metabolic
32	349	and reproductive disorder', Biomedicine & Pharmacotherapy, vol. 143, p. 112183, Nov.
33 34	350	2021, doi: 10.1016/j.biopha.2021.112183.
35	351	[3] C. Gao, X. Sun, L. Lu, F. Liu, and J. Yuan, 'Prevalence of gestational diabetes mellitus
36	352	in mainland China: A systematic review and meta-analysis', J Diabetes Investig, vol. 10,
37	353	no. 1, pp. 154–162, Jan. 2019, doi: 10.1111/jdi.12854.
38	354	[4] J. Pedersen, 'Weight and Length at Birth of Infants of Diabetic Mothers', Acta
39 40	355	Endocrinologica (Norway), vol. 16, no. 4, pp. 330-342, Aug. 1954, doi:
41	356	10.1530/acta.0.0160330.
42	357	[5] I. M. Langmia <i>et al.</i> , 'Cardiovascular Programming During and After Diabetic Pregnancy:
43	358	Role of Placental Dysfunction and IUGR', <i>Front Endocrinol (Lausanne)</i> , vol. 10, p. 215,
44 45	359	Apr. 2019, doi: 10.3389/fendo.2019.00215.
46		
47	360	[6] A. U. Nayak, A. M. A. Vijay, R. Indusekhar, S. Kalidindi, V. M. Katreddy, and L.
48	361	Varadhan, 'Association of hypoglycaemia in screening oral glucose tolerance test in
49	362	pregnancy with low birth weight fetus', World J Diabetes, vol. 10, no. 5, pp. 304–310,
50 51	363	May 2019, doi: 10.4239/wjd.v10.i5.304.
52	364	[7] J. Chen <i>et al.</i> , 'Demographic and Clinical Features of Small-for-Gestational-Age Infants
53	365	Born to Mothers With Gestational Diabetes Mellitus', Frontiers in Pediatrics, vol. 9,
54	366	2021, Accessed: Nov. 19, 2022. [Online]. Available:
55 56	367	https://www.frontiersin.org/articles/10.3389/fped.2021.741793
56 57	368	[8] R. A. Pilliod, Y. W. Cheng, J. M. Snowden, A. E. Doss, and A. B. Caughey, 'The risk of
58	369	intrauterine fetal death in the small-for-gestational-age fetus', Am J Obstet Gynecol, vol.
59		
60		16

BMJ Open

1 2			
2 3	270		
4	370		207, no. 4, p. 318.e1-6, Oct. 2012, doi: 10.1016/j.ajog.2012.06.039.
5	371	[9]	A. C. C. Lee <i>et al.</i> , 'National and regional estimates of term and preterm babies born small
6	372		for gestational age in 138 low-income and middle-income countries in 2010', Lancet Glob
7	373		Health, vol. 1, no. 1, pp. e26-36, Jul. 2013, doi: 10.1016/S2214-109X(13)70006-8.
8 9	374	[10]	R. P. Anne et al., 'Propensity-Matched Comparison of Very Preterm Small- and
9 10	375		Appropriate-for-Gestational-Age Neonates', Indian J Pediatr, vol. 89, no. 1, pp. 59–66,
11	376		Jan. 2022, doi: 10.1007/s12098-021-03878-3.
12		F117	
13	377	[11]	
14	378		risk of small-for-gestational-age infants', Sci Rep, vol. 10, p. 19865, Nov. 2020, doi:
15	379		10.1038/s41598-020-76845-1.
16 17	380	[12]	A. Yuste Gómez, M. del P. Ramos Álvarez, and J. L. Bartha, 'Influence of Diet and
17	381		Lifestyle on the Development of Gestational Diabetes Mellitus and on Perinatal Results',
19	382		Nutrients, vol. 14, no. 14, p. 2954, Jul. 2022, doi: 10.3390/nu14142954.
20	383	[13]	
21	384	[15]	'Increased risk of neonatal complications or death among neonates born small for
22			
23	385		gestational age to mothers with gestational diabetes', Diabetes Research and Clinical
24 25	386		Practice, vol. 159, p. 107971, Jan. 2020, doi: 10.1016/j.diabres.2019.107971.
26	387	[14]	T. F. Esakoff, A. Guillet, and A. B. Caughey, 'Does small for gestational age worsen
27	388		outcomes in gestational diabetics?', The Journal of Maternal-Fetal & Neonatal Medicine,
28	389		vol. 30, no. 8, pp. 890–893, Apr. 2017, doi: 10.1080/14767058.2016.1193142.
29	390	[15]	E. Neimark, T. Wainstock, E. Sheiner, L. Fischer, and G. Pariente, 'Long-term
30	391	Γ.1	cardiovascular hospitalizations of small for gestational age (SGA) offspring born to
31 32	392		women with and without gestational diabetes mellitus (GDM) ‡', <i>Gynecol Endocrinol</i> ,
33			-
34	393	F1 (7	vol. 35, no. 6, pp. 518–524, Jun. 2019, doi: 10.1080/09513590.2018.1541233.
35	394	[16]	L. N. R. Alves <i>et al.</i> , 'Investigation of maternal polymorphisms in genes related to glucose
36	395		homeostasis and the influence on birth weight: a cohort study', J Pediatr (Rio J), vol. 98,
37	396		no. 3, pp. 296–302, Sep. 2021, doi: 10.1016/j.jped.2021.06.007.
38 39	397	[17]	X. Cao et al., 'Comprehensive intensive therapy for Chinese gestational diabetes benefits
40	398		both newborns and mothers', Diabetes Technol Ther, vol. 14, no. 11, pp. 1002–1007, Nov.
41	399		2012, doi: 10.1089/dia.2012.0142.
42	400	[18]	S. Morampudi, G. Balasubramanian, A. Gowda, B. Zomorodi, and A. S. Patil, 'The
43	401	[-•]	Challenges and Recommendations for Gestational Diabetes Mellitus Care in India: A
44 45	401		
45 46			Review', Front Endocrinol (Lausanne), vol. 8, p. 56, Mar. 2017, doi:
47	403	F4 07	10.3389/fendo.2017.00056.
48	404	[19]	T. Dassios, A. Greenough, S. Leontiadi, A. Hickey, and N. A. Kametas, 'Admissions for
49	405		hypoglycaemia after 35 weeks of gestation: perinatal predictors of cost of stay', J Matern
50	406		Fetal Neonatal Med, vol. 32, no. 3, pp. 448-454, Feb. 2019, doi:
51 52	407		10.1080/14767058.2017.1381905.
52 53	408	[20]	J. Leng et al., 'Small-for-gestational age and its association with maternal blood glucose,
53 54	409	r .]	body mass index and stature: a perinatal cohort study among Chinese women', <i>BMJ Open</i> ,
55	410		vol. 6, no. 9, p. e010984, Sep. 2016, doi: 10.1136/bmjopen-2015-010984.
56		[21]	
57	411	[21]	I. B. Delibas, S. Tanriverdi, and B. Cakmak, 'Does reactive hypoglycemia during the 100
58 50	412		g oral glucose tolerance test adversely affect perinatal outcomes?', Ginekol Pol, vol. 89,
59 60			17
00			

1			
2 3	413		no. 1, pp. 25–29, 2018, doi: 10.5603/GP.a2018.0005.
4	414	[22]	S. Shinohara, Y. Uchida, M. Hirai, S. Hirata, and K. Suzuki, 'Relationship between
5 6	415	[]	maternal hypoglycaemia and small-for-gestational-age infants according to maternal
7	416		weight status: a retrospective cohort study in two hospitals', <i>BMJ Open</i> , vol. 6, no. 12, p.
8	417		e013749, Dec. 2016, doi: 10.1136/bmjopen-2016-013749.
9 10	418	[23]	M. Morikawa <i>et al.</i> , 'Glycemic control and fetal growth of women with diabetes mellitus
11	419	Γ-1	and subsequent hypertensive disorders of pregnancy', PLOS ONE, vol. 15, no. 3, p.
12	420		e0230488, Mar. 2020, doi: 10.1371/journal.pone.0230488.
13 14	421	[24]	W. Hu, H. Hu, W. Zhao, A. Huang, Q. Yang, and J. Di, 'Current status of antenatal care
15	422		of pregnant women-8 provinces in China, 2018', <i>BMC Public Health</i> , vol. 21, no. 1, p.
16	423		1135, Jun. 2021, doi: 10.1186/s12889-021-11154-4.
17 18	424	[25]	International Association of Diabetes and Pregnancy Study Groups Consensus Panel et
19	425		<i>al.</i> , 'International association of diabetes and pregnancy study groups recommendations
20	426		on the diagnosis and classification of hyperglycemia in pregnancy', <i>Diabetes Care</i> , vol.
21	427		33, no. 3, pp. 676–682, Mar. 2010, doi: 10.2337/dc09-1848.
22 23	428	[26]	L. Dai <i>et al.</i> , 'Population-based birth weight reference percentiles for Chinese twins', <i>Ann</i>
24	429		Med, vol. 49, no. 6, pp. 470–478, Sep. 2017, doi: 10.1080/07853890.2017.1294258.
25	430	[27]	B. Zhang et al., 'Birthweight percentiles for twin birth neonates by gestational age in
26 27	431		China', <i>Sci Rep</i> , vol. 6, p. 31290, Aug. 2016, doi: 10.1038/srep31290.
28	432	[28]	R. Khanam <i>et al.</i> , 'Maternal short stature and under-weight status are independent risk
29	433		factors for preterm birth and small for gestational age in rural Bangladesh', Eur J Clin
30 31	434		<i>Nutr</i> , vol. 73, no. 5, pp. 733–742, May 2019, doi: 10.1038/s41430-018-0237-4.
32	435	[29]	QX. Zheng et al., 'Prepregnancy body mass index and gestational weight gain are
33	436		associated with maternal and infant adverse outcomes in Chinese women with gestational
34 35	437		diabetes', Sci Rep, vol. 12, no. 1, p. 2749, Feb. 2022, doi: 10.1038/s41598-022-06733-3.
36	438	[30]	L. Lin, C. Lu, W. Chen, C. Li, and V. Y. Guo, 'Parity and the risks of adverse birth
37	439		outcomes: a retrospective study among Chinese', BMC Pregnancy Childbirth, vol. 21, p.
38 39	440		257, Mar. 2021, doi: 10.1186/s12884-021-03718-4.
40	441	[31]	F. Prefumo, A. Bhide, S. Sairam, L. Penna, B. Hollis, and B. Thilaganathan, 'Effect of
41	442		parity on second-trimester uterine artery Doppler flow velocity and waveforms',
42 43	443		Ultrasound Obstet Gynecol, vol. 23, no. 1, pp. 46–49, Jan. 2004, doi: 10.1002/uog.908.
43 44	444	[32]	I. Derwig et al., 'Association of placental perfusion, as assessed by magnetic resonance
45	445		imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy
46	446		outcome', Placenta, vol. 34, no. 10, pp. 885-891, Oct. 2013, doi:
47 48	447		10.1016/j.placenta.2013.07.006.
49	448	[33]	J. Qiao et al., 'A Lancet Commission on 70 years of women's reproductive, maternal,
50	449		newborn, child, and adolescent health in China', Lancet, vol. 397, no. 10293, pp. 2497-
51 52	450		2536, Jun. 2021, doi: 10.1016/S0140-6736(20)32708-2.
53	451	[34]	Y. Baumfeld et al., 'Pre-Conception Dyslipidemia Is Associated with Development of
54	452		Preeclampsia and Gestational Diabetes Mellitus', <i>PLoS One</i> , vol. 10, no. 10, p. e0139164,
55 56	453		Oct. 2015, doi: 10.1371/journal.pone.0139164.
57	454	[35]	N. Li et al., 'Preconception Blood Pressure and Risk of Low Birth Weight and Small for
58	455		Gestational Age: A Large Cohort Study in China', Hypertension, vol. 68, no. 4, pp. 873-
59 60			18
00			

60

2		
3	456	879, Oct. 2016, doi: 10.1161/HYPERTENSIONAHA.116.07838.
4 5	457	[36] V. A. Luyckx et al., 'Effect of fetal and child health on kidney development and long-
6	458	term risk of hypertension and kidney disease', Lancet, vol. 382, no. 9888, pp. 273–283,
7	459	Jul. 2013, doi: 10.1016/S0140-6736(13)60311-6.
8 9	460	[37] Y. Tang, W. Ye, X. Liu, Y. Lv, C. Yao, and J. Wei, 'VEGF and sFLT-1 in serum of PIH
9 10	461	patients and effects on the foetus', <i>Exp Ther Med</i> , vol. 17, no. 3, pp. 2123–2128, Mar.
11	462	2019, doi: 10.3892/etm.2019.7184.
12	463	[38] M. Badagionis, T. N. Sergentanis, P. Pervanidou, E. Kalampokas, N. Vlahos, and M.
13	464	Eleftheriades, 'Preeclampsia and Cerebral Palsy in Offspring', <i>Children (Basel)</i> , vol. 9,
14 15	465	no. 3, p. 385, Mar. 2022, doi: 10.3390/children9030385.
16	466	[39] N. Rabie, E. Magann, S. Steelman, and S. Ounpraseuth, 'Oligohydramnios in complicated
17	400 467	and uncomplicated pregnancy: a systematic review and meta-analysis', <i>Ultrasound</i>
18		
19 20	468	<i>Obstet Gynecol</i> , vol. 49, no. 4, pp. 442–449, Apr. 2017, doi: 10.1002/uog.15929.
21	469	[40] M. Vahid Dastjerdi, A. Ghahghaei-Nezamabadi, A. Tehranian, and M. Mesgaran, 'The
22	470	Effect of Sildenafil on Pregnancy Outcomes in Pregnant Women With Idiopathic
23	471	Borderline Oligohydramnios: A Randomized Controlled Trial', <i>J Family Reprod Health</i> ,
24 25	472	vol. 16, no. 2, pp. 124–131, Jun. 2022, doi: 10.18502/jfrh.v16i2.9482.
26	473	[41] D. Liu et al., 'Maternal Hemoglobin Concentrations and Birth Weight, Low Birth Weight
27	474	(LBW), and Small for Gestational Age (SGA): Findings from a Prospective Study in
28	475	Northwest China', Nutrients, vol. 14, no. 4, p. 858, Feb. 2022, doi: 10.3390/nu14040858.
29 30	476	[42] Z. He et al., 'Late-Pregnancy Dysglycemia After Negative Testing for Gestational
31	477	Diabetes and Risk of the Large-for-Gestational-Age Newborns: A Nest Case-Control
32	478	Study Based on the Xi'an Longitudinal Mother-Child Cohort Study', Front Pediatr, vol.
33	479	10, p. 829706, May 2022, doi: 10.3389/fped.2022.829706.
34 35	480	[43] H. D. McIntyre, J. Fuglsang, U. Kampmann, S. Knorr, and P. Ovesen, 'Hyperglycemia
36	481	in Pregnancy and Women's Health in the 21st Century', International Journal of
37	482	Environmental Research and Public Health, vol. 19, no. 24, Dec. 2022, doi:
38	483	10.3390/ijerph192416827.
39 40	484	[44] L. Monnier and C. Colette, 'Target for Glycemic Control', <i>Diabetes Care</i> , vol. 32, no.
41	485	Suppl 2, pp. S199–S204, Nov. 2009, doi: 10.2337/dc09-S310.
42	486	
43	487	
44 45	107	
46		
47		
48		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59 60		19
		1/

 Abv: GDM: gestational diabetes mellitus; PSM: propensity score matching; AGA: appropriate for gestational age; LGA: Large for gestational age; SGA: small for gestational age. 		
 for gestational age; LGA: Large for gestational age; SGA: small for gestational age. Figure 2 Forest plot of the risk factors of SGA (Binary logistic regression analysis). 	488	Figure 1 Flow diagram of selection of GDM pregnant women in this study
491 492 Figure 2 Forest plot of the risk factors of SGA (Binary logistic regression analysis).	489	Abv: GDM: gestational diabetes mellitus; PSM: propensity score matching; AGA: appropriate
 Figure 2 Forest plot of the risk factors of SGA (Binary logistic regression analysis). 	490	for gestational age; LGA: Large for gestational age; SGA: small for gestational age.
	491	
493	492	Figure 2 Forest plot of the risk factors of SGA (Binary logistic regression analysis).
	493	
		~~
20		20

	AGA group	SGA group		
Variables	(n=1528)	(n=382)	$x^2/t/Z$	Р
Maternal Age				
18~35	1220(79.8)	305(79.8)	0.063ª	0.969
36~45	305(20)	76(19.9)		
≥46	3(0.2)	1(0.3)		
Nationality				
The Han	1498(98)	372(97.4)	0.638 ^a	0.424
Minority nationality	30(2)	10(2.6)		
Residence				
Urban	825(54)	196(51.3)	0.884 ^a	0.347
Rural	703(46)	186(48.7)		
Education				
Elementary and below	528(34.6)	126(33)	3.476 ^a	0.324
Secondary / Highschool	223(14.6)	45(11.8)		
College / University	770(50.4)	210(55)		
Postgraduate or above	7(0.5)	1(0.3)		
Occupation				
Manual worker	284(18.6)	69(18.1)	2.074ª	0.557
Mental worker	708(46.3)	192(50.3)		
Unemployed	381(24.9)	86(22.5)		
Freelance	155(10.1)	35(9.2)		
Marital status				
Unmarried	27(1.8)	8(2.1)	1.179ª	0.555
Married	1497(98)	374(97.9)		
Divorced or widowed	4(0.3)	0(0)		
Parity				
Nulliparous	539(35.3)	195(51)	32.130ª	< 0.00
Multiparous	989(64.7)	187(49)		
Assisted reproductive technology (ART)	· · · · · ·			
No	1446(94.6)	362(94.8)	.010ª	0.919
Yes	82(5.4)	20(5.2)		
Previous uterine scar		()		
No	1196(78.3)	337(88.2)	19.089ª	<0.00
Yes	332(21.7)	45(11.8)		
Family history				
No	1367(89.5)	336(88)	2.809ª	0.422
Hypertension	76(5)	26(6.8)		
Diabetes	46(3)	13(3.4)		

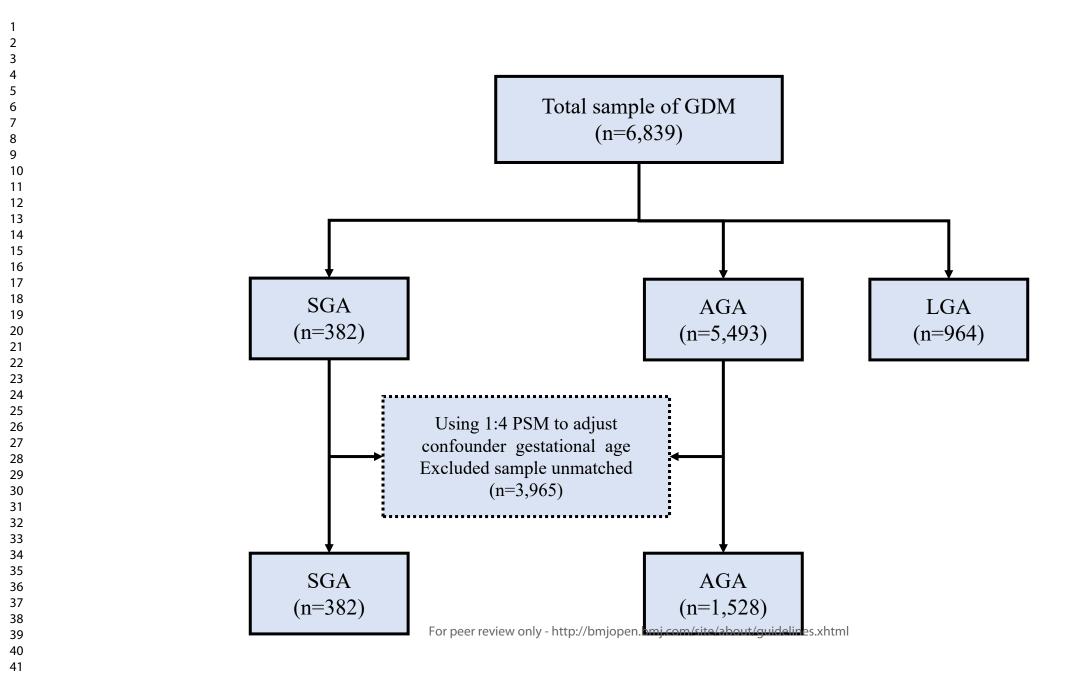
Both	39(2.6)	7(1.8)		
History of abortion or miscarriage				
No	896(58.6)	251(65.7)	6.393 ^a	0.041
Spontaneous miscarriage	348(22.8)	71(18.6)		
Induced abortions	284(18.6)	60(15.7)		
History of preterm delivery				
No	1467(96)	368(96.3)	.087ª	0.768
Yes	61(4)	14(3.7)		
History of macrosomia				
No	1481(96.9)	379(99.2)	6.290ª	0.012
Yes	47(3.1)	3(0.8)		
History of GDM		- ()		
No	1523(99.7)	382(100)	1.253ª	0.263
Yes	5(0.3)	0(0)		
History of fotal distress	5(0.5)	0(0)		
No	1512(99)	380(99.5)	.897ª	0.343
Yes	16(1)	2(0.5)	.097	0.515
History of low birth weight	10(1)	2(0.3)		
	1523(99.7)	376(98.4)	8.252ª	0.004
s No Ves	· · · · ·	, ,	8.232	0.004
Introhonatia abalastasia of programary	5(0.3)	6(1.6)		
(ICP) No	1508(98.7)	377(98.7)	.000ª	1.000
Vag		, ,	.000	1.000
	20(1.3)	5(1.3)		
6 Gestational hypertensive disorder	1421(02.7)	224(94.9)	24.0(7)	~0.001
110	1431(93.7)	324(84.8)	34.867ª	<0.001
Gestational hypertension	62(4.1)	31(8.1)		
Preeclampsia and eclampsia Chronic hypertension with	27(1.8)	22(5.8)		
Chronic hypertension with	4(0.3)	3(0.8)		
superimposed preeclampsia	4(0,2)			
Chronic hypertension (of any cause)	4(0.3)	2(0.5)		
, No	1487(97.3)	376(98.4)	1.576 ^a	0.209
Yes	41(2.7)	6(1.6)		
Hypothyroid				
No	1434(93.8)	349(91.4)	3.045 ^a	0.081
Yes	94(6.2)	33(8.6)		
Anemia				
No	1149(75.2)	307(80.4)	4.508 ^a	0.034
Yes	379(24.8)	75(19.6)		
Polyhydramnios				
)	22			
	22			

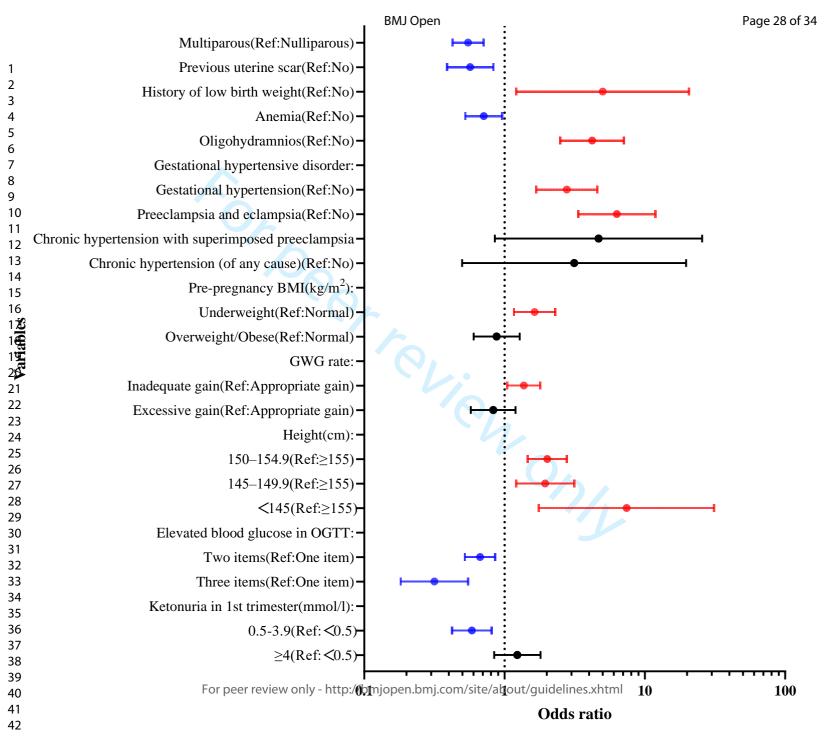
2					
3 4	No	1517(99.3)	381(99.7)	1.027ª	0.311
5	Yes	11(0.7)	1(0.3)		
6	Oligohydramnios				
7 8	No	1490(97.5)	349(91.4)	32.314a	< 0.001
o 9	Yes	38(2.5)	33(8.6)		
10	Height (cm)				
11 12	≥155	1248(81.7)	275(72)	22.232ª	< 0.001
12	150–154.9	197(12.9)	73(19.1)		
14	145–149.9	79(5.2)	29(7.6)		
15 16					
17	< 145	4(0.3)	5(1.3)		
18	Pre-pregnancy BMI (kg/m ²)				
19 20	Normal	1130(74)	271(70.9)	9.175ª	0.01
20 21	Underweight	172(11.3)	64(16.8)		
22	Overweight / Obese	226(14.8)	47(12.3)		
23 24	GWG rate				
24 25	Inadequate gain	690(45.2)	199(52.1)	6.107 ^a	0.047
26	Appropriate gain	539(35.3)	121(31.7)		
27 28	Excessive gain	299(19.6)	62(16.2)		
20 29	Ketonuria in 1st trimester(mmol/l)	2))(1).0)	02(10.2)		
30					
31 32	< 0.5	1049(68.7)	275(72)	9.963ª	0.007
33	0.5-3.9	336(22)	59(15.4)		
34	≥4	143(9.4)	48(12.6)		
35 36	Ketonuria in 2nd trimester (mmol/l)				
37					
38	< 0.5	1090(71.3)	293(76.7)	4.903 ^a	0.086
39 40	0.5-3.9	308(20.2)	59(15.4)		
40 41	≥4	130(8.5)	30(7.9)		
42	Elevated blood glucose in OGTT				
43 44	One item	482(31.5)	161(42.1)	24.605ª	< 0.001
45	Two items	878(57.5)	204(53.4)		
46	Three items	168(11.0)	17(4.5)		
47 48	75g OGTT 0 h glycemia (mmol/l)	4.83±0.48	4.64 ± 0.44	7.187	<0.001
49	75g OGTT 1 h glycemia (mmol/l)	9.84 ± 1.41	9.89±1.36	-0.585	0.559
50	75g OGTT 2 h glycemia (mmol/l)	8.06±1.59	7.83±1.58	2.586	0.01
51 52	FPG in the 3rd trimester (mmol/l)	4.48(5.52-5.15)	4.69(4.40-5.01)	-4.7	< 0.001
52	2-h postprandial glucose in 3rd trimester			- /	
54	(mmol/l)	5.09±1.30	5.7±1.14	5.825	< 0.001
55. 56	494 Abv: SGA: small-for-gestatio	nal-age: AGA: appropri	ate-weight-for-gestation	al-age OGTT.	
50 57	495 Oral Glucose Tolerance Test; I		e e		
58	496 10 gestational weeks; the seco	U 1 U		1 0 1	
59		ma anneower or prozilall	v, LI LT GUSIAIIUIIAI M	vers, me umu	

2 3		
4	497	trimester of pregnancy: $33-37$ gestational weeks.
5	498 400	Bold values indicate statistically significant ($P < 0.05$)
6 7	499	Data are presented as n (%), mean \pm SD, or median (interquartile range) as appropriate.
8		
9 10		
11		
12		
13 14		
15		
16 17		
18		
19 20		
20 21		
22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
52 53		
54		
55 56		
57		
58 59		
60		24

Table 2 Logistic regression anal	ysis for SGA based	on maternal	glycemic parameter	ers	
Variables	Crude	Р	Adjusted†	Р	
variables	OR (95% CI)	Г	OR (95% CI)	Γ	
75g OGTT 0 h glycemia	0.40(0.31-0.52)	< 0.001	0.44(0.32-0.6)	< 0.001	
75g OGTT 1 h glycemia	1.02(0.95-1.11)	0.558	1.04(0.95-1.14)	0.378	
75g OGTT 2 h glycemia	0.91(0.85-0.98)	0.010	0.89(0.82-0.96)	0.003	
FPG in 3rd trimester	0.59(0.46-0.75)	< 0.001	0.89(0.68-1.15)	0.370	
2-h postprandial glucose in 3rd trimester	0.76(0.68-0.84)	< 0.001	0.84(0.76-0.93)	0.001	
2-n postprandial glucose in 3rd trimester	0./6(0.68-0.84)	<0.001	0.84(0.76-0.93)		

† Adjusted for parity, previous uterine scar, history of low birth weight, gestational


hypertensive disorder, oligohydramnios, anemia, pre-pregnancy BMI, height, GWG rate, and ketonuria in 1st trimester.


Abv: OGTT: Oral Glucose Tolerance Test; FPG: fasting plasma glucose; the third trimester of

pregnancy: 33-37 gestational weeks.

OR: odd ratios, CI: confidence interval.

Page 27 of 34

Supplementary material 1

1 Maternal demographic characteristic

Maternal characteristics collected included maternal age, ethnicity, educational level, occupation, marital status, place of residence, stature, pre-pregnancy Body mass index, and GWG rate.

Height: women were classified into four categories based on height < 145 cm, 145-149.9 cm, 150-154.9 cm, and \geq 155 cm. Body mass index (BMI): BMI was calculated as weight (kg)/ [height (m)]². Using BMI, women were classified as underweight (BMI<18.5 kg/m²), normal weight (18.5–24.9 kg/m²), overweight (25–29.9 kg/m²), or obese (\geq 30 kg/m²). Gestational weight gain rate (GWG rate): To assess the adequacy of GWG among the study population, the GWG rate of each participant, which was calculated by dividing the total GWG by gestational age in weeks, was compared with the minimum recommended GWG rate. According to the IOM 2009 guidelines, The GWG of all included participants was categorized as inadequate weight gain, normal weight gain, and excessive weight gain.

2 Pregnancy characteristics

Pregnancy characteristics collected included parity, assisted reproductive technologyconceived pregnancy (ART), previous uterine scar (previous cesarean section or myomectomy), family history of hypertension or diabetes, pregnancy history (history of miscarriage, history of GDM, history of preterm labor, history of fetal distress, history of LBW).

3 Pregnancy complications

Pregnancy complications collected included intrahepatic cholestasis of pregnancy (ICP), pregnancy-associated hypertensive disorders, hyperthyroid, hypothyroid, anemia (defined by Page 1 hemoglobin < 11 g/dL before delivery) (Goonewardene, Shehata, and Hamad 2012), and pathology of amniotic fluid (oligohydramnios and polyhydramnios)

The gestational hypertensive disorder was classified into four categories: gestational hypertension, preeclampsia, and eclampsia, chronic hypertension with superimposed preeclampsia, preeclampsia and eclampsia chronic hypertension (of any cause), which was diagnosed using standard criteria (Anon 2013).

Reference

Anon. 2013. 'Hypertension in Pregnancy: Executive Summary'. Obstetrics & Gynecology 122(5):1122–31. doi: 10.1097/01.AOG.0000437382.03963.88.

Goonewardene, Malik, Mishkat Shehata, and Asma Hamad. 2012. 'Anaemia in Pregnancy'. Best Practice & Research. Clinical Obstetrics & Gynaecology 26(1):3–24. doi: 10.1016/j.bpobgyn.2011.10.010.

2 3 4 5	Reporting	che	ecklist for case-control study.					
6 7 8 9	Based on the STROBE case-control guidelines.							
10 11 12	Instructions to authors							
13 14 15	Complete this checklist by entering the page numbers from your manuscript where readers will find							
15 16 17	each of the items listed below.							
18 19 20	Your article may not currently address all the items on the checklist. Please modify your text to							
21 22	include the missing	inform	ation. If you are certain that an item does not apply, please write	"n/a" and				
23 24 25	provide a short explanation.							
26 27 28	Upload your compl	eted ch	ecklist as an extra file when you submit to a journal.					
29 30 31	In your methods section, say that you used the STROBE case-controlreporting guidelines, ar							
32 33 34	them as:							
35 36	³⁵ von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The							
37 38	the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guideli							
39 40 41	reporting observational studies.							
42 43 44				Page				
45 46			Reporting Item	Number				
47 48 49 50	Title and abstract							
50 51 52	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the	2				
53 54			title or the abstract					
55 56 57 58	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary	2-3				
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

1 2			of what was done and what was found	
3 4 5	Introduction			
6 7	Background /	<u>#2</u>	Explain the scientific background and rationale for the	3-5
8 9 10 11	rationale		investigation being reported	
12 13	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
14 15			hypotheses	
16 17 18 19	Methods			
20 21 22	Study design	<u>#4</u>	Present key elements of study design early in the paper	5-6
23 24 25	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5-7
26 27			periods of recruitment, exposure, follow-up, and data collection	
28 29 30	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5-6
31 32			case ascertainment and control selection. Give the rationale	
33 34			for the choice of cases and controls. For matched studies, give	
35 36 37 38			matching criteria and the number of controls per case	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and the number of	7
41 42 43			controls per case	
44 45		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5-6
46 47			confounders, and effect modifiers. Give diagnostic criteria, if	
48 49 50			applicable	
51 52 53	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details of	8
54 55	measurement		methods of assessment (measurement). Describe	
56 57 58			comparability of assessment methods if there is more than one	
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 33	of 34
---------	-------

1 2			group. Give information separately for cases and controls.	
2 3 4 5 6 7 8 9 10 11 12 13	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	7
	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	5-6
	variables		analyses. If applicable, describe which groupings were	
14 15			chosen, and why	
16 17 18	Statistical	#12a	Describe all statistical methods, including those used to control	5-7
19 20	methods		for confounding	
20 21 22	methodo		lor controlling	
22 23 24	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	n/a
25 26	methods		interactions	
27 28	Ctatistical	#400	Evaluin how missing data ware addressed	
29 30	Statistical	<u>#12c</u>	Explain how missing data were addressed	
31 32	methods			
33 34	Statistical	<u>#12d</u>	If applicable, explain how matching of cases and controls was	7
35 36	methods		addressed	
37 38				
39 40	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
41 42	methods			
43 44	Results			
45 46 47				
47 48 49	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	8
49 50 51			numbers potentially eligible, examined for eligibility, confirmed	
52 53			eligible, included in the study, completing follow-up, and	
54 55			analysed. Give information separately for cases and controls.	
56 57 58	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 34 of 34

1 2 3 4 5 6 7 8 9 10 11	Participants	<u>#13c</u>	Consider use of a flow diagram	Figure1
	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8
			clinical, social) and information on exposures and potential	
			confounders. Give information separately for cases and	
			controls	
12 13 14				
14 15 16	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each	8
17 18			variable of interest	
19 20	Outcome data	#15	Report numbers in each exposure category, or summary	8
21 22			measures of exposure. Give information separately for cases	
23 24			and controls	
25 26				
27 28	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-	8-9
29 30			adjusted estimates and their precision (eg, 95% confidence	
31 32			interval). Make clear which confounders were adjusted for and	
33 34			why they were included	
35 36				
37 38	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	8-9
39 40 41			categorized	
41 42 43 44 45	Main results	#16c	If relevant, consider translating estimates of relative risk into	n/a
			absolute risk for a meaningful time period	
46 47				
47 48 49	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and	n/a
50 51			interactions, and sensitivity analyses	
52 53	Discussion			
54 55	D1900991011			
56 57	Key results	<u>#18</u>	Summarise key results with reference to study objectives	10-11
58 59		Ferre		
60		⊦or pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of	14
3 4			potential bias or imprecision. Discuss both direction and	
5 6 7			magnitude of any potential bias.	
8 9 10	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	14
11 12			limitations, multiplicity of analyses, results from similar studies,	
13 14 15			and other relevant evidence.	
16 17	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	11-14
18 19 20			results	
21 22 23 24	Other Information			
25 26	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	15
27 28			present study and, if applicable, for the original study on which	
29 30 31			the present article is based	
32 33	None The STROBE	E check	list is distributed under the terms of the Creative Commons Attribu	ution
34 35 36	License CC-BY. Th	is chec	klist can be completed online using <u>https://www.goodreports.org/</u> ,	a tool
37 38	made by the <u>EQUA</u>	TOR N	etwork in collaboration with Penelope.ai	
39 40				
41 42 43				
44				
45 46				
47 48				
49				
50 51				
52				
53				
54 55				
56				
57 58				
58 59				
60		For pee	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

Risk Factors and Glycemic Control in Small for Gestational Age Infants Born to Mothers with Gestational Diabetes Mellitus: A Case-Control Study Utilizing Propensity Score Matching Based on a Large Population

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-078325.R1
Article Type:	Original research
Date Submitted by the Author:	27-Nov-2023
Complete List of Authors:	Li, JiaNing; Fujian Medical University School of Nursing; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Pan, Yu-qing; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Zheng, Qingxiang; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Chen, Xiao Qian; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Diang, Xiu Min; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Jiang, Xiu Min; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Liu, RuLin; Fujian Medical University School of Nursing; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Zhu, Yu; Fujian Medical University School of Nursing; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Zhu, Yu; Fujian Medical University School of Nursing; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics Huang, Ling; Fujian University of Traditional Chinese Medicine; Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetric & Gynecology and Pediatrics
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Obstetrics and gynaecology
Keywords:	Risk Factors, Diabetes in pregnancy < DIABETES & ENDOCRINOLOGY, Child protection < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	r -	FITLE PAGE
2	Title	
3	Risk Factors and Glycemic Control in	Small for Gestational Age Infants Born to Mothers with
4	Gestational Diabetes Mellitus: A Ca	se-Control Study Utilizing Propensity Score Matching
5	Based on a Large Population	
6	List of all authors	
7	Jianing Li ^{1,2,#} MSc	student, BSc (Nursing)
8	Yuqing Pan ^{2, 3,#} MD,	RN, Nurse
9	Qingxiang Zheng ^{2, 3} MD	, RN, Nurse
10	Xiaoqian Chen ^{2,3} MD	, RN, Nurse
11	Xiumin Jiang ^{2,*} MP	A, RN, Associate Professor
12	Rulin Liu ¹ MSc	student, BSc (Nursing)
13	Yu Zhu ¹ MSc	student, BSc (Nursing)
14	Ling Huang ⁴ MSc	student, BSc (Nursing)
15		
16	# Jianing Li and Yuqing Pan are the	e co-first authors and contribute equally.
17	¹ School of Nursing, Fujian Medical U	Jniversity, Fuzhou City, Fujian Province, China
18	² Fujian Maternity and Child Health	Hospital College of Clinical Medicine for Obstetrics &
19	Gynecology and Pediatrics, Fujian M	edical University, Fuzhou City, Fujian Province, China
20	³ Fujian Obstetrics and Gynecology H	lospital, Fuzhou City, Fujian Province, China
21	⁴ School of Nursing, Fujian Universit	y of Traditional Chinese Medicine, Fuzhou City, Fujian
22	Province, China	
23		
24	* Corresponding author	
25	Name: Xiu-Min Jiang	
26	Tel.:+86 13960850518	
27	E-mail: jzc0427@163.com	
28		
		Page 1

Page 3 of 37		BMJ Open	
1 2			
3	29	Risk Factors and Glycemic Control in Small for Gestational Age Infants Born to	
6 7	30	Mothers with Gestational Diabetes Mellitus: A Case-Control Study Utilizing Propensity	
8 9 10	31	Score Matching Based on a Large Population	
11 12 13	32	Abstract	
14 15	33	Background: Small for gestational age (SGA) poses a significant concern for newborns, being	
16 17 18	34	linked to neonatal complications and potential metabolic disorders in adulthood, especially	
19 20 21	35	when born to mothers with gestational diabetes mellitus (GDM), elevating their risk of	
22 23	36	complications and mortality. However, the pregnancy risk factors and glycemic control	
24 25 26	37	associated with SGA infants born to mothers with GDM remain unclear.	
27 28	38	Aims: To identify the pregnancy risk factors and glycemic control associated with SGA infants	
29 30 31	39	born to mothers with GDM.	
32 33 34	40	Method: This case-control study was conducted among 1910 women with GDM in China. Data	
35 36	41	were collected by the integrated electronic medical record system. Using 1:4 propensity scores	
37 38 39	42	matching analysis to adjust gestational age as confounder. Univariate and multivariate analyses	
41	43	were performed to identify risk factors.	
42 43 44	44	Results: Risk factors for SGA born to mothers with GDM included a history of low birth weight,	
45 46 47	45	gestational hypertension, oligohydramnios, short maternal height, underweight pre-pregnancy	
48 49	46	BMI, and inadequate weight growth. While SGA was protected by weakly positive ketonuria	
50 51 52	47	levels in the first trimester, multiparous, anemia, and previous uterine scar were protective	
53 54 55	48	factors for SGA. Moreover, 2-h postprandial glucose and hemoglobin A1c (HbA1c) in the 2nd	
56 57	49	trimester, as well as the 0-h and 2-h 75g Oral Glucose Tolerance Test (OGTT) were linked to	
58 59 60		Page 2	

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
53
54
54 55
56
57
58
59
60

50 risk of SGA.

51 **Conclusions:** SGA infants are the result of multifactorial interactions among GDM pregnant 52 women. Notably, OGTT and glycemic control levels were associated with SGA. There is a 53 need for enhanced perinatal monitoring and antenatal care to reduce SGA.

54

1 2

Strengths and limitations of this study

- Propensity score matching effectively controlled for confounding variables and reduced
 bias, enhancing the study's result validity. This approach provided credible insights into
- 57 risk factors and glycemic control for SGA infants born to mothers with GDM.
- A large population size increases statistical power, enabling the detection of subtle
 associations and providing more generalizable findings.
- As a case-control study relying on retrospective data from medical records, there might be
- 61 incomplete or missing information that could influence the study outcomes.
- The findings may primarily apply to the specific population from which the data was
- 63 collected, limiting their generalizability to other regions or diverse populations.
- 64 Keywords: Gestational diabetes mellitus; Glycemic control; Pregnancy risk factors; Small for

65 gestational age

66

67 Background

Gestational diabetes mellitus (GDM) is a glucose intolerance that develops or first becomes detectable during pregnancy [1], which has the most common metabolic disease and affected up to 25% of pregnant women [2]. In China, the prevalence of GDM has been

Page 5 of 37

BMJ Open

7	1	increasing, with 14.8% of pregnant women now affected [3]. This condition gives rise to a
7	2	range of short-term and long-term maternal and fetal health issues, particularly associated with
7	3	increased pace of fetal growth. Fetuses receive increased amounts of glucose through maternal
7	4	hyperglycemia, which promotes insulin secretion and increases fetal growth [4]. Furthermore,
7	5	hyperglycemia causes placental vascular dysfunction, reducing the supply of oxygen and
7	6	nutrients to the fetus [5]. There is still 2.7% GDM pregnant women deliver children that have
7	7	fetal growth restrictions (FGR) [6]. Additionally, the incidence of small for gestational age
7	8	(SGA) infants born to mothers with GDM was 6.45% in China [7]. However, limited research
7	9	is available on SGA infants born to Chinese women with GDM.
8	0	SGA infants are commonly defined as having birth weight below the 10 th percentile for a
8	1	given gestational age and sex [8], including infants who are naturally small without pathological
8	2	growth restriction. In China, the total number of SGA births is the fifth highest in the world [9],
8	3	imposing a tremendous medical and socioeconomic burden. SGA infants have an increased risk
8	4	of adverse perinatal outcomes, such as stillbirth, asphyxia, or birth defects. Additionally,
8	5	compared to appropriate for gestational age (AGA) infants, SGA infants are prone to have poor
8	6	cognitive or psychological outcomes as well as metabolic diseases, such as type 2 diabetes,
8	7	insulin resistance, and arterial hypertension in adulthood [10], [11]. In addition, GDM has been
8	8	linked to delayed development and stunted fetal growth [12]. This linkage may exacerbate the
8	9	adverse health outcomes of SGA. Epidemiological studies show that SGA infants born to
9	0	mothers with GDM have higher rates of neonatal complications or death [13], [14]. They are
9	1	also at higher risk of developing long-term cardiovascular offspring hospitalization [15]. Given
		Decel4

the seriousness of the consequences, identifying its potential influencing factors is of greatsignificance for the screening and prevention of SGA births among GDM pregnant women.

Maternal glycemia is widely recognized for its association with perinatal outcomes, including its impact on offspring' birthweight [16]. According to Hyperglycemia and Adverse Pregnancy outcomes (HAPO), women with higher glucose levels are considered to be at greater risk [17]. Current prenatal treatment goals emphasize tight glucose monitoring and strict glucose control [18], [19]. Consequently, women experiencing hypoglycemia are generally deemed to be at low risk for antenatal care. Several investigations have reported an association between maternal hypoglycemia and FGR or SGA [20]–[23]. Presently, the pregnancy factors related to SGA infants born to women with GDM remain unclear. Moreover, few studies have examined the association between maternal glycemic level associated with SGA infants born to mothers with GDM. After the diagnosis of GDM, timely recognition of glycemic abnormalities is critical for normal fetal growth and development. Therefore, the purpose of this study was to explore the influencing factors during pregnancy associated with SGA infants born to mothers with GDM in China.

107 Methods

108 Study design and population

This case-control study included pregnancies affected by GDM who delivered between
January 2019 and December 2020 from a tertiary Maternal and Child Health Hospital in Fuzhou
City, Fujian Province. All pregnant women followed a routine prenatal care protocol,
scheduling frequent visits to the health system to identification of risk factors and initiation of

preventive care measures [24].

BMJ Open

Eligible participants were pregnant women diagnosed with GDM based on 75-gram oral glucose tolerance test (OGTT) conducted between 24 and 32 weeks of gestation, following the modified International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria [25]. Diagnosis criteria included one or more elevated glucose levels: fasting plasma glucose level \geq 5.1 mmol/L, 1-h plasma glucose level \geq 10.0 mmol/L, and 2-h plasma glucose level \geq 8.5 mmol/L [25]. Pregnant women with multiple gestations, a clinical diagnosis of pregestational diabetes mellitus (PGDM), or overt diabetes (fasting plasma glucose (FPG) \geq 7.0 mmol/L or $2-h \ge 11.0 \text{ mmol/L}$) were excluded. A total of 6,839 participants were enrolled, all of whom had complete demographic and clinical data. All participants in this study were categorized into the SGA group (case group, <10th percentile), AGA group (controlling group, between 10 and 90th percentile), and LGA group (>90th percentile) according to the association between gestational age and birth weight. Finally, for each SGA infant, four gestation age-matched AGA infants were randomly selected using PSM analysis with gestation age-matched (Figure 1).

- 128 Patient and public involvement
 - 129 No patients involved.

130 Data collection and study outcomes

131 Maternal demographic characteristics, pregnancy characteristics and pregnancy 132 complications, and outcomes were collected retrospectively by one researcher from the 133 electronic medical record database of the one hospital in our study. In addition, we collected

glycemic levels including 75g OGTT glycemia, FPG, 2-h postprandial glucose, and HbA1c in
the 2nd trimester. Based on the number of abnormal OGTT values, women with GDM were
stratified into 1, 2, or 3 items of abnormal OGTT values, respectively (Supplementary material
1).

The primary outcome of this study was SGA babies born to women with GDM. Gestational age was determined by subtracting the date of last menstrual period (LMP) reported by the mother or by the first ultrasound scan (USS) from the date of birth. SGA was defined as birth weight below the 10th percentile for gestational age and sex, based on birth weight curves in Chinese [26], [27].

143 Statistical analysis

All statistical analyses were performed using IBM SPSS, version 27.0, and R, version 4.1.3. We applied a 1:4 nearest-neighbor matching with a caliper of 0.01, a preset value for propensity score matching (PSM), to lessen the potential selection bias and obtain matched data. The outcomes were compared between the SGA group and the AGA group among GDM pregnant women. Continuous variables were presented as mean \pm standard deviation (SD) or as medians (interquartile range [IQR] 25th percentile-75th percentile), compared by using independent t-test or the Mann-Whitney test Categorical variables were presented as the frequency with percentages and analyzed by the Chi-square test or Fisher's exact test.

We examined the risk factors associated with SGA infants born to mothers with GDM using the Binary logistic regression model. Variables were carefully chosen to ensure parsimony of the final model (forward LR, entry 0.05, removal 0.10). Further, to explore the

BMJ Open

~
2
3
4
4 5
5
6
0
7
8
9
9
10
11
12
13
1 4
14 15
15
15
16
16 17
17
18
10
19
20
20
21
22
23
23
24
24 25
25
20
26
27
28
29
30
31
32
22
55
34
35
26
36 37
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
59
60

association between maternal glycemic levels and SGA, adjusted for parity, previous uterine
scar, history of low birth weight, history of macrosomia, gestational hypertensive disorder,
oligohydramnios, anemia, pre-pregnancy BMI, height, Gestational weight gain (GWG) rate,
and ketonuria in 1st trimester. A two-sided p-value of <0.05 was considered statistically
significant in all analyses.

160 **Ethics approval**

161 This study was approved by the Ethics Committee (No.2019-161). Given all maternal and 162 neonatal data were extracted from the hospital electronic medical record system by a unique 163 identifier with no participant involved in the design, the written informed consent was waived.

164 **3 Results**

165 **3.1 Selection of GDM pregnant women**

166 A total of 6,839 GDM pregnant women were enrolled in the study according to eligible and exclusion criteria, including 382 SGA infants, 964 LGA infants, and 5,493 AGA infants. 167 168 After the 1:4 PSM analysis, 382 SGA infants were selected and 1,528 AGA infants were 169 randomly matched with the SGA group according to the gestational age at birth (Figure 1). After propensity analysis, the mean (SD) gestational age at birth was 38.6 (SD = 1.61) weeks 170 171 in the AGA group and 38.59 (SD = 1.62) weeks in the SGA group, there was no evidence of 172 differences in the gestational age between the two groups (P = 0.983). 173 3.2 Characteristics and univariate analysis of AGA and SGA 174 The average age of the participants was 31.67 (SD = 4.36) years old. Among all women,

175 Han Chinese accounts for 97.91%. Approximately 50% of the participants in both groups had

176a college or university education. More than 50% of the women in the SGA group were177nulliparous, which was slightly more than the percentage of women in the AGA group (35.3%)178who were nulliparous (P < 0.001). The previous uterine scar was shown statistically significant179(P < 0.05).

In terms of pregnancy history, there were no statistically significant differences observed in the occurrence of abortion or miscarriage, preterm delivery, fetal distress, or GDM. However, a statistically significant association was found between a history of macrosomia (P = 0.012) and low birth weight (P = 0.04). Regarding pregnancy complications, statistically significant differences were identified in the occurrence of oligohydramnios (P < 0.001) and anemia (P =0.034). In addition, height, pre-pregnancy BMI, and GWG rate were shown statistically significant (all $P \le 0.05$). Regarding the glycemic level, 75g OGTT 0 h and 2 h glycemia, as well as ketonuria in 1st trimester, fasting glucose, and 2-h postprandial glucose in the 2nd trimester, showed statistically significant ($P \le 0.05$). However, 75g OGTT 1 h and HbA1c in the 2nd trimester did not exhibit significant differences (P > 0.05). The characteristics of the SGA group and AGA group are presented in Table 1 and Table 2.

3.3 Multivariable logistic regression analysis for the factors of SGA

The multivariable analysis indicated that history of low birth weight (OR=5.01, 95%CI 193 1.21-20.72, P=0.026) was an independent risk factor for SGA. Mothers with gestational 194 hypertensive disorder were more likely to have SGA (Gestational hypertension: OR=2.78, 195 95%CI 1.68-4.59, P< 0.001; preeclampsia and eclampsia: OR=6.31, 95%CI 3.35-11.91, P< 196 0.001). The risk of SGA was fourfold greater in pregnant women with oligohydramnios than in

Page 11 of 37

BMJ Open

197	women with normal amniotic fluid (OR=4.22, 95%CI 2.5-7.12, $P \le 0.001$). Mothers with lower
198	height had a higher risk of SGA (150–154.9 cm: OR=2.02,95% CI1.46-2.79, P < 0.001; 145–
199	149.9 cm: OR=1.95, 95%CI 1.21-3.14, P=0.006; <145 cm: OR =7.42, 95%CI 1.76-31.25,
200	P=0.006) compared with >155cm height. Underweight pre-pregnancy had a 64% more chance
201	of SGA (OR = 1.64, 95%CI 1.17-2.3, $P = 0.004$) than normal. Also, mothers who had
202	inadequate weight gain during pregnancy had a 37% more chance of SGA than appropriate gain
203	(OR=1.37, 95%CI 1.05-1.8, <i>P</i> = 0.023).

However, the multivariate analysis also revealed that multiparous was a protective factor (OR=0.55, 95%CI 0.43-0.71, P<0.001) compared to nulliparity. The SGA risk was reduced by previous uterine scar experience (OR=0.57, 95%CI 0.39-0.83, P=0.004). Anemia was associated with a decreased incidence of SGA (OR=0.71, 95%CI 0.53-0.96, P=0.027). Two or three items with elevated blood glucose values on OGTT showed a lower probability of SGA (OR=0.67,95%CI 0.52-0.86, P=0.002; OR=0.32, 95%CI 0.18-0.55, P < 0.001) than one elevated item. Ketonuria levels ranging from 0.5 to 3.9 mmol/l in the 1st trimester had a lower risk of SGA than < 0.5 mmol/l. (OR=0.59, 95%CI 0.42-0.81, P=0.001). The forest map of multivariate logistic regression analysis is shown in Figure 2.

3.4 Association between Blood glucose level and the risk of SGA

We further explored the relationship between OGTT, glycemic control level in the 2nd
trimester and SGA. Specifically, multivariate analysis revealed that when adjusted for parity,
previous uterine scar, history of macrosomia, history of low birth weight, gestational
hypertensive disorder, oligohydramnios, anemia, pre-pregnancy BMI, height, GWG rate, and

218	ketonuria in 1st trimester. 75g OGTT 0 h, 75g OGTT 2 h, and 2-h postprandial glucose in 2nd
219	trimester were associated with a decreased risk for SGA (OR=0.4, 95% CI 0.29-0.55, P <0.001;
220	OR=0.88, 95% CI 0.81-0.95, <i>P</i> =0.002; OR = 0.81, 95% CI 0.73-0.9, <i>P</i> <0.001). However, 75g
221	OGTT 0 h glycemia exhibited a stronger association with SGA outcomes than 2-h OGTT and
222	2-h postprandial glucose in the 2nd trimester. In contrast, HbA1c in the 2nd trimester was
223	associated with an increased risk of SGA (OR=2.4, 95% CI 1.64-3.52, $P < 0.001$) (Table 3).
224	4 Discussion
225	In this Case-Control study, several key maternal demographic characteristics (height, BMI,
226	and GWG rate), pregnancy characteristics (parity, previous uterine scar, and history of LBW),
227	pregnancy complications (hypertensive disorders, oligohydramnios, and anemia), OGTT (0h,
228	2h) and glycemic control level (2-h postprandial glucose and HbA1c in the 2nd trimester) were
229	identified as risk factors for SGA in women with GDM.
230	Maternal height exerts the most significant influence. Our results confirmed maternal
231	stature below145cm is a strong indicator for SGA, aligning with previous studies [28]. This
232	may contribute to inadequate self-nutrition in GDM pregnant women who are of short stature.
233	The transition to a sugar-controlled diet may have a significant impact on the adequate supply
234	of nutrients for fetal growth. Further, both GWG and BMI serve as reflections of maternal
235	nutritional status. Our study reveals that inadequate weight gain and underweight BMI were
236	associated with an increased risk of SGA in women with GDM, consistent with prior research
237	[29]. This heightened risk may be attributed to pregnant women experiencing inadequate
238	weight gain or being underweight, potentially indicating chronic malnutrition, which can be

Page 13 of 37

BMJ Open

detrimental to fetal growth and development. Therefore, it is imperative that hospitals offer comprehensive health education, monitor pregnancy nutrition, and implement personalized nutrition therapy for women diagnosed with GDM. Nulliparous pregnant women with gestational diabetes mellitus (GDM) exhibited an increased susceptibility to small for gestational age (SGA) births in our study, corroborating findings from a prior retrospective Chinese study [30]. This heightened risk can be attributed to physiological disparities between nulliparous and multiparous women. Multiparous women showcased superior uteroplacental circulation, optimizing oxygen and nutrient delivery to the fetus and creating a conducive environment for fetal growth [30]. Conversely, nulliparous women displayed potential hemodynamic differences, including a higher pulsatility index of the uterine artery (UtA-PI) and elevated blood impedance, contributing to an elevated risk of SGA [31], [32]. Moreover, multiparous women were likely to possess a higher degree of maternal adaptation to gestational changes, encompassing improved blood volume expansion and hormonal regulation, thus fostering a favorable environment for fetal growth and diminishing the likelihood of SGA. Notably, differences in risk perception and prenatal care practices were apparent. Multiparous women, drawing on their experience, demonstrated proactive management skills for dietary changes and glycemic control, resulting in more effective prenatal care and potentially reducing the risk of SGA. Conversely, nulliparous women's relative inexperience might contribute to delayed or suboptimal prenatal care, impacting fetal growth outcomes.

Page|12

Our research findings revealed an intriguing association wherein a history of a previous

uterine scar appeared to reduce the risk of SGA births among pregnant women with GDM. Remarkably, cesarean sections are widely preferred by Chinese women, with a national rate reaching 36.7% in 2018, the highest in Asia [33]. In the context of Chinese obstetric practices, where multiparity is linked with a higher likelihood of opting for cesarean sections, it raises the possibility that the protective influence on SGA outcomes could be influenced by the prevalence of cesarean deliveries. It is important to emphasize that while a history of cesarean section may be associated with a lower risk of SGA, it does not imply that cesarean section itself is a recommended method for preventing SGA. The choice of delivery method should still be based on medical evaluations, taking into account the specific circumstances of the current pregnancy and medical indications.

Women with GDM face an increased risk for Hypertensive disorders (HD) due to insulin resistance and the underlying pathology of the metabolic syndrome [34]. HD is closely associated with birth weight [35], and when combined with GDM, it elevates the risk of adverse outcomes. This corresponds with our findings that gestational hypertension as well as preeclampsia and eclampsia are risk factors for delivering SGA in pregnant women with GDM. HD can induce spasms in maternal umbilical blood vessels and systemic small arteries, impacting maternal-fetal circulation and insufficient oxygen supply. Consequently, this affects the intrauterine growth and development of the fetus [36]. The presence of hypertensive disorders with a decrease in serum vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) levels, alongside an increase in soluble fms-like tyrosine kinase-1 (sFLT-1) levels. These changes may reflect underlying placental dysfunction and are related to

Page 15 of 37

BMJ Open

inhibition in fetal growth and development [37], [38]. Oligohydramnios, often seen in
conjunction with hypertensive disorders [39], may indicate complicated pregnancies, signifying
chronic suboptimal placental function [40]. Such conditions could reduce fetal resources and
are associated with SGA. Thus, maternal blood pressure should be closely monitored and
regular ultrasound examinations should be performed to assess changes in pregnancy status.
Contrary to earlier research, this study discovered that maternal anemia during pregnancy
reduces the incidence of SGA [41]. One possible explanation is that women with GDM are

particularly attentive to their diet, incorporating supplementation recommended by their obstetricians to address anemia. Consequently, they may effectively mitigate the risk of SGA through appropriate nutritional support. Besides, the effect of anemia on pregnancy outcomes varies between gestational periods. Therefore, further research is needed to investigate the effect of hemoglobin concentration on SGA at different gestational ages.

Maternal glycemic parameters significantly influence fetal growth, as highlighted by findings from the HAPO study. Pregnant women with elevated glucose levels face a higher risk of adverse pregnancy outcomes. This association is driven by various mechanisms. Firstly, heightened glucose levels can stimulate increased fetal insulin production, promoting excessive fetal growth and contributing to macrosomia [17]. Conversely, elevated glucose levels may, in some instances, impair placental function, leading to reduced nutrient and oxygen supply to the fetus, ultimately resulting in growth restriction and the birth of SGA infants [42]. Our study found that GDM women with 2 or 3 elevated glucose values, as opposed to just one, may experience a decreased risk of SGA. Besides, higher OGTT-0h and OGTT-2h were found to be

302	significant predictors of SGA when the glucose values were analyzed as continuous variables.
303	This may contribute to within the mild elevation range of blood glucose levels, blood glucose
304	passes through the placental circulation to the fetus, and extra glucose in the fetus is stored as
305	body fat [43]. There may be a protective mechanism ensuring that the fetus receives adequate
306	nutrients within the normal range. However, this does not imply that higher blood glucose levels
307	are better. When blood glucose rises to a certain extent, adaptive responses may be triggered,
308	leading to the occurrence of SGA. Therefore, GDM women with elevated OGTT-0h and
309	OGTT-2h levels are less likely to deliver SGA infants. However, they should be aware of more
310	severe disturbance in glucose metabolism and insulin sensitivity and the potential for delivering
311	high birth weight newborns. In addition, GDM women with low OGTT-0h and OGTT-2h do
312	not need for excessively strict glucose control throughout pregnancy, but should be concerned
313	about the occurrence of FGR. Therefore, personalized monitoring is crucial for assessing
314	maternal blood glucose levels, allowing for the adjustment of dietary, exercise, and insulin
315	management strategies based on their glycemic status.
316	Our study identified an association between delivering SGA in pregnant women with
317	GDM and 2-h postprandial glucose in the 2nd trimester. Measuring 2-h postprandial glucose
318	helps evaluate the effectiveness of dietary modifications and glycemic control strategies [44].

319 In clinical practice, pregnant women are advised to control their glycemic levels through dietary

- 321 about GDM treatment options, some women may follow an overly strict diet. Consequently,
- 322 maternal glucose regulation is inadequate, which can lead to fetal undergrowth [21].Hence,

Page|15

adjustments when diagnosed with GDM. However, due to fear of insulin and lack of knowledge

323 pregnant women diagnosed with GDM should be warned of the potential risk of SGA if they 324 are found to have low glucose values. Besides, compared to the late pregnancy period, timely 325 blood glucose testing in the second trimester provides a longer time window. More attention 326 should be paid to glucose status during this period. Understanding the glycemic status is a 327 crucial step in adjusting the diet and exercise plan to achieve stable blood glucose levels, 328 ensuring normal fetal development, and avoiding SGA.

The multifactorial analysis revealed the association between elevated HbA1c levels in the second trimester and an increased risk of SGA, suggesting a potential impact of long-term glucose control on fetal outcomes. However, this finding different with a previous study [45], and contradicts the results of instantaneous glycemic measures (OGTT and 2-h postprandial glucose) in our study. This discrepancy may be attributed to the curvilinear relationship between HbA1c and fetal weight. Specifically, normal fetal weight may occur at low HbA1c levels, while moderately raised levels may result in macrosomia, and very high HbA1c levels may be associated with severe intrauterine growth restriction [46]. Future research could explore the relationship between glycemic control and birth weight using unrestricted cubic splines or subgroup analyses to evaluate their correlation. This approach would contribute to a more comprehensive understanding of the intricate relationship between maternal glycemic and fetal outcomes.

341 Limitation

342 There are a few limitations to our analysis. Firstly, data regarding women's history of 343 smoking and drinking was not recorded. Although the incidence of smoking and drinking

among pregnant women is low due to Chinese customs, smoking and drinking experience may be potential contributors to SGA. Secondly, data was collected from a single hospital and may not be representative of other areas. Thirdly, this study is a case-control study even though a PSM analysis was conducted to minimize the bias. Lastly, this study lies in the inability to accurately differentiate FGR from overall SGA during the grouping process, aligning with the specific objectives of the study. Future research endeavors could consider employing more specific diagnostic criteria and focusing explicitly on FGR, offering a more comprehensive understanding of these distinct fetal growth conditions.

352 Conclusion

353 SGA infants born to women with GDM are the result of a multifactorial interaction, 354 including maternal demographic characteristics, pregnancy characteristics, pregnancy 355 complications and clinical and laboratory parameters. Notably, SGA was correlated with OGTT 356 and glycemic control levels. It is difficult to reverse once SGA has occurred, perinatal 357 monitoring and antenatal care are crucial for identifying risk factors that can help predict and 358 prevent SGA.

DECLARATION

361 Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki. The study was
approved by the Ethical Committee of Fujian Maternal and Child Health Hospital, affiliated
hospital of Fujian Medical University, China (No: 2019-161). As this was a retrospective case-

of the patients' information.

Consent for publication

Availability of data and materials

No conflict of interest has been declared by the authors.

Not applicable.

reasonable request.

Conflict of interest

Funding Statement

Hospital (YCXH 22-13).

Author contributions

Data curation.

Acknowledgments

1

BMJ Open

control study involving review of medical records, informed consent from individual

participants was not obtained. However, all data collected were treated confidentially and used

solely for the purpose of this study. Measures were taken to ensure the privacy and anonymity

The dataset supporting the conclusions is available from the corresponding author on

The study was supported by the Nursing Research Fund of Fujian Maternity and Child Health

Jianing Li and Yuqing Pan: Writing- Original draft preparation, Writing- Reviewing and

Editing, Visualization. Xiumin Jiang: Supervision, Conceptualization. Qingxiang Zheng and

Xiaoqian Chen: Methodology, Validation. Yu Zhu, Rulin Liu and Ling Huang: Investigation,

2	
3 4 5	365
6 7	366
8 9 10	367
10 11 12	368
13 14 15	369
15 16 17	370
18 19	371
20 21	571
22 23	372
24 25 26	373
20 27 28	374
29 30	375
31 32 33	376
34 35	377
36 37	
38 39	378
40 41	379
42 43 44	380
44 45 46	381
47 48	382
49 50	002
51 52	383
53 54	384
55 56	385
57 58	
59 60	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page|18

Thanks to all participants for their valuable contribution to this study.

4 5	386	
6 7	387	Reference
8 9	388	[1] L. Reitzle et al., 'Gestational diabetes in Germany: Development of screening
10	389	participation and prevalence', Robert Koch-Institut, report, Jun. 2021. doi:
11	390	10.25646/8325.
12	391	[2] A. A. Choudhury and V. Devi Rajeswari, 'Gestational diabetes mellitus - A metabolic
13	392	and reproductive disorder', <i>Biomedicine & Pharmacotherapy</i> , vol. 143, p. 112183, Nov.
14 15	393	2021, doi: 10.1016/j.biopha.2021.112183.
16	394	[3] C. Gao, X. Sun, L. Lu, F. Liu, and J. Yuan, 'Prevalence of gestational diabetes mellitus
17	395	in mainland China: A systematic review and meta-analysis', <i>J Diabetes Investig</i> , vol. 10,
18		
19 20	396 207	no. 1, pp. 154–162, Jan. 2019, doi: 10.1111/jdi.12854.
21	397	[4] J. Pedersen, 'Weight and Length at Birth of Infants of Diabetic Mothers', Acta
22	398	Endocrinologica (Norway), vol. 16, no. 4, pp. 330-342, Aug. 1954, doi:
23	399	10.1530/acta.0.0160330.
24 25	400	[5] I. M. Langmia <i>et al.</i> , 'Cardiovascular Programming During and After Diabetic Pregnancy:
25	401	Role of Placental Dysfunction and IUGR', Front Endocrinol (Lausanne), vol. 10, p. 215,
27	402	Apr. 2019, doi: 10.3389/fendo.2019.00215.
28	403	[6] A. U. Nayak, A. M. A. Vijay, R. Indusekhar, S. Kalidindi, V. M. Katreddy, and L.
29	404	Varadhan, 'Association of hypoglycaemia in screening oral glucose tolerance test in
30 31	405	pregnancy with low birth weight fetus', World J Diabetes, vol. 10, no. 5, pp. 304-310,
32	406	May 2019, doi: 10.4239/wjd.v10.i5.304.
33	407	[7] J. Chen <i>et al.</i> , 'Demographic and Clinical Features of Small-for-Gestational-Age Infants
34	408	Born to Mothers With Gestational Diabetes Mellitus', <i>Frontiers in Pediatrics</i> , vol. 9,
35 36	409	2021, Accessed: Nov. 19, 2022. [Online]. Available:
37	410	https://www.frontiersin.org/articles/10.3389/fped.2021.741793
38	411	[8] R. A. Pilliod, Y. W. Cheng, J. M. Snowden, A. E. Doss, and A. B. Caughey, 'The risk of
39	412	
40 41		intrauterine fetal death in the small-for-gestational-age fetus', <i>Am J Obstet Gynecol</i> , vol.
41	413	207, no. 4, p. 318.e1–6, Oct. 2012, doi: 10.1016/j.ajog.2012.06.039.
43	414	[9] A. C. C. Lee <i>et al.</i> , 'National and regional estimates of term and preterm babies born small
44	415	for gestational age in 138 low-income and middle-income countries in 2010', Lancet Glob
45	416	Health, vol. 1, no. 1, pp. e26-36, Jul. 2013, doi: 10.1016/S2214-109X(13)70006-8.
46 47	417	[10] R. P. Anne et al., 'Propensity-Matched Comparison of Very Preterm Small- and
48	418	Appropriate-for-Gestational-Age Neonates', Indian J Pediatr, vol. 89, no. 1, pp. 59-66,
49	419	Jan. 2022, doi: 10.1007/s12098-021-03878-3.
50	420	[11] Q. Chen et al., 'Association between maternal blood lipids levels during pregnancy and
51 52	421	risk of small-for-gestational-age infants', Sci Rep, vol. 10, p. 19865, Nov. 2020, doi:
53	422	10.1038/s41598-020-76845-1.
54	423	[12] A. Yuste Gómez, M. del P. Ramos Álvarez, and J. L. Bartha, 'Influence of Diet and
55	424	Lifestyle on the Development of Gestational Diabetes Mellitus and on Perinatal Results',
56 57	425	<i>Nutrients</i> , vol. 14, no. 14, p. 2954, Jul. 2022, doi: 10.3390/nu14142954.
57 58		·····,·····,·····,····················
59		Page 19
60		

1 2		
2 3	426	[13] B. Barquiel, L. Herranz, N. Martínez-Sánchez, C. Montes, N. Hillman, and J. L. Bartha,
4	420	'Increased risk of neonatal complications or death among neonates born small for
5 6	428	gestational age to mothers with gestational diabetes', <i>Diabetes Research and Clinical</i>
7	429	<i>Practice</i> , vol. 159, p. 107971, Jan. 2020, doi: 10.1016/j.diabres.2019.107971.
8	430	[14] T. F. Esakoff, A. Guillet, and A. B. Caughey, 'Does small for gestational age worsen
9 10	431	outcomes in gestational diabetics?', <i>The Journal of Maternal-Fetal & Neonatal Medicine</i> ,
11	432	vol. 30, no. 8, pp. 890–893, Apr. 2017, doi: 10.1080/14767058.2016.1193142.
12	433	[15] E. Neimark, T. Wainstock, E. Sheiner, L. Fischer, and G. Pariente, 'Long-term
13 14	434	cardiovascular hospitalizations of small for gestational age (SGA) offspring born to
15	435	women with and without gestational diabetes mellitus (GDM) ‡', <i>Gynecol Endocrinol</i> ,
16	436	vol. 35, no. 6, pp. 518–524, Jun. 2019, doi: 10.1080/09513590.2018.1541233.
17 18	437	[16] L. N. R. Alves <i>et al.</i> , 'Investigation of maternal polymorphisms in genes related to glucose
19	438	homeostasis and the influence on birth weight: a cohort study', <i>J Pediatr (Rio J)</i> , vol. 98,
20	439	no. 3, pp. 296–302, Sep. 2021, doi: 10.1016/j.jped.2021.06.007.
21 22	440	[17] HAPO Study Cooperative Research Group <i>et al.</i> , 'Hyperglycemia and adverse pregnancy
22	441	outcomes', N Engl J Med, vol. 358, no. 19, pp. 1991–2002, May 2008, doi:
24	442	10.1056/NEJMoa0707943.
25 26	443	[18] X. Cao <i>et al.</i> , 'Comprehensive intensive therapy for Chinese gestational diabetes benefits
20 27	444	both newborns and mothers', <i>Diabetes Technol Ther</i> , vol. 14, no. 11, pp. 1002–1007, Nov.
28	445	2012, doi: 10.1089/dia.2012.0142.
29	446	[19] S. Morampudi, G. Balasubramanian, A. Gowda, B. Zomorodi, and A. S. Patil, 'The
30 31	447	Challenges and Recommendations for Gestational Diabetes Mellitus Care in India: A
32	448	Review', Front Endocrinol (Lausanne), vol. 8, p. 56, Mar. 2017, doi:
33	449	10.3389/fendo.2017.00056.
34 35	450	[20] T. Dassios, A. Greenough, S. Leontiadi, A. Hickey, and N. A. Kametas, 'Admissions for
36	451	hypoglycaemia after 35 weeks of gestation: perinatal predictors of cost of stay', J Matern
37	452	Fetal Neonatal Med, vol. 32, no. 3, pp. 448-454, Feb. 2019, doi:
38 39	453	10.1080/14767058.2017.1381905.
40	454	[21] J. Leng et al., 'Small-for-gestational age and its association with maternal blood glucose,
41	455	body mass index and stature: a perinatal cohort study among Chinese women', BMJ Open,
42 43	456	vol. 6, no. 9, p. e010984, Sep. 2016, doi: 10.1136/bmjopen-2015-010984.
44	457	[22] I. B. Delibas, S. Tanriverdi, and B. Cakmak, 'Does reactive hypoglycemia during the 100
45	458	g oral glucose tolerance test adversely affect perinatal outcomes?', Ginekol Pol, vol. 89,
46 47	459	no. 1, pp. 25–29, 2018, doi: 10.5603/GP.a2018.0005.
48	460	[23] S. Shinohara, Y. Uchida, M. Hirai, S. Hirata, and K. Suzuki, 'Relationship between
49	461	maternal hypoglycaemia and small-for-gestational-age infants according to maternal
50 51	462	weight status: a retrospective cohort study in two hospitals', BMJ Open, vol. 6, no. 12, p.
52	463	e013749, Dec. 2016, doi: 10.1136/bmjopen-2016-013749.
53	464	[24] W. Hu, H. Hu, W. Zhao, A. Huang, Q. Yang, and J. Di, 'Current status of antenatal care
54 55	465	of pregnant women-8 provinces in China, 2018', BMC Public Health, vol. 21, no. 1, p.
55 56	466	1135, Jun. 2021, doi: 10.1186/s12889-021-11154-4.
57	467	[25] International Association of Diabetes and Pregnancy Study Groups Consensus Panel et
58 59		D120
60		Page 20

2			
3 4	468		al., 'International association of diabetes and pregnancy study groups recommendations
5	469		on the diagnosis and classification of hyperglycemia in pregnancy', Diabetes Care, vol.
6	470		33, no. 3, pp. 676–682, Mar. 2010, doi: 10.2337/dc09-1848.
7	471	[26]	L. Dai et al., 'Population-based birth weight reference percentiles for Chinese twins', Ann
8 9	472		Med, vol. 49, no. 6, pp. 470–478, Sep. 2017, doi: 10.1080/07853890.2017.1294258.
10	473	[27]	B. Zhang et al., 'Birthweight percentiles for twin birth neonates by gestational age in
11	474		China', Sci Rep, vol. 6, p. 31290, Aug. 2016, doi: 10.1038/srep31290.
12	475	[28]	R. Khanam <i>et al.</i> , 'Maternal short stature and under-weight status are independent risk
13 14	476		factors for preterm birth and small for gestational age in rural Bangladesh', Eur J Clin
15	477		<i>Nutr</i> , vol. 73, no. 5, pp. 733–742, May 2019, doi: 10.1038/s41430-018-0237-4.
16	478	[29]	
17	479	[=>]	associated with maternal and infant adverse outcomes in Chinese women with gestational
18 19	480		diabetes', <i>Sci Rep</i> , vol. 12, no. 1, p. 2749, Feb. 2022, doi: 10.1038/s41598-022-06733-3.
20	481	[30]	L. Lin, C. Lu, W. Chen, C. Li, and V. Y. Guo, 'Parity and the risks of adverse birth
21	482	[20]	outcomes: a retrospective study among Chinese', <i>BMC Pregnancy Childbirth</i> , vol. 21, p.
22 23	483		257, Mar. 2021, doi: 10.1186/s12884-021-03718-4.
23 24	484	[31]	F. Prefumo, A. Bhide, S. Sairam, L. Penna, B. Hollis, and B. Thilaganathan, 'Effect of
25	485	[31]	parity on second-trimester uterine artery Doppler flow velocity and waveforms',
26	485		<i>Ultrasound Obstet Gynecol</i> , vol. 23, no. 1, pp. 46–49, Jan. 2004, doi: 10.1002/uog.908.
27 28	480 487	[22]	
29		[32]	I. Derwig <i>et al.</i> , 'Association of placental perfusion, as assessed by magnetic resonance
30	488		imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy
31	489		outcome', <i>Placenta</i> , vol. 34, no. 10, pp. 885–891, Oct. 2013, doi:
32 33	490	[22]	10.1016/j.placenta.2013.07.006.
34	491	[33]	J. Qiao <i>et al.</i> , 'A Lancet Commission on 70 years of women's reproductive, maternal,
35	492		newborn, child, and adolescent health in China', <i>Lancet</i> , vol. 397, no. 10293, pp. 2497–
36 27	493	52.43	2536, Jun. 2021, doi: 10.1016/S0140-6736(20)32708-2.
37 38	494	[34]	Y. Baumfeld <i>et al.</i> , 'Pre-Conception Dyslipidemia Is Associated with Development of
39	495		Preeclampsia and Gestational Diabetes Mellitus', <i>PLoS One</i> , vol. 10, no. 10, p. e0139164,
40	496	50.57	Oct. 2015, doi: 10.1371/journal.pone.0139164.
41 42	497	[35]	N. Li et al., 'Preconception Blood Pressure and Risk of Low Birth Weight and Small for
43	498		Gestational Age: A Large Cohort Study in China', Hypertension, vol. 68, no. 4, pp. 873-
44	499		879, Oct. 2016, doi: 10.1161/HYPERTENSIONAHA.116.07838.
45	500	[36]	V. A. Luyckx et al., 'Effect of fetal and child health on kidney development and long-
46 47	501		term risk of hypertension and kidney disease', Lancet, vol. 382, no. 9888, pp. 273-283,
48	502		Jul. 2013, doi: 10.1016/S0140-6736(13)60311-6.
49	503	[37]	Y. Tang, W. Ye, X. Liu, Y. Lv, C. Yao, and J. Wei, 'VEGF and sFLT-1 in serum of PIH
50 51	504		patients and effects on the foetus', Exp Ther Med, vol. 17, no. 3, pp. 2123-2128, Mar.
51	505		2019, doi: 10.3892/etm.2019.7184.
53	506	[38]	
54	507		Eleftheriades, 'Preeclampsia and Cerebral Palsy in Offspring', Children (Basel), vol. 9,
55 56	508		no. 3, p. 385, Mar. 2022, doi: 10.3390/children9030385.
57	509	[39]	N. Rabie, E. Magann, S. Steelman, and S. Ounpraseuth, 'Oligohydramnios in complicated
58			
59 60			Page 21
00			

60

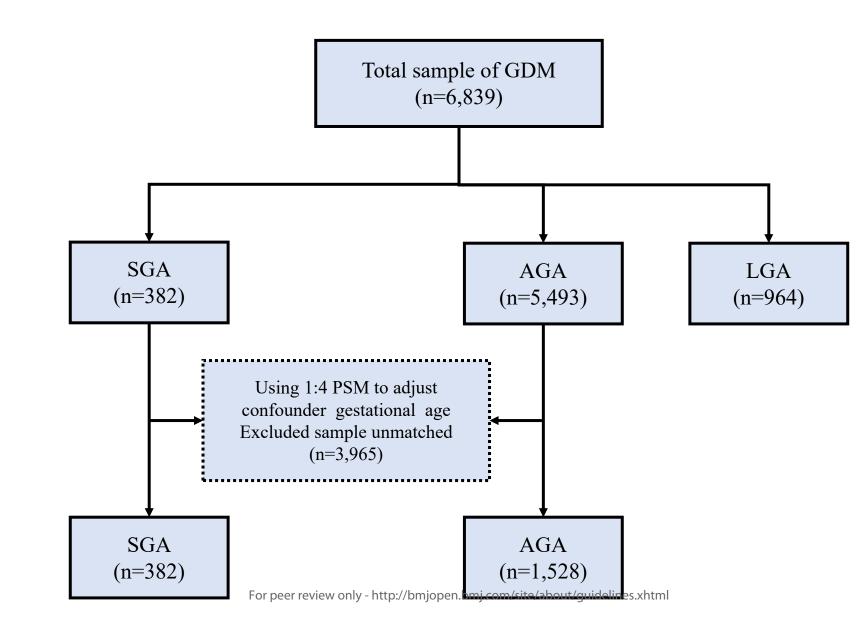
BMJ Open

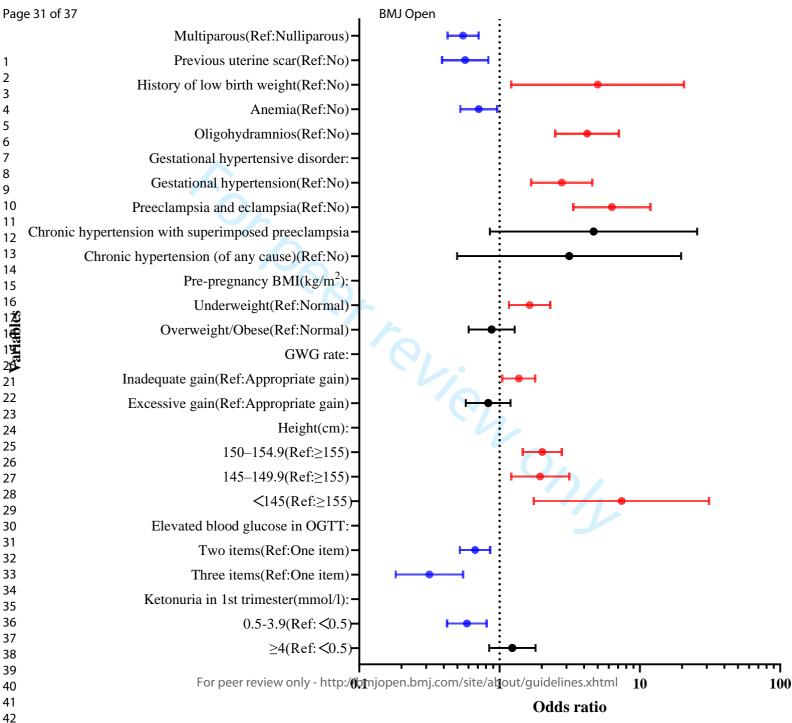
2			
3	510		and uncomplicated pregnancy: a systematic review and meta-analysis', Ultrasound
4 5	511		Obstet Gynecol, vol. 49, no. 4, pp. 442-449, Apr. 2017, doi: 10.1002/uog.15929.
6	512	[40]	M. Vahid Dastjerdi, A. Ghahghaei-Nezamabadi, A. Tehranian, and M. Mesgaran, 'The
7	513		Effect of Sildenafil on Pregnancy Outcomes in Pregnant Women With Idiopathic
8 9	514		Borderline Oligohydramnios: A Randomized Controlled Trial', J Family Reprod Health,
9 10	515		vol. 16, no. 2, pp. 124–131, Jun. 2022, doi: 10.18502/jfrh.v16i2.9482.
11	516	[41]	D. Liu <i>et al.</i> , 'Maternal Hemoglobin Concentrations and Birth Weight, Low Birth Weight
12	517		(LBW), and Small for Gestational Age (SGA): Findings from a Prospective Study in
13 14	518		Northwest China', <i>Nutrients</i> , vol. 14, no. 4, p. 858, Feb. 2022, doi: 10.3390/nu14040858.
15	519	[42]	Z. Fasoulakis <i>et al.</i> , 'Intrauterine Growth Restriction Due to Gestational Diabetes: From
16	520	L]	Pathophysiology to Diagnosis and Management', Medicina (Kaunas), vol. 59, no. 6, p.
17	521		1139, Jun. 2023, doi: 10.3390/medicina59061139.
18 19	522	[43]	H. D. McIntyre, J. Fuglsang, U. Kampmann, S. Knorr, and P. Ovesen, 'Hyperglycemia
20	523	[15]	in Pregnancy and Women's Health in the 21st Century', International Journal of
21	525 524		Environmental Research and Public Health, vol. 19, no. 24, Dec. 2022, doi:
22 23	525		10.3390/ijerph192416827.
23	526	[44]	L. Monnier and C. Colette, 'Target for Glycemic Control', <i>Diabetes Care</i> , vol. 32, no.
25	520 527	[דד]	Suppl 2, pp. S199–S204, Nov. 2009, doi: 10.2337/dc09-S310.
26	528	[45]	Y. Xiao and X. Zhang, 'Association Between Maternal Glucose/Lipid Metabolism
27 28	528 529	[43]	Parameters and Abnormal Newborn Birth Weight in Gestational Diabetes Complicated
29	530		by Preeclampsia: A Retrospective Analysis of 248 Cases', <i>Diabetes Ther</i> , vol. 11, no. 4,
30	530		pp. 905–914, Apr. 2020, doi: 10.1007/s13300-020-00792-3.
31		[46]	
32 33	532	[40]	O. Rackham, F. Paize, and A. M. Weindling, 'Cause of death in infants of women with
34	533		pregestational diabetes mellitus and the relationship with glycemic control', <i>Postgrad</i>
35	534		Med, vol. 121, no. 4, pp. 26–32, Jul. 2009, doi: 10.3810/pgm.2009.07.2026.
36 37	535		
38	536		
39			
40			
41 42			
43			
44			
45 46			
40 47			
48			
49			
50 51			
52			
53			
54 55			
55 56			
57			
58			
59			Page 22

2		
3 4 5	537	Figure 1 Flow diagram of selection of GDM pregnant women in this study
6 7 8	538	Abv: GDM: gestational diabetes mellitus; PSM: propensity score matching; AGA: appropriate
9 10	539	for gestational age; LGA: Large for gestational age; SGA: small for gestational age.
11 12 13	540	
14 15	541	Figure 2 Forest plot of the risk factors of SGA (Binary logistic regression analysis).
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\end{array}$	542	Figure 2 Forest plot of the risk factors of SGA (Binary logistic regression analysis).
57 58 59 60		Page 23

		AGA group	SGA group		
Variables	Items	(n=1528)	(n=382)	x^2/t	Р
Maternal Age	18~35	1220(79.8)	305(79.8)	0.395	1.00
0	36~45	305(20)	76(19.9)		
	≥46	3(0.2)	1(0.3)		
Nationality	The Han	1498(98)	372(97.4)	0.638	0.42
	Minority nationality	30(2)	10(2.6)		
Residence	Urban	825(54)	196(51.3)	0.884	0.34
	Rural	703(46)	186(48.7)		
Education	Elementary and below	528(34.6)	126(33)	3.476	0.32
	Secondary / Highschool	223(14.6)	45(11.8)		
	College / University	770(50.4)	210(55)		
	Postgraduate or above	7(0.5)	1(0.3)		
Occupation	Manual worker	284(18.6)	69(18.1)	2.074	0.55
•	Mental worker	708(46.3)	192(50.3)		
	Unemployed	381(24.9)	86(22.5)		
	Freelance	155(10.1)	35(9.2)		
Marital status	Unmarried	27(1.8)	8(2.1)	0.685	0.73
	Married	1497(98)	374(97.9)		
	Divorced or widowed	4(0.3)	0(0)		
Height (cm)	≥155	1248(81.7)	275(72)	22.232	<0.0
	150-154.9	197(12.9)	73(19.1)		
	145–149.9	79(5.2)	29(7.6)		
	< 145	4(0.3)	5(1.3)		
Pre-					
pregnancy BMI	Normal	1130(74)	271(70.9)	9.175	0.01
(kg/m ²)					
	Underweight	172(11.3)	64(16.8)		
	Overweight / Obese	226(14.8)	47(12.3)		
GWG rate	Inadequate gain	690(45.2)	199(52.1)	6.107	0.04
	Appropriate gain	539(35.3)	121(31.7)		
	Excessive gain	299(19.6)	62(16.2)		

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	544			
46 47				


60


		AGA group	SGA group		
Variables	Items	(n=1528)	(n=382)	x ²	Р
Parity	Nulliparous	539(35.3)	195(51)	32.13	< 0.001
	Multiparous	989(64.7)	187(49)		00001
Assisted	•				
reproductive technology (ART)	No	1446(94.6)	362(94.8)	0.01	0.919
()	Yes	82(5.4)	20(5.2)		
Previous uterine	No	1196(78.3)	337(88.2)	19.089	< 0.001
scar	Yes	332(21.7)	45(11.8)		0.001
Family history	No	1367(89.5)	336(88)	2.809	0.422
	Hypertension	76(5)	26(6.8)	,	
	Diabetes	46(3)	13(3.4)		
	Both	39(2.6)	7(1.8)		
History of			.()		
abortion or	No	\$ 896(58.6)	251(65.7)	6.393	0.041
miscarriage					
8	Spontaneous				
	miscarriage	348(22.8)	71(18.6)		
	Induced abortions	284(18.6)	60(15.7)		
History of preterm delivery	No	1467(96)	368(96.3)	0.087	0.768
preter in denvery	Yes	61(4)	14(3.7)		
History of	No	1481(96.9)	379(99.2)	6.29	0.012
macrosomia	Yes	47(3.1)	3(0.8)	0.29	0.012
History of GDM	No	1523(99.7)	382(100)	/	0.590
	Yes	5(0.3)	0(0)		
History of fetal	No	1512(99)	380(99.5)	0.897	0.343
distress	Yes	16(1)	2(0.5)	0.027	0.0.0
History of low birth weight	No	1523(99.7)	376(98.4)	/	0.011
bii tii weigiit	Yes	5(0.3)	6(1.6)		
Intrahepatic	No	1508(98.7)	0(1.0) 377(98.7)	0	1
cholestasis of	110	1300(30.7)	577(20.7)	U	1
pregnancy (ICP)	Yes	20(1.3)	5(1.3)		

Gestational hypertensive	No	1431(93.7)	324(84.8)	31.269	< 0.0
disorder					0.0
	Gestational hypertension	62(4.1)	31(8.1)		
	Preeclampsia and eclampsia	27(1.8)	22(5.8)		
	Chronic hypertension with superimposed preeclampsia	4(0.3)	3(0.8)		
	Chronic hypertension (of any cause)	4(0.3)	2(0.5)		
Hyperthyroid	No	1487(97.3)	376(98.4)	1.576	0.
ii, por un, i ora	Yes	41(2.7)	6(1.6)	1.070	0.
Hypothyroid	No	1434(93.8)	349(91.4)	3.045	0.
~ I V	Yes	94(6.2)	33(8.6)		
Anemia	No	1149(75.2)	307(80.4)	4.508	0.
	Yes	379(24.8)	75(19.6)		
Polyhydramnios	No	1517(99.3)	381(99.7)	/	0.4
	Yes	11(0.7)	1(0.3)		
Oligohydramnios	No	1490(97.5)	349(91.4)	32.314	0.
	Yes	38(2.5)	33(8.6)		
Ketonuria in 1st trimester(mmol/l)	< 0.5	1049(68.7)	275(72)	9.963	0.
	0.5-3.9	336(22)	59(15.4)		
	≥4	143(9.4)	48(12.6)		
Ketonuria in 2nd					
trimester (mmol/l)	< 0.5	1090(71.3)	293(76.7)	4.903	0.
	0.5-3.9	308(20.2)	59(15.4)		
	≥4	130(8.5)	30(7.9)		
Elevated blood glucose in OGTT	One item	482(31.5)	161(42.1)	24.605	0.
	Two items	878(57.5)	204(53.4)		
	Three items	168(11.0)	17(4.5)		
75g OGTT 0 h glyc	emia (mmol/l)	4.83±0.48	4.64±0.44	7.187	0.
75g OGTT 1 h glyc	emia (mmol/l)	9.84±1.41	9.89±1.36	-0.585	0.
75g OGTT 2 h glyc	emia (mmol/l)	8.06±1.59	7.83±1.58	2.586	0

Page|27

	FPG in the 2nd trimester (mmol/l)	4.87±0.	.559	4.73±0.488	4.372	< 0.00
	2-h postprandial glucose in 2nd tri (mmol/l)	mester 6.09±1	.30	5.7±1.14	5.825	< 0.00
	HbA1c in the 2nd trimester (mmol	l/l) 5.26±0.	.356	5.28±0.349	-1.008	0.31
	Abv: SGA: small-for-gestationa	al-age; AGA: appropri	iate-weight-f	or-gestational-ag	ge; OGTT:	Oral
	<i>Glucose Tolerance Test;</i> FPG: fas pregnancy:7–10 gestational weel third trime	e 1 e 1	er of pregnan	cy: 21–24 gestat		
	Table 3 Logistic regression anal	lysis for SGA based o	on maternal	glycemic paran	neters	
	Variables	Crude	Р	Adjusted [.]	ł	מ
	Variables	OR (95% CI)	P	OR (95% C	CI)	Р
75g OG	TT 0 h glycemia	0.39(0.29-0.53)	< 0.001	0.4(0.29-0.5	55)	<0.00
75g OG	TT 1 h glycemia	1.06(0.97-1.15)	0.217	1.04(0.95-1.	14)	0.365
75g OGT	TT 2 h glycemia	0.88(0.82-0.95)	0.001	0.88(0.81-0.	95)	0.002
FPG in 2	nd trimester	0.74(0.57-0.97)	0.026	0.77(0.59-1.	01)	0.063
2-h post	brandial glucose in 2nd trimester	0.79(0.71-0.88)	< 0.001	0.81(0.73-0	.9)	<0.00
HbA1c i	n the 2nd trimester	2.28(1.6-3.25)	< 0.001	2.4(1.64-3.5	52)	<0.00
545	† Adjusted for parity, previous	uterine scar, history	of low birt	h weight, maci	osomia,	
546	gestational hypertensive disorder, ol	igohydramnios, anem	ia, pre-pregn	ancy BMI, heigh	ıt, GWG	
547	rate, and ketonuria in 1st trimester.					
548	Abv: OGTT: Oral Glucose Toleran	ce Test; FPG: fasting	plasma gluco	ose; HbA1c: hen	noglobin	
	A 1 at the third trime actor of museum and	v. 22 27 gostational				
549	A1c; the third trimester of pregnance		weeks.			
549 550	OR: odd ratios, CI: confidence inter		weeks.			
		rval.				
550		rval.				
550		rval.	weeks.			
550		rval.				
550		rval.				
550		rval.				
550		rval.				
550		rval.				
550		rval.				
550		rval.				
550		rval.				
550		rval.				
550		rval.				

Supplementary material 1

1 Maternal demographic characteristic

Maternal characteristics collected included maternal age, ethnicity, educational level, occupation, marital status, place of residence, stature, pre-pregnancy Body mass index, and GWG rate.

Height: women were classified into four categories based on height < 145 cm, 145-149.9 cm, 150-154.9 cm, and \geq 155 cm. Body mass index (BMI): BMI was calculated as weight (kg)/ [height (m)]². Using BMI, women were classified as underweight (BMI<18.5 kg/m²), normal weight (18.5–24.9 kg/m²), overweight (25–29.9 kg/m²), or obese (\geq 30 kg/m²). Gestational weight gain rate (GWG rate): To assess the adequacy of GWG among the study population, the GWG rate of each participant, which was calculated by dividing the total GWG by gestational age in weeks, was compared with the minimum recommended GWG rate. According to the IOM 2009 guidelines, The GWG of all included participants was categorized as inadequate weight gain, normal weight gain, and excessive weight gain.

2 Pregnancy characteristics

Pregnancy characteristics collected included parity, assisted reproductive technologyconceived pregnancy (ART), previous uterine scar (previous cesarean section or myomectomy), family history of hypertension or diabetes, pregnancy history (history of miscarriage, history of GDM, history of macrosomia, history of preterm labor, history of fetal distress, history of LBW).

3 Pregnancy complications

Pregnancy complications collected included intrahepatic cholestasis of pregnancy (ICP), Page 1

BMJ Open

pregnancy-associated hypertensive disorders, hyperthyroid, hypothyroid, anemia (defined by hemoglobin < 11 g/dL before delivery) (Goonewardene, Shehata, and Hamad 2012), and pathology of amniotic fluid (oligohydramnios and polyhydramnios)

The gestational hypertensive disorder was classified into four categories: gestational hypertension, preeclampsia, and eclampsia, chronic hypertension with superimposed preeclampsia, preeclampsia and eclampsia chronic hypertension (of any cause), which was diagnosed using standard criteria (Anon 2013).

Reference

Anon. 2013. 'Hypertension in Pregnancy: Executive Summary'. Obstetrics & Gynecology 122(5):1122–31. doi: 10.1097/01.AOG.0000437382.03963.88.

Goonewardene, Malik, Mishkat Shehata, and Asma Hamad. 2012. 'Anaemia in Pregnancy'. Best Practice & Research. Clinical Obstetrics & Gynaecology 26(1):3–24. doi: 10.1016/j.bpobgyn.2011.10.010.

Page 2

Reporting checklist for case-control study.

Based on the STROBE case-control guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below. Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation. Upload your completed checklist as an extra file when you submit to a journal. In your methods section, say that you used the STROBE case-control reporting guidelines, and cite them as: von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Page Reporting Item Number Title and abstract Title #1a Indicate the study's design with a commonly used term in the title or the abstract Abstract #1b Provide in the abstract an informative and balanced summary 2-3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			of what was done and what was found	
3 4 5	Introduction			
6 7 0	Background /	<u>#2</u>	Explain the scientific background and rationale for the	3-5
8 9 10 11	rationale		investigation being reported	
12 13	Objectives	<u>#3</u>	State specific objectives, including any prespecified	5
14 15			hypotheses	
16 17 18 19	Methods			
20 21 22	Study design	<u>#4</u>	Present key elements of study design early in the paper	5-6
23 24	Setting	<u>#5</u>	Describe the setting, locations, and relevant dates, including	5-7
25 26 27 28 29 30 31 32			periods of recruitment, exposure, follow-up, and data collection	
	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of	5-6
			case ascertainment and control selection. Give the rationale	
33 34 25			for the choice of cases and controls. For matched studies, give	
35 36 37 38			matching criteria and the number of controls per case	
39 40	Eligibility criteria	<u>#6b</u>	For matched studies, give matching criteria and the number of	7
41 42 43			controls per case	
44 45		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential	5-6
46 47			confounders, and effect modifiers. Give diagnostic criteria, if	
48 49 50			applicable	
51 52 53	Data sources /	<u>#8</u>	For each variable of interest give sources of data and details of	8
54 55	measurement		methods of assessment (measurement). Describe	
56 57 58			comparability of assessment methods if there is more than one	
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2			group. Give information separately for cases and controls.	
3 4 5	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	7
6 7 8	Study size	<u>#10</u>	Explain how the study size was arrived at	n/a
9 10 11	Quantitative	<u>#11</u>	Explain how quantitative variables were handled in the	5-6
12 13	variables		analyses. If applicable, describe which groupings were	
14 15 16			chosen, and why	
17 18	Statistical	<u>#12a</u>	Describe all statistical methods, including those used to control	5-7
19 20 21	methods		for confounding	
22 23 24	Statistical	<u>#12b</u>	Describe any methods used to examine subgroups and	n/a
25 26	methods		interactions	
27 28 29	Statistical	<u>#12c</u>	Explain how missing data were addressed	
30 31 32	methods			
33 34	Statistical	<u>#12d</u>	If applicable, explain how matching of cases and controls was	7
35 36 37	methods		addressed	
38 39 40	Statistical	<u>#12e</u>	Describe any sensitivity analyses	n/a
41 42	methods			
43 44 45	Results			
46 47 48	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg	8
49 50			numbers potentially eligible, examined for eligibility, confirmed	
51 52 53			eligible, included in the study, completing follow-up, and	
54 55			analysed. Give information separately for cases and controls.	
56 57 58	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	8
59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3	Participants	<u>#13c</u>	Consider use of a flow diagram	Figure1
4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic,	8
6 7			clinical, social) and information on exposures and potential	
8 9 10			confounders. Give information separately for cases and	
10 11 12			controls	
13 14	Descriptive data	#14b	Indicate number of participants with missing data for each	8
15 16		<u>// 140</u>	variable of interest	0
17 18				
19 20 21	Outcome data	<u>#15</u>	Report numbers in each exposure category, or summary	8
21 22 23			measures of exposure. Give information separately for cases	
24 25			and controls	
26 27	Main results	#16a	Give unadjusted estimates and, if applicable, confounder-	8-9
28 29	Main results	<u>#10a</u>		0-9
30 31			adjusted estimates and their precision (eg, 95% confidence	
32 33			interval). Make clear which confounders were adjusted for and	
34 35			why they were included	
36 37 28	Main results	<u>#16b</u>	Report category boundaries when continuous variables were	8-9
38 39 40			categorized	
41 42				
43 44	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into	n/a
45 46			absolute risk for a meaningful time period	
47 48	Other analyses	#17	Report other analyses done—e.g., analyses of subgroups and	n/a
49 50	-		interactions, and sensitivity analyses	
51 52				
53 54	Discussion			
55 56 57	Key results	<u>#18</u>	Summarise key results with reference to study objectives	10-11
58 59 60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of	14
3 4			potential bias or imprecision. Discuss both direction and	
5 6 7			magnitude of any potential bias.	
8 9 10	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives,	14
11 12			limitations, multiplicity of analyses, results from similar studies,	
13 14 15			and other relevant evidence.	
16 17	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study	11-14
18 19 20			results	
21 22 23	Other Information			
24 25 26	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the	15
27 28			present study and, if applicable, for the original study on which	
29 30			the present article is based	
31 32 33 34 35 36	None The STROBE checklist is distributed under the terms of the Creative Commons Attribution			
	License CC-BY. This checklist can be completed online using https://www.goodreports.org/, a tool			
37 38 39	made by the EQUATOR Network in collaboration with Penelope.ai			
40 41				
42 43				
44 45				
46 47				
48 49				
50				
51 52				
53 54				
55				
56 57				
58 59				
60		For pe	er review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	