Supplementary Materials

Lactate Cross-Feeding between *Bifidobacterium* species and *Megasphaera indica* Contributes to Butyrate Formation in the Human Colonic Environment

Sainan Zhao^a, Raymond Lau^a, Yang Zhong^{a,b}, Ming-Hsu Chen^{a,c}#

^aSchool of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
^bDepartment of Clinical Translational Research, Singapore General Hospital, Singapore
^cInstitute of Food Science and Technology, National Taiwan University, Taiwan

Supplementary Tables

Table S1. Pairwise average nucleotide identity (ANI) values among *Bifidobacterium* and *Megasphaera* strains.

Bacterial isolate	Type strain	ANI value (%)
OTU10_Megasphaera_unidentified_BWX	Megasphaera sp. NH10GCA_000417505.1	99.09 ¹
OTU10_Megasphaera_unidentified_BWX	Megasphaera sp. BL7GCA_000417525.1	99.03 ¹
OTU10_Megasphaera_unidentified_BWX	Megasphaera_elsdeniiGCF_003010495.1	90.89 ²
OTU10_Megasphaera_unidentified_BWX	Megasphaera_massiliensisGCF_000455225.1	82.43 ²
OTU10_Megasphaera_unidentified_BWX	Megasphaera_cerevisiaeGCF_001045675.1	78.19 ²
OTU10_Megasphaera_unidentified_BWX	Megasphaera_paucivoransGCF_900103535.1	77.35^{2}
OTU10_Megasphaera_unidentified_BWX	Megasphaera_micronuciformisGCF_000165735.1	77.34 ²
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_pseudocatenulatumGCF_001025215.1 (Bifidobacterium pseudocatenulatum DSM 20438)	98.17 ²
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_kashiwanohenseGCF_000800455.1	92.03 ²
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_catenulatumGCF_001025195.1	91.59 ²
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_adolescentisGCF_000010425.1	84.47^{2}
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_ruminantiumGCF_000770925.1	83.03 ²
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_dentiumGCF_001042595.1	82.57^{2}
OTU2_Bifidobacterium_pseudocatenulatum_BWX	Bifidobacterium_moukalabenseGCF_000522505.1	82.56^{2}
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium_longumGCF_000196555.1 (Bifidobacterium longum subsp. longum JCM 1217)	98.83 ²
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium_breveGCF_001025175.1	86.84 ²
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium_reuteriGCF_000741695.1	83.25 ²
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium_saguiniGCF_000741715.1	82.66 ²
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium_scardoviiGCF_001042635.1	82.19 ²
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium_aesculapiiGCF_001417815.1	82.18^{2}
OTU13_Bifidobacterium_longum_BWX	Bifidobacterium stellenboschenseGCF 000741785.1	82.14^{2}

¹Values were obtained through comparing genome sequences using the OrthoANI tool (<u>https://www.ezbiocloud.net/tools/ani</u>). ²Values were generated from the Protologger webserver (<u>www.protologger.de</u>).

Component	Composition (per liter)
NaCl	0.47 g
HNa ₂ PO ₄	3.46 g
H_2NaPO_4	1.87 g
Na ₂ SO ₄	0.1 g
KCl	0.45 g
Urea	0.20 g
NH ₄ Cl	0.36 g
resazurin	1 mg
cysteine-HCl	0.25 g
$CaCl_2 \cdot 2H_2O$	72.8 mg
$MgCl_2 \cdot 6H2O$	100 mg
P1 metal stock solution ¹	1 mL
ATCC vitamin stock (ATCC MD-VS, Hampton, NH)	10 mL
Amino acid mixture ²	10 mL

Table S2. Composition of FBVA medium.

¹ P1 metal stock solution (per liter) is composed of 34.26 g H₃BO₃, 4.32 g MnCl₂·4H2O, 315 mg ZnCl₂, 44 mg Na₂MoO₄·2H₂O, 3 mg CuSO₄·5H2O, 12.15 mg CoCl₂·6H₂O, 259 mg NiCl₂, 0.28 mL EDTA (10 mM), and 1 mL FeCl₃·6H₂O (3.89 mg/mL in 0.1 M HCl). ² The amino acid mixture consisted of all 20 amino acids (1 mM each).

Supplementary Figures

Fig. S1. Correlations between the relative abundance of the genera *Bifidobacterium* and *Megasphaera* in BWX30-based fecal fermentation cultures (A). Correlations between the relative abundance of *Megasphaera* and butyrate yields.

— OTU2_Bifidobacterium_pseudocatenulatum_BWX

97

Bifidobacterium pseudocatenulatum--Bifidobacteriaceae--D86187--Valid Bifidobacterium catenulatum--Bifidobacteriaceae--AF432082--Valid Bifidobacterium hapali--Bifidobacteriaceae--KP718941--Valid Bifidobacterium callitrichos--Bifidobacteriaceae--AB559503--Valid Bifidobacterium dentium--Bifidobacteriaceae--D86183--Valid Bifidobacterium moukalabense--Bifidobacteriaceae--AB821293--Valid Bifidobacterium merycicum--Bifidobacteriaceae--D86192--Valid Bifidobacterium angulatum -- Bifidobacteriaceae -- D86182 -- Valid Bifidobacterium kashiwanohense--Bifidobacteriaceae--AB425276--Valid Bifidobacterium faecale -- Bifidobacteriaceae -- KF990498 -- Valid Bifidobacterium ruminantium--Bifidobacteriaceae--D86197--Valid Bifidobacterium adolescentis--Bifidobacteriaceae--AP009256--Valid Bifidobacterium aesculapii--Bifidobacteriaceae--KC807989--Valid Bifidobacterium stellenboschense--Bifidobacteriaceae--AB559505--Valid Bifidobacterium aerophilum--Bifidobacteriaceae--KU051444--Valid Bifidobacterium scardovii--Bifidobacteriaceae--AJ307005--Valid Bifidobacterium biavatii--Bifidobacteriaceae--AB559506--Valid Bifidobacterium ramosum--Bifidobacteriaceae--KU051447--Valid Bifidobacterium pseudolongum--Bifidobacteriaceae--D86194--Valid Bifidobacterium pseudolongum--Bifidobacteriaceae--D86195--Valid Bifidobacterium animalis--Bifidobacteriaceae--AB050136--Valid Bifidobacterium gallicum--Bifidobacteriaceae--D86189--Valid Bifidobacterium tsurumiense--Bifidobacteriaceae--AB241106--Valid Bifidobacterium asteroides--Bifidobacteriaceae--EF187235--Valid Bifidobacterium coryneforme--Bifidobacteriaceae--M58733--Valid Bifidobacterium indicum--Bifidobacteriaceae--D86188--Valid Bifidobacterium crudilactis--Bifidobacteriaceae--AY952449--Valid Bifidobacterium psychraerophilum--Bifidobacteriaceae--AY174108--Valid Bifidobacterium aguikefiri--Bifidobacteriaceae--LN849254--Valid Bifidobacterium mongoliense--Bifidobacteriaceae--AB433856--Valid Bifidobacterium minimum--Bifidobacteriaceae--M58741--Valid Bifidobacterium subtile--Bifidobacteriaceae--D89378--Valid Bifidobacterium gallinarum--Bifidobacteriaceae--D86191--Valid Bifidobacterium saeculare--Bifidobacteriaceae--D89328--Valid Bifidobacterium pullorum -- Bifidobacteriaceae -- D86196 -- Valid Bifidobacterium eulemuris--Bifidobacteriaceae--KP979748--Valid Bifidobacterium lemurum--Bifidobacteriaceae--KJ658281--Valid Bifidobacterium breve--Bifidobacteriaceae--AB006658--Valid Bifidobacterium saguini--Bifidobacteriaceae--AB559504--Valid Bifidobacterium longum--Bifidobacteriaceae--D86184--Valid Bifidobacterium longum--Bifidobacteriaceae--AB924532--Valid Bifidobacterium longum--Bifidobacteriaceae--M58739--Valid Bifidobacterium longum--Bifidobacteriaceae--M58743--Valid Bifidobacterium tissierii--Bifidobacteriaceae--KP718951--Valid Bifidobacterium bifidum--Bifidobacteriaceae--U25952--Valid Bifidobacterium reuteri--Bifidobacteriaceae--AB613259--Valid Bifidobacterium boum--Bifidobacteriaceae--D86190--Valid Bifidobacterium thermacidophilum--Bifidobacteriaceae--AB016246--Valid Bifidobacterium thermophilum--Bifidobacteriaceae--GU361834--Valid Bifidobacterium thermacidophilum--Bifidobacteriaceae--AY148470--Valid

Bifidobacterium merycicum--Bifidobacteriaceae--D86192--Valid Bifidobacterium angulatum--Bifidobacteriaceae--D86182--Valid Bifidobacterium hapali--Bifidobacteriaceae--KP718941--Valid Bifidobacterium callitrichos--Bifidobacteriaceae--AB559503--Valid Bifidobacterium dentium--Bifidobacteriaceae--D86183--Valid Bifidobacterium moukalabense--Bifidobacteriaceae--AB821293--Valid Bifidobacterium catenulatum--Bifidobacteriaceae--AF432082--Valid Bifidobacterium pseudocatenulatum -- Bifidobacteriaceae -- D86187 -- Valid Bifidobacterium kashiwanohense--Bifidobacteriaceae--AB425276--Valid Bifidobacterium faecale--Bifidobacteriaceae--KF990498--Valid Bifidobacterium ruminantium--Bifidobacteriaceae--D86197--Valid Bifidobacterium adolescentis--Bifidobacteriaceae--AP009256--Valid Bifidobacterium aesculapii--Bifidobacteriaceae--KC807989--Valid Bifidobacterium stellenboschense--Bifidobacteriaceae--AB559505--Valid Bifidobacterium scardovii--Bifidobacteriaceae--AJ307005--Valid Bifidobacterium aerophilum--Bifidobacteriaceae--KU051444--Valid Bifidobacterium biavatii--Bifidobacteriaceae--AB559506--Valid Bifidobacterium ramosum--Bifidobacteriaceae--KU051447--Valid Bifidobacterium thermophilum--Bifidobacteriaceae--GU361834--Valid Bifidobacterium thermacidophilum--Bifidobacteriaceae--AY148470--Valid Bifidobacterium boum--Bifidobacteriaceae--D86190--Valid Bifidobacterium reuteri--Bifidobacteriaceae--AB613259--Valid Bifidobacterium coryneforme--Bifidobacteriaceae--M58733--Valid Bifidobacterium indicum--Bifidobacteriaceae--D86188--Valid Bifidobacterium asteroides--Bifidobacteriaceae--EF187235--Valid Bifidobacterium tsurumiense--Bifidobacteriaceae--AB241106--Valid Bifidobacterium gallicum--Bifidobacteriaceae--D86189--Valid Bifidobacterium choerinum--Bifidobacteriaceae--D86186--Valid Bifidobacterium animalis--Bifidobacteriaceae--AB050136--Valid Bifidobacterium pseudolongum--Bifidobacteriaceae--D86194--Valid Bifidobacterium pseudolongum--Bifidobacteriaceae--D86195--Valid Bifidobacterium tissierii--Bifidobacteriaceae--KP718951--Valid Bifidobacterium bifidum--Bifidobacteriaceae--U25952--Valid Bifidobacterium gallinarum--Bifidobacteriaceae--D86191--Valid Bifidobacterium saeculare--Bifidobacteriaceae--D89328--Valid Bifidobacterium pullorum--Bifidobacteriaceae--D86196--Valid Bifidobacterium crudilactis--Bifidobacteriaceae--AY952449--Valid Bifidobacterium psychraerophilum -- Bifidobacteriaceae -- AY174108 -- Valid Bifidobacterium mongoliense--Bifidobacteriaceae--AB433856--Valid Neoscardovia arbecensis--Bifidobacteriaceae--JF519691--Valid Bifidobacterium minimum--Bifidobacteriaceae--M58741--Valid Bifidobacterium subtile--Bifidobacteriaceae--D89378--Valid Bifidobacterium eulemuris--Bifidobacteriaceae--KP979748--Valid Bifidobacterium lemurum--Bifidobacteriaceae--KJ658281--Valid Bifidobacterium saguini--Bifidobacteriaceae--AB559504--Valid Bifidobacterium breve--Bifidobacteriaceae--AB006658--Valid Bifidobacterium longum--Bifidobacteriaceae--D86184--Valid Bifidobacterium longum--Bifidobacteriaceae--AB924532--Valid Bifidobacterium longum--Bifidobacteriaceae--M58743--Valid Bifidobacterium longum--Bifidobacteriaceae--M58739--Valid OTU13 Bifidobacterium longum BWX

0.01

Paenibacillus pinisoli--Paenibacillaceae--KC415175--Valid Paenibacillus koleovorans--Paenibacillaceae--AB041720--Valid Cohnella ferri--Paenibacillaceae--EF203083--Valid Bacillus rhizosphaerae--Bacillaceae--FJ233848--Valid Lentibacillus salarius--Bacillaceae--AY667493--Valid Desmospora profundinema--Thermoactinomycetaceae--KM368342--Valid Paludifilum halophilum--Thermoactinomycetaceae--KP229518--Valid Polyangium fumosum--Polyangiaceae--GU207879--Valid Desulfococcus biacutus--Desulfobacteraceae--AJ277887--Valid Geothermobacter ehrlichii--Geobacteraceae--AY155599--Valid Clostridium stercorarium--Clostridiaceae--AF266461--Valid Coprococcus catus--Lachnospiraceae--AB038359--Valid Falcatimonas natans--Lachnospiraceae--AB298726--Valid Anaerobium acetethylicum--Lachnospiraceae--KP233894--Valid Faecalimonas umbilicata--Lachnospiraceae--LC192831--Valid Blautia coccoides--Unclassified Clostridiales--AB571656--Valid Blautia stercoris--Unclassified Clostridiales--HM626177--Valid Veillonella ratti--Veillonellaceae--AY355138--Valid Veillonella criceti--Veillonellaceae--AF186072--Valid Veillonella magna--Veillonellaceae--EU096495--Valid Dialister succinatiphilus--Veillonellaceae--AB370249--Valid

OTU10_Megasphaera_unidentified_BWX

Megasphaera indica--Veillonellaceae--HM990965--Valid Megasphaera elsdenii--Veillonellaceae--U95027--Valid Megasphaera massiliensis--Veillonellaceae--JX424772--Valid Anaeroglobus geminatus--Veillonellaceae--AF338413--Valid Megasphaera micronuciformis--Veillonellaceae--AF473834--Valid Megasphaera cerevisiae--Veillonellaceae--L37040--Valid Megasphaera paucivorans--Veillonellaceae--DQ223730--Valid Megasphaera sueciensis--Veillonellaceae--DQ223729--Valid Pectinatus portalensis--Selenomonadaceae--AY428574--Valid Pectinatus cerevisiiphilus--Selenomonadaceae--FR870446--Valid Pectinatus sottacetonis--Selenomonadaceae--JF280084--Valid Pectinatus haikarae--Selenomonadaceae--DQ223731--Valid Mitsuokella jalaludinii--Selenomonadaceae--AF479674--Valid Selenomonas bovis--Selenomonadaceae--EF139191--Valid Anaerovibrio lipolyticus--Selenomonadaceae--AB034191--Valid Selenomonas sputigena--Selenomonadaceae--AF287793--Valid Propionispira arcuata--Selenomonadaceae--AB298743--Valid Propionispira raffinosivorans--Selenomonadaceae--DQ217599--Valid Propionispira arboris--Selenomonadaceae--Y18190--Valid Propionispira paucivorans--Selenomonadaceae--HE582762--Valid Anaerosinus glycerini--Sporomusaceae--AJ010960--Valid Succiniclasticum ruminis--Acidaminococcaceae--X81137--Valid Phascolarctobacterium succinatutens--Acidaminococcaceae--AB490811--Valid Anaeroarcus burkinensis--Sporomusaceae--AJ010961--Valid Sporolituus thermophilus -- Sporomusaceae -- FJ169187 -- Valid Thermosinus carboxydivorans--Sporomusaceae--AAWL01000022--Valid Anaerospora hongkongensis--Sporomusaceae--AY372050--Valid Propionispora hippei--Sporomusaceae--AJ508927--Valid Propionispora vibrioides--Sporomusaceae--AJ279802--Valid

Fig. S2. Phylogenetic trees depicting the evolutionary relationships among species. (A) Codon tree of genus *Bifidobacterium* based on 160 core genes. (B) Codon tree of genus *Megasphaera* based on 375 core genes. Diagrams A & B were constructed using the BV-BRC server (https://www.bv-brc.org/app/PhylogeneticTree). (C) Phylogenetic tree of OTU2_*Bifidobacterium_pseudocatenulatum_BWX*. (D) Phylogenetic tree of OTU13_*Bifidobacterium_longum_BWX*. (E) Phylogenetic tree of OTU10_*Megasphaera_*unidentified_BWX. Diagrams C, D, & E were constructed based on the 16S rRNA gene sequence using Protologger (http://protologger.de/).

Fig. S3. Distribution of the CAZymes (Carbohydrate active enzymes) in the three bacterial genomes. CBM, carbohydrate binding module; CE, carbohydrate esters; GH, glycoside hydrolase; GT, glycoside transferase; AA, auxiliary activities family.

Fig. S4. Substrate consumption during monoculture and coculture fermentation. Total xylose concentration in the medium with xylose (A) or BWX30 (B) as the carbohydrate source. (C) Concentration of xylose and xylooligosaccharides in the MI fermented BWX30 medium. (D) Profile of the oligomers in medium with BWX30 as the carbohydrate source. Mono, monoculture; Co, coculture. BP, *Bifidobacterium pseudocatenulatum_BWX*; BL, *Bifidobacterium longum_BWX*; MI, *Megasphaera indica_BWX*; X1, xylose; X2, xylobiose; X3, xylotriose, X4, xylotetraose; X5, xylopentaose and X6, xylohexaose. The range bars in line charts denote the standard deviation of three biological replicates.

Fig. S5. Schematic representation of sugar transport system in the genome of (A-B) *Bifidobacterium pseudocatenulatum_*BWX (BP), and (C-D) *Bifidobacterium longum_*BWX (BL).

Fig. S6. Sampling time points for each analysis during the monoculture and coculture fermentations.