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ABSTRACT

The activity of caffeoyl-coenzyme A (CoA) 3-0-methyltransfer-
ase, an enzyme widely distributed in plants and involved in cell
wall reinforcement in a disease resistance response, appears to
be subject to a complex type of regulation in vivo. In cultured
parsley (Petroselinum crispum) cells treated with an elicitor from
Phytophthora megasperma f.sp. glycinea, the enzyme activity is
rapidly induced by a transient increase in the rate of de novo
transcription. Parsley caffeoyl-CoA-specific methyltransferase
differs in several aspects from other plant 0-methyltransferases
but shows limited homology to bacterial adenine-specific DNA
methyltransferases. Kinetic analysis revealed an Ordered Bi Bi
mechanism for catalysis, with caffeoyl-CoA bound prior to S-
adenosyl-L-methionine and feruloyl-CoA released last from the
enzyme. The small inhibitory constant determined in vitro for
feruloyl-CoA suggests that, in vivo, the enzyme activity is also
under tight control by the steady-state product concentration in
addition to the rate of transcription that becomes affected upon
elicitor challenge.

(14, 15), and some homology to bacterial AMTs was noticed
(15). This methyltransferase was shown to possess a remark-
ably narrow substrate specificity for caffeoyl-CoA, and the
adenine moiety ofCoA was assumed as a cause of homology
with adenine-specific DNA-methyltransferases from bacterial
sources, which had been proposed earlier to have evolved by
gene duplication (7, 12, 15).

In the context of phenylpropanoid biosynthesis, in partic-
ular flavonoids and ferulic acid, various OMTs have been
studied (6, 16). However, only few have been purified to
homogeneity and there is little information on their kinetic
mechanisms. None of these OMTs depend on a CoA-ester
substrate, and parsley CCoAMT distinctly differs from, for
example, caffeic acid OMTs. The unusual features of parsley
CCoAMT and the general importance ofsuch enzyme activity
for resistance to fungal pathogens at the stage of entry led us
to investigate the kinetic mechanism of the elicitor-induced
enzyme, with particular attention to control of enzyme activ-
ity by product inhibition.

Challenge of parsley cell suspension cultures with fungal
elicitors induces a concomitant and rapid accumulation of
coumarin phytoalexins and the formation of ferulic cell wall
esters (14). Both these reactions contribute to the overall
disease resistance response, which is commonly observed in
incompatible interactions of plants with phytopathogenic
fungi. Whereas taxonomically different plants accumulate
phytoalexins of different chemical nature (1), the incorpora-
tion of ferulic and related acids into cell walls appears to be a
widespread phenomenon and invariably requires the activa-
tion of the general phenylpropanoid pathway (13).
CCoAMT,2 an enzyme responsible for the formation of feru-
loyl-CoA, is induced under these conditions (14). CCoAMT
was characterized recently from elicitor-treated parsley cells
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2Abbreviations: CCoAMT, S-Adenosyl-L-methionine:trans-caf-
feoyl-CoA 3-O-methyltransferase; AdoMet, S-adenosyl-L-methio-
nine; AdoHcy, S-adenosyl-L-homocysteine; OMT, O-methyltransfer-
ase; AMT, adenine-specific methyltransferase.
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MATERIALS AND METHODS

Chemicals

All chemicals and solvents were ofanalytical grade. AdoMet
and AdoHcy were purchased from Sigma, Deisenhofen, and
[methyl-'4C]AdoMet from Amersham-Buchler, Braun-
schweig. Caffeoyl-CoA and feruloyl-CoA were synthesized
according to Stockigt and Zenk (19).

Cell Culture and Elicitor

The propagation and induction of parsley (Petroselinum
crispum) cell cultures with crude elicitor from Phytophthora
megasperma f.sp. glycinea (5 mg/40 mL suspension culture)
was as described elsewhere (14).

CCoAMT

The purification of CCoAMT from elicited parsley cells
including protein determination was reported previously (15).
The enzyme fraction eluted from Q-Sepharose chromatogra-
phy was used throughout these kinetic studies. Catalytic activ-
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ity decreased rapidly during purification and inadequately
correlated with the high degree of enzyme purity.

CCoAMT Assay

The standard assay mixture (50 ML total) consisted of
varying amounts of caffeoyl-CoA (added in 2 mm solution in
diluted formic acid pH 2-3) and [methyl-'4C]AdoMet (2.2
GBq/mmol) in 100 mm Tris-HCl buffer (pH 7.5), containing
200 Mm MgCl2, 2 mm DTE, and 10% (v/v) glycerol, and
employing 1.05 Mg partially purified CCoAMT protein. In-
cubations were started by centrifugation of substrates from
the lid to the bottom of Eppendorf tubes and continued for
10 min at 30C. The reaction was stopped by alkaline hy-
drolysis (addition of 10 ML 2.8 M NaOH, followed by incu-
bation at 40'C for 15 min and termination by the addition of
6.2 uL 6 M HCl) and the aqueous phase was extracted with
ethyl acetate (200 ML). Radioactivity in the extracts was
determined by liquid scintillation counting (LKB 121 Rack-
beta liquid scintillation counter) of aliquots of the organic
phase (150 ML) in a toluene-based cocktail (Rotiszint 22,
Roth, Karlsruhe). The reaction velocity was confirmed to be
linear with respect to time and protein for at least 30 min at
all substrate concentrations employed.

Kinetic data are represented as double-reciprocal plots,
which were fitted by linear regression analysis (method of
least squares) (20) as well as nonlinear regression analysis (20),
and the appropriate model was chosen. Nonlinear regression
analysis was performed with a computer program provided
by H. Bisswanger, Tubingen. In all instances, the model
resulting from nonlinear regression was identical to that gen-
erated by fitting the data by the method of least squares.

V-
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Table I. Kinetic Parameters of Parsley CCoAMT
Parameter Concentrationa

JM

KCaffeoylCoA 1.1

KAdoMet 8.2
K, CaffeoyI-CoA 5.2

KiAdoHcy 3.5
KiFeruoyl-CoA 11 .0

a Data were determined from nonlinear regression analysis.

RESULTS

Substrate interaction kinetics with AdoMet as the variable
substrate and several fixed concentrations of caffeoyl-CoA
gave intersecting lines (Fig. 1). Intercept and slope replots
versus reciprocal caffeoyl-CoA concentrations (inset, Fig. 1)
generated straight lines for usual enzyme binding character-
istics, from which catalytic constants can be determined. The
initial velocity data were consistent with a sequential binding
mechanism where both substrates must bind to the enzyme
before any product release, thus excluding a ping-pong mech-
anism (17).
The order of substrate binding and product release was

determined from product inhibition studies. AdoHcy was
found to be a noncompetitive inhibitor with respect to both
AdoMet and caffeoyl-CoA. Feruloyl-CoA acted as a compet-
itive inhibitor of caffeoyl-CoA and as a noncompetitive inhib-
itor with respect to AdoMet. These data indicate that feruloyl-
CoA is likely to be released last from the parsley CCoAMT in
the course of catalysis, provided that an Ordered Bi Bi rather

Figure 1. Double-reciprocal plots of initial veloc-
ities of CCoAMT with caffeoyl-CoA as the fixed
substrate at 1.5 (A), 1.8 (e), 2.2 (1), 2.9 (El), and
4.0gM (0) and AdoMet as the variable substrate.
Inset, slope (0) and intercept (0) replots versus
caffeoyl-CoA concentrations.

[AdoMet] 1 (JuM)1
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ing caffeic and 5-hydroxyferulic acids or various flavonols as
substrates. It remains to be seen whether such enzyme activity
is also involved in the signification of tissues, a process which
generally appears to be more sluggish. In this regard, and due
to the fact that lignins of low methoxylation are increasingly
required, for ecological reasons, in the pulp mill industry (8),
the distribution and regulation of CCoAMT activity deserve
further attention.
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