Science Advances

Supplementary Materials for

Endogenous retroviruses shape pluripotency specification in mouse embryos

Sergio de la Rosa et al.

Corresponding author: Nabil Djouder, ndjouder@cnio.es

Sci. Adv. **10**, eadk9394 (2024) DOI: 10.1126/sciadv.adk9394

The PDF file includes:

Figs. S1 to S9 Tables S1, S3 and S4 Legend for table S2

Other Supplementary Material for this manuscript includes the following:

Table S2

Fig. S1: URI is heterogeneously expressed and concurs with blastomere pluripotency bias in the early embryo. A, IF of URI in 2C embryos using paraformaldehyde (PFA) or methanol fixation (MeOH). Scale bar, 10 µm. B, URI intensity in grouped blastomeres from (A). Unpaired t test; ***P < 0.001. C, Linear regression and correlation analysis of URI intensity and CARM1 speckles in 2C embryos (See Fig. 1D, E). a.u. acronym referred arbitrary units. D, Highly variable gene analysis among single 2C embryo blastomeres. Single cell counts were regressed out for interembryo variability, non-regressed plot is also depicted. Mean (solid line) and 95% confidence intervals (dashed line) for the relationship between the square of the coefficient of variation (CV^2) and the average gene expression level (Means) are plotted. Yellow dots mark significant genes. Other color dots identify respective genes. E, Intraembryo normalized Uri mRNA levels in 2C embryos from single blastomere obtained from indicated RNA-seq datasets. F, Hierarchical clustering analysis of single 2C embryo blastomeres using top highly variable gene candidates from (D). G, Paired normalized Uri mRNA levels in clustered blastomeres from (f). Paired t test; ns, non-significant. H, IF of URI in 4C embryos using PFA or MeOH fixation. Scale bar, 10 µm. Individual pictures for single blastomeres are shown. I, URI intensity for grouped blastomeres from (a). Unmatched one-way ANOVA analysis (Tukey post-hoc test); *P < 0.05, ****P < 0.0001. J, Linear regression and correlation analysis of URI and BAF155 intensity in non-planar shaped 4C embryos (See Fig. 1, I and J). a.u. acronym referred arbitrary units. **K**, Gene dispersion analysis among single 4C embryo blastomeres. Single cell counts were regressed out for inter-embryo variability, non-regression plot is also depicted. Mean (solid line) and 95% confidence intervals (dashed line) are plotted for the relationship between the square of the coefficient of variation and (CV^2) and the average gene expression level (Means). Yellow dots mark top 300 significant variable genes.

Other color dots identify respective genes. L, Intra-embryo normalized Uri mRNA levels in 4-cell embryos from single cell blastomere obtained from indicated RNA-seq datasets. M, Venn diagram depicting total and shared number of potential target genes for OCT4 and SOX2. N, Abundance of OCT4 and SOX2 target genes identified as highly variable genes across 4C embryo blastomeres analysis from (K). Fisher's test is used; ****P<0.0001. **O**, Heat map showing Uri-ranked Z-scored mRNA expression of OCT4 and SOX2 highly variable potential target genes in 4C embryo single blastomeres. P, Linear regression and correlation analysis of normalized Uri mRNA levels and normalized enrichment score (NES) from Gene set enrichment analysis (GSEA) for OCT4 and SOX2 highly variable potential target gene signature. **Q**, GSEA of ranked gene correlation with Uri. R, Genomic read coverage of chromatin immunoprecipitationsequencing analysis (ChIP-seq) in the Uri locus for different pluripotent core transcriptional factors. Uri locus is shown from the minus strand. Super-enhancer region (yellow band) is identified upstream of the transcription starting site (TSS, green band). S, Density plot from panel (R). Total number of embryos is referred to in each panel. Repository accession numbers for sequencing dataset analysis are indicated in respective panel and compiled in table S1.

Fig. S2: Uri super-enhancer region encompasses pluripotency onset and lineage segregation in mouse embryos. A, Genomic views of unique mapped reads for transposase-accessible chromatin-sequencing assay (ATAC-seq) across different preimplanted mouse embryo stages. **B**, Unique read coverage from DNase I-hypersensitive site-sequencing (DNase-seq) along successive pre-implanted mouse embryo stages. C, View of mapped reads at Uri genomic region from epigenetic chromatin immunoprecipitation-sequencing analysis (ChIP-seq) markers in murine embryos. Uri locus is shown from the minus strand. Super-enhancer region (yellow band) is identified upstream of the transcription starting site (TSS, green band). D, Density plot from combine read coverages from (A, B). E, Density plot of H3K4me3 ChIP-seq from (C). F and G, Selected genomic views of chromatin immunoprecipitation-sequencing analysis (ChIP-seq) for epigenetic Uri locus in pluripotent mESCs (F) or trophoblast stem cells (TSC) (G). Uri locus is shown from the minus strand. Enhancer region (yellow band) is identified upstream of the transcription starting site (TSS, green band). H, Density plots for H3K27ac ChIP-seq from (F, G). Data showed higher enhancer/promoter ration in ESCs compared to TSCs. I, Density plots for indicated ChIP-seq in ESCs (left) or TSCs (right panel) from (F, G). Enhancers are defined to have high monomethylation at H3K4 (low H3K4me3/H3K4me1 ratio). J and K, View of unique mapped read coverages from essential transcriptional factor ChIP-seq datasets in ES (J) and TS (K) cells. L, Density plots for ATAC-seq and merged transcriptional factor ChIP-seq reads at promoter or enhancer locus in both murine TSCs and ESCs. Acronyms for 1C (1-cell embryo), 2C (2cell embryo), 4C (4-cell embryo), 8C (8-cell embryo), ICM (Inner Cell Mass compartment) and ES (Embryonic Stem cell) are used. Repository accession numbers for sequencing dataset analysis are indicated in respective panel and compiled in table S1.

Fig. S3: Zygotic URI-depleted embryos do not establish mESCs cultures. A, Pluripotent ESC derivation protocol from early pre-implanted blastocyst, placed in vitro in feeder gelatin-coated layer in the presence of leukemia inhibitory factor (LIF) and the addition of 2i (GSK3 and MEK inhibitors) from (See Fig. 3, A and B). B, Representative bright field images of ICM outgrowths 5 days after plating embryos ex vivo in the presence of 2i/LIF or LIF from (A). White dashed lines limit ICM outgrowth in LIF condition. Scale bars, 50 µm. C, Efficiency of mESCs lineage derivation from (B) under 2i/LIF condition. χ^2 test applied for the expected versus observed events; *P < 0.05. **D**, Efficiency of mESCs lineage derivation from (B) under LIF condition. χ^2 test applied for the expected versus observed events; ns, non-significant. E, Western blot analysis of established pluripotent cell lineages from (B). F, Pluripotent ESC derivation protocol of Uri ICM-KO embryos generated by crossing the Sox2-Cre mice with the Uri lox mouse model to generate URI heterozygous (ICM-het) and knockout (ICM-KO) embryos (See Fig. 3, P and Q). G, Representative bright field images of ICM outgrowths from embryos cultured ex vivo in the presence of 2i/LIF from (F). Scale bars, 50 µm. H, Representative DNA electrophoresis of PCR data for the genotyping of derived pluripotent cell lineage from (G). I, Efficiency of mESCs lineage derivation from (G). χ^2 test applied for the expected versus observed events. Total number of embryos is referred to in each panel.

Fig. S4: URI loss compromises the pluripotent potential of EPI cells. A, qRT-PCR of pluripotent core factor genes in mESCs treated with adenoviruses expressing either Cre recombinase combined with an enhanced green fluorescence protein EGFP (AdV-Cre-EGFP) or EGFP alone (AdV-EGFP) as control and cultured in presence of 2i/LIF. Data are represented as mean \pm s.e.m. **B**, Scheme of Uri lox mice crossed with hUBC-CreERT2 mice. C, Murine ESCs derivation protocol from early pre-implanted blastocyst from (B), placed in vitro in feeder layer in the presence of 2i/LIF and treated with 4hydroxytamoxifen (4-OHT) to deplete URI in vitro. D, Western blot analysis of 4-OHTtreated pluripotent mESCs from (C). E, Experimental scheme to generate rosette-like structure mimicking post-implanted epiblast (EPI) compartment. F, Scheme of the main morphological changes of the embryonic EPI compartment during implantation. G, IF of URI and PODLX in AdV-EGFP- or AdV-Cre-EGFP-infected rosette-like mESCs after 48 hours. Dashed white lines indicate URI negative colonies. Scale bar, 100 and 50 µm. H, Representative IF of URI, naïve pluripotent marker NANOG and the polarization marker y-TUBULIN in different size rosette-like colonies. Scale bar, 20 µm. I, Representative IF of URI and lumenogenesis markers PODLX and PAR6 in different size rosette-like colonies. Scale bar, 20 µm. J, IF of URI, PODLX and the epithelial marker E-Cadherin in different size rosette-like colonies. Scale bar, 20 µm.

Fig. S5. URI loss is a hallmark of the 2C-like cells. A, IF of wild-type mESCs for URI and the 2C-like markers ZSCAN4 or MERVL-gag. Dashed white outlines represent totipotent-like cells. Scale bar, 10 µm. B and C, Linear regression model and normalized correlation analysis of URI and ZSCAN4 (B) or MERVL-gag (C) intensity from (A). Results are plotted as arbitrary units (a.u.). D, URI levels of pluripotent mESCs and the two totipotent-like ZSCAN4+ or MERVL-gag+ cells from (B and C respectively). a.u. acronym referred arbitrary units. One-way ANOVA test (Tukey post-hoc test); ****P < 0.0001. E, Normalized Uri mRNA expression levels across different pluripotent or 2C-like cell populations from single cell RNA-seq datasets. x axis is sorted left-to-right from pluripotent population (Zscan4-; MERVL-LTR-) to totipotent-like cells (Zscan4+; MERVL-LTR+). Median and quartiles are shown. One-way ANOVA test (Tukey posthoc test); *P < 0.05, ***P < 0.001. F, Normalized Uri mRNA expression across different pluripotent or 2C-like populations from a pooled RNA-seq dataset. One-way ANOVA test (Tukey correction); ***P < 0.001. G, Plasmid construct for labelling transient 2Clike cells with active transcription of the Zscan4c promoter. H, Plasmid construct for labelling transient 2C-like cells with active transcription of the MERVL-LTR promoter. I, IF of URI in 2C-like Zscan4-mEmerald or MERVL-LTR-tdTomato reporter mESCs. Scale bar, 20 µm. Median and quartiles are shown. J, URI intensity in wild-type ES, Zscan4+ or MERVL-LTR+ cells from (I). ANOVA with Tukey post hoc test; **P < 0.01, ****P < 0.001. **K**, Selected genomic views from chromatin-immunoprecipitation sequencing (ChIP-seq) of H3K4me3 and H3K27me3 and assay for transposaseaccessible chromatin (ATAC-seq) in different pluripotent (Zscan4-; MERVL-LTR-) or totipotent-like (*Zscan4+*; *MERVL-LTR-* and *Zscan4+*; *MERVL-LTR+*) cell populations. Uri locus is shown from the minus strand. Super-enhancer region (yellow band) is identified upstream of the transcription starting site (TSS, green band). L, Density plots

for H3K4me3 ChIP-seq and ATAC-seq at the specified regions from (L). **M** and **N**, Heat map showing *Uri*-ranked Z-scored mRNA expression of transposable elements clustered per element (M) or family (N) repeats from single pluripotent and totipotent-like cell RNA-seq datasets. **O**, Linear regression model and correlation analysis of normalized URI and *MERVL-LTR* (MT2_Mm) (red) or *MERVL-int* (blue) counts from (M and N). **P**, Plasmid construct for depleting URI in 2C-like cells under the ZSCAN4c promoter. **Q**, Scheme of the timing for URI depletion in 2C-like cells by electroporating plasmid from (P). **R**, IF of mESCs for the totipotent-like marker ZSCAN4 or MERVL-gag in long term culture 2C-like dependent URI depleted cells after 15 passages (P15). Scale bar, 50 μ m. **S**, Abundance of 2C-like cells from (R) after P15. Data is represented as mean \pm s.e.m. *t* test analysis; **P* < 0.05. **T**, Western blot analysis of post-electroporated mESCs at indicated number of passages as reported in panel (Q). Repository accession numbers for sequencing dataset analysis are indicated in respective panel and compiled in **table S1**.

factor expression

Fig. S6. Proteasome inhibition reinstates the expression of the pluripotent core factors in the totipotent-like cells. A, Experimental scheme of mESCs treated with 10 µM of MG132 for 8 hours. **B**, IF of ZSCAN4 or MERVL-gag in MG132-treated mESCs. Red arrowheads mark positive 2C-like cells. Scale bar, 20 µm. C, Abundance of 2C-like cells in MG132-treated ZSCAN4 (up) or MERVL-gag (bottom) positive cells from (B). Data is represented as mean \pm s.e.m. t test was applied; ns, non-significant. **D** and **E**, IF of pluripotent NANOG and SOX2 in ZSCAN4 (D) or MERVL-gag (E) positive cells before and after MG132 treatment. Dashed white outlines show 2C-like cells. Scale bar, 10 µm. F and G, Plasmid constructs and experimental scheme of mESCs stably transfected with Zscan4-mEmerald (F) or MERVL-LTR-tdTomato (G) constructs and treated with the proteasome inhibition MG132. H, Fluorescence of endogenous signal for the respective reporter in mESCs treated as described in (A). Scale bar, $20 \,\mu m$. I, Abundance of 2C-like cells in MG132-treated Zscan4-mEmerald (top) or MERVL-LTRtdTomato (bottom) models from (H). Data is represented as mean \pm s.e.m. t test was applied; **P<0.01. J and K, IF of pluripotent OCT4, SOX2 and NANOG in MG132treated 2C-like MERVL-LTR-tdTomato (J) or Zscan4c-mEmerald (K) reporter cell lines. L, Plasmid construct for inducible DUX expression to induce 2C-like state after electroporation in mESCs. M, Experimental scheme for mESCs cultured in 2i/LIF and treated first with doxycycline (DOX) to induce expression of DUX, and then with MG132 to inhibit proteasome. N, IF of URI in MG132-treated mESCs. Scale bar, 20 µm. O, IF of ZSCAN4 and MERVL-gag in mESCs from (M). Scale bar, 100 µm. P, Abundance of ZSCAN4 (left) and MERVL (right) positive cells from (O). Q, IF of pluripotent NANOG in DUX-induced 2C-like cells treated with MG132 from (M). Scale bar, 20 μ m. R, Scheme depicting the pluripotent core factors reinstation in totipotent-like cells after proteasome inhibition. Total number of embryos is referred in each panel.

Fig. S7. URI interacts with OCT4 and SOX2 under naïve pluripotency conditions. A, Experimental scheme of induction of pluripotent naïve state by addition of 2i/LIF overtime in mESCs cultured in vitro. **B**, Western blot (WB) analysis of naïve pluripotency induced following 2i/LIF treatment from (A). C, Protein levels of URI, OCT4 and SOX2 normalized to starting timepoint from (B). Data is represented as mean \pm s.e.m. one-way ANOVA (Tukey post-hoc test); ****P < 0.0001; ns, non-significant. **D**, Experimental scheme of protein turnover analysis by treating mESC with cyclohexamide overtime. E, WB analysis from experiment described in (D). F, Protein levels of URI, OCT4 and SOX2 normalized to starting timepoint from (E). G, Experimental scheme of LIF withdrawal over time in mESCs cultured *in vitro* to induce differentiation or pluripotency shutdown. H, WB analysis from the experiment described in (G). I, Experimental scheme of treatment with either 2i/LIF, LIF alone, MEKi/LIF or GSK3i/LIF in mESCs during 4 hours. J, WB analysis from experiment described in (I). K, Experimental scheme of mESCs culture in presence of either 2i, 2i/LIF, MEK inhibitor (MEKi) or GSK3 inhibitor (GSK3i) during 4 hours. L, Co-immunoprecipitation of URI in mESCs treated as described in (K). M, Interaction levels of URI with OCT4 or SOX2 in different medium conditions normalized to pulldown abundancy. One way ANOVA test (Tukey post-hoc test); **P* < 0.05, ***P* < 0.01; ns, non-significant.

URI Flanked RPB5 regions

Fig. S8. URI interacts with OCT4 and SOX2 trough RPB5 flanking binding sites. A and **B**, Pulldown of *in vitro* translation (IVT) OCT4 (A) and SOX2 (B) protein using GST or GST-URI. s.e. and l.e. exposures are shown. **C** and **D**, Pulldown of IVT URI protein using GST, GST-OCT4 (C) or GST-SOX2 (D). s.e. and l.e. exposures are shown. **E**, Coomassie blue staining for purified OCT4 and SOX2 GST-fused proteins. **F**, Coomassie blue staining for purified URI GST-fused protein. **G**, Scheme of URI protein domains and amino acid sequences. **H**, GST-fused URI constructs strategy for pull down experiments. **I**, and **J**, Pulldown of OCT4 (I) or SOX2 (J) IVT using GST-fused URI fragments from (H). **K**, Coomassie blue staining for purified URI staining for purified URI staining for purified URI staining for purified URI (I) or SOX2 (J) IVT using GST-fused URI fragments from (H). **K**, Coomassie blue staining for purified URI staining for purified URI staining for purified URI staining for purified URI (I) or SOX2 (J) IVT using GST-fused URI fragments from (H). **K**, Coomassie blue staining for purified URI staining for purified URI SOX2 (J) IVT using GST-fused fragments from (H). **L** and **M**, Scheme representing the binding regions of OCT4 (L) and SOX2 (M) on URI protein.

💻 Similar

Identical

72.73% Aa sequence identical in 1-518 fragment 72.73% Aa sequence identical in 250-350 fragment

Fig. S9. URI interacts with MERVL-gag through a highly conserved region to the human counterpart transposon, HERVL.

A, Pulldown of IVT URI, OCT4 and SOX2 proteins using GST or GST-MERVL-gag.
s.e. and l.e. exposures are shown. B, Coomassie blue staining for purified MERVL-gag
GST-fused protein. C, GST-fused MERVL-gag constructs strategy for pull down
experiments. D, Pulldown of URI IVT using GST-fused MERVL-gag fragments from
(C). E, Coomassie blue staining for purified MERVL-gag GST-fused fragments from (C).
F, Sequence alignment between MERVL-gag and the reconstituted HERVL-gag protein.

Supplementary tables

Figure	NGS	Dataset	Accession	PMID
Fig. 1C	RNA-seq	Pre-implanted mouse embryos (bulk)	GSE45719	24408435
fig S 1D to C	DNA sog	Single call detect for 2 call ambruge	E-MTAB-3321	27015307
lig, 5, 1D to G	KNA-seq	Single cell dataset for 2-cell emoryos	GSE57249	25096407
fra C. 1K to O	DNA see	Single call detect for 4 call embrance	E-MTAB-3321	27015307
lig. 5, 1K to Q	KNA-seq	Single cell dataset for 4-cell emoryos	GSE57249	25096407
	Ch ID as a	Pluripotent core factors: NANOG,	CCE 44296	02590200
ng. 5, 1K and 5	ChiP-seq	SOX2, OCT4 and MED1 in mESCs	GSE44280	23582322
	DNA	Chromatin accessibility in ES cells by	C0F27074	ENCODE
	DNAse-seq	DNAse I hypersensitivity	GSE3/0/4	ENCODE
fig. S2A	ATAC-seq	Chromatin accessibility in embryos	GSE66581	27309802
		Chromatin accessibility in embryos		27250140
fig. 52B	DNAse-seq	by DNAse I hypersensitivity	GSE/6642	27259149
fig. S2C	ChIP-seq	H3K4me3 and 27me3 in embryos	GSE73952	27626379
Fig. 2, A and 2,	DNA	Single cells datasets for morula and	CSE 45710	24408425
D to H	KNA-seq	blastocysts	GSE43/19	24408435
fig S2F	ChIP-seq	H3K9me3, K27ac, K27me3,		
		K79me2, K36me3, K4me1, K4me3 in	GSE90895	28111071
		ES cells		
	ATAC-seq	Chromatin accessibility in ES cells	GSE110950	31628347
	ChIP-seq	PolII in ES cells	GSE145791	32616013
	ChIP-seq	H3K9ac in ES cells	GSE29184	22763441
fig. S2G	ChIP-seq	H3K4me1, K27ac, K20me1 and		22150110
		K36me3 in TS cells	GSE39406	231/8118

Table S1. Accession numbers and references for NGS analysis.

	ChIP-seq H3K4me3, K4me2 and 27me3 in TS		CSE73052	27626370
		cells	05275752	2102031)
	ChIP-seq	H3K9me3 in TS cells	GSE97778	29686265
	ATAC-seq	Chromatin accessibility in TS cells	GSE110950	31628347
	ChIP-seq	PolII in TS cells	GSE39406	23178118
		TFs in ES cells: STAT3, KLF4,		
fig. S2J	ChIP-seq	ESRRB, E2F1, NMYC, CMYC, ZFx	GSE66581	27309802
		and TCFCP2L1		
fig. S2K	ChIP-seq	CDX2 in TS cells	GSE42207	23396136
	ChIP-seq	GATA2 and GATA3 in TS cells	GSE92287	28232602
	ChIP-seq	KLF5 in TS cells	GSE109250	31777916
		ELF5, EOMES, ETS2, ID2, SMAD6,	GGE110050	21 (202 47
	ChIP-seq	TFAP2C and TEAD4 in TS cells	GSE110950	31628347
Fig. 6, A to C,		Single cell isolated by Zecon 4		
and fig. S5, E	RNA-seq	Single cell isolated by Zscan4	E-MTAB-5058	27681430
and M to O		reporter		
Fig. 6, D to F	RNA-seq	Reporter for Dppa2 (GFP)	GSE120950	30692203
		Reporter for Dppa4 (GFP)	GSE120950	30692203
		Knockdown of Ncl (shRNA)	GSE100939	29937225
		Reporter for Sp110 (GFP)	GSE120950	30692203
		Knockout of METTL3	GSE146467	33658714
		Knockdown of UBE2i (shRNA)	GSE70863	26365490
		Reporter for Usp3 (GFP)	GSE120950	30692203
		Knockdown of UBA2 (shRNA)	GSE70863	26365490
		Knockout of SMCHD1	GSE126467	33523915
		Treatment with 2-DG	GSE113671	31932739
		Knockdown of SUMO2 (shRNA)	GSE70863	26365490

Knockdown of TRIM28 (shRNA)	GSE70863	26365490
Reporter for Bahd1 (GFP)	GSE120950	30692203
Reporter for Hdac9 (GFP)	GSE120950	30692203
Knockdown of SAE1 (shRNA)	GSE70863	26365490
Knockout of SMG7 (sgRNA)	GSE133234	32523982
Knockdown of LINE1 (ASO)	GSE100939	9937225
Knockout of ZMYM2	GSE119819	32032525
Overexpression DPPA2	GSE127811	31226106
Overexpression DCAF11	GSE132746	33357405
Knockout of KAP1	GSE74278	27003935
Knockdown of UBC9 (shRNA)	GSE99009	30401455
Knockout of YTHDC1	GSE146467	33658714
Reporter for Eya1 (GFP)	GSE120950	30692203
Knockout of TRF2	GSE156534	33239785
Knockout of LSD1	GSE93952	33414108
Knockout of ZFP57	GSE123942	31399135
Mutant for Tip60/Ep400	GSE85505	28445719
Knockout (triple) of H1	GSE153620	34875212
Knockout of DNMT1 (sgRNA)	GSE121459	31209294
Knockout of SUV39h	GSE57092	24981170
Reporter for Trp63 (GFP)	GSE120950	30692203
Reporter for Irf1 (GFP)	GSE120950	30692203
Treatment with aphidicolin	PRJNA415135	32163370
Knockout of SETDB1	PRJNA544540	31914391
Knockdown of SENP6 (shRNA)	GSE70863	26365490
Overexpression of NEFA	GSE113671	31932739
Knockout of miR-34a	GSE69484	28082412

Knockdown of CAF1 (p60) (shRNA)	E-MTAB-2684	26237512
Reporter for Nefa (GFP)	GSE113671	31932739
Knockout of KAP1	GSE41903	23233547
Reporter for Gata3 (GFP)	GSE120950	30692203
Knockdown of RIF1a	GSE98255	29040764
Knockout of MYC (sgRNA)	GSE121459	31209294
Reporter for Zscan4 (Emerald)	GSE75751	27681430
Knockdown of CAF1 p150 (shRNA)	E-MTAB-2684	26237512
Reporter for Tox3 (GFP)	GSE120950	30692203
Knockdown of RYBP (PRC1)	PRJNA604675	32203418
Reporter for Zscan4 and MERVL-	GSE75751	27681430
LTR		
Overexpression of DUX	GSE85627	28459457
Knockdown of LSM4 (siRNA)	GSE168728	33991488
Reporter for Zscan4 (Emerald)	GSE85627	28459457
Knockdown of CAF1 p60 (shRNA)	E MTAB 2684	26227512
vs. GFP negative	E-1011AD-2004	20237312
Knockdown of ISY1 (siRNA)	GSE168728	33991488
Knockdown of CHAF1b p60	GSE70863	26265400
(shRNA)	USE/0805	20303490
Reporter for 2C-like cells	E-MTAB-2684	26237512
Reporter for 2C-like cells	GSE133234	32523982
Knockdown of EFTUD2 (siRNA)	GSE168728	33991488
Reporter for 2C-like cells	GSE121459	31209294
Reporter for Zscan4 and MERVL-	GSE119819	32032525
LTR	00117017	52052525
Knockdown of SNRPB (siRNA)	GSE168728	33991488

		Knockdown of SNRPD2 (siRNA)	GSE168728	33991488
		Knockdown of CAF1 p150 (shRNA)	E MTAD 2694	0.0007510
		vs. GFP negative	E-WITAD-2084	2023/312
		Knockdown of CHAF1a p150	CSE70962	26265400
		(shRNA)	GSE/0805	20303490
C. CET	DNA	Pooled 2C-like cells isolated by	COF75751	27/01/20
ng. SSF	KINA-seq	Zscan4 and MERVL-LTR reporters	GSE/5/51	2/681430
C 07 17 11		Epigenetic markers in 2C-like cells:	C0E164406	22/2/112
fig. S5, K and L ChIP-seq		H3K4me3 and K27me3	GSE164486	55050112
		Chromatin accessibility in ES and		07(01420
АТАС-эсц		2C-like	GSE/5/51	2/681430
		Pooled microinjected MERVL-LTR		
Fig. 8, A and D	RNA-seq	(MT2_Mm) CRISPR KO embryos at	GSE242123	37781606
		4C stages		
Fig. 8, B, C, E	DNA	Pooled microinjected MERVL KD	GGE 10 (500	2 < 2 < 41 0 2
and F	RNA-seq	embryos at 4C stages	GSE196520	36864102
		Pooled microinjected MERVL KD		
Fig. 8, G and H	ATAC-seq	embryos from at 2C and 4C stages	GSE196520	36864102
	ChIP-seq	Pluripotent core factors: SOX2,		
peaks		OCT4 in mESCs	GSE44286	23582322

Table S2. Gene signatures (excel file)

List of genes used for enrichment analysis (provided as both ENSEMBL id and gene name)

Table S3. Reagents used

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
Anti-CARM1 (3H2)	NovusBio	NBP2-37645	
Anti-CDX2	BioGenex	MU392A-UC	
Anti-cleaved Caspase-3 (CC3)	Cell Signaling	9661	
(Asp175)			
Anti-E-CADHERIN (36)	BD Bio	610182	
Anti-goat Alexa Fluor 555	Invitrogen	A21432	
Anti-GFP	Genetex	GTX113617	
Anti-H3 pan Ac	Abcam	ab47915	
Anti-H3 Total	Abcam	ab1791	
Anti-H3K4me3	Abcam	ab8580	
Anti-H3K9me3	Abcam	ab8898	
Anti-MERVL-gag	NovusBio	NBP2-66963	
Anti-mouse Alexa Fluor 488	Invitrogen	A11001	
Anti-mouse Alexa Fluor 555	Invitrogen	A21422	
Anti-mouse Alexa Fluor 647	Invitrogen	A21235	
Anti-NANOG (D2A3)	Cell Signaling	8822	
Anti-NANOG (SER211)	In-home made (CNIO)	-	
Anti-OCT4	Abcam	ab19857	
Anti-PARD6B	SantaCruz	sc-166405	
Anti-PODXL	R&DSystems	MAB1556	
Anti-rabbit Alexa Fluor 488	Invitrogen	A11008	
Anti-rabbit Alexa Fluor 555	Invitrogen	A21429	
Anti-rabbit Alexa Fluor 647	Invitrogen	A21244	
Anti-rat Alexa Fluor 555	Invitrogen	A21434	
Anti-SMARCC1 (BAF155)	Sigma	HPA024352	
Anti-SOX2	Abcam	ab97959	
Anti-SOX2	EBio	14-9811-80	
Anti-URI mAb or RbAb	(26)	-	
Anti-VINCULIN (hVIN-1)	Sigma	V9131	
Anti-ZSCAN4	Sigma	AB4340	
Anti-y-TUBULIN (GTU-88)	Sigma	T6557	
Chemicals, Peptides, and Recombinant Proteins			
4-hydroxitamoxifen (4-OHT)	PeproTech	6833585	

B27 supplement	Gibco	17504044
CHIR99021 (GSK3i)	Axon Medchem	1386
Doxycycline	Sigma	D9891
Gelatin	Sigma	G1890
Knock-out serum replacement (KSR)	Gibco	10828010
Matrigel	BD Bioscience	356230
MG132 Proteasome inhibitor	Sigma	M8699
Triptolide	Sigma	T3652
N2 supplement	Gibco	17502048
PD0325901 (MEKi)	Axon Medchem	1408
Reduced serum media Opti-MEM	ThermoFisher	51985034
hCG	Sigma	CG5
Hyaluronidase type IV-S	Sigma	H3884
KSOM media	Sigma	MR-106-D
M16 media	Sigma	M7292
M2 medium	Sigma	M7167
Paraffin mineral oil	Nidacon	NO-100
PMSG	ProspecBio	hor-272
DAPI	Sigma	D9542
Hoechst	Sigma	B2261
Mowiol 4-88	Sigma	81381
BL21 CodonPlus (DE3)-RIPL	Agilent	230265
Bradford	Biorad	5000006
Dynabeads slurry protein A	GE Healthcare	17-1279-01
Dynabeads slurry protein G	GE Healthcare	17-0618-01
Glutathione Sepharose beads	Cytiva	GE17-5132-02
TRIzol	Sigma	15596026
BL21 CodonPlus (DE3)-RIPL	Agilent	230265
Control antisense oligonucleotide	Qiagen	339515 LG00000002-DDA
(Antisense LNA GapmeR control)		
Uri antisense oligonucleotide (URI1_1	Qiagen	339511 LG00800668-DDA
Antisense LNA GapmeR)		
<i>Uri</i> antisense oligonucleotide (URI1_9	Qiagen	339511 LG00800676-DDA
Antisense LNA GapmeR)		
Human adenovirus type 5 carrying Cre and EGFP (AdV5-CMV-Cre-EGFP)	VectorBioLabs	1700

Human adenovirus type 5 enconding VectorBioLabs 1060 EGFP (AdV5-CMV-EGFP) Plasmids pcDNA3.3-HA-OCT4 Addgene 26816 pcDNA3.3-HA-SOX2 Addgene 26817 This study pcDNA3.1-EF1α-mURI pcDNA3.1-EF1a-MERVL-gag This study pGEX4T-1-OCT4 Addgene 40633 pGEX4T-1-SOX2 This study pGEX4T-1-MERVL-gag (1-581 Aa) This study _ pGEX4T-1-MERVL-gag (150-581 Aa) This study pGEX4T-1-MERVL-gag (150-350 Aa) This study pGEX4T-1-MERVL-gag (0-250 Aa) This study pGEX4T-1-MERVL-gag (150-450 Aa) This study _ pGEX4T-1-MERVL-gag (250-450 Aa) This study pGEX4T-1-URI (1-158 Aa) (30) pGEX4T-1-URI (1-267 Aa) (30)pGEX4T-1-URI (1-518 Aa) (30)pGEX4T-1-URI (1-535 Aa) (30)pGEX4T-1-URI (156-283 Aa) (30) _ pGEX4T-1-URI (156-535 Aa) (30)pGEX4T-1-URI (282-535 Aa) (30) pGEX4T-1-URI (390-535 Aa) (30)(30)pGEX4T-1-URI (466-535 Aa) 40281 pMERVL-LTR-tdTomato Addgene pMERVL-LTR-tdTomato-T2A-Cre This study This study pZscan4-mEmerald-T2A-Cre This study This study pSBbi-GN Addgene 60517 pZscan4-mEmerald (56) tetO-FLAG-mDUX-hPGK-rtTA-T2A-Addgene 138320 Neo 99284 tetO-mDUX-hPGK-Puro-T2A-rtTA Addgene **Critical Commercial Assays** Thermofisher M-MLV Reverse Transcriptase 28025013 GoTaq qPCR Master Mix Promega A6002 Mycoplasma PCR test kit Biontex 6833585

Vectastain ABC HRP Kit (Peroxidase,	Vector Laboratories	PK-4002	
Mouse IgG)			
Vectastain ABC HRP Kit (Peroxidase,	Vector Laboratories	PK-4001	
Rabbit IgG)			
Liquid DAB + Substrate Chromogen	Dako	K 3/68	
System	Dako	KJ400	
Reticulocyte lysate system	Promega	L5010	
GoTaq SYBR green master mix	Promega	A6002	
Experimental Models: Cell Lines			
293A cell line	ThermoFisher	R70507	
Mouse embryonic fibroblast (MEFs)	This study	-	
Mouse embryonic stem cells (mESCs)	This study	-	
Experimental Models: Organisms/Stra	ins		
Mouse: C57BL/6	CNIO Animal Facility	N/A	
Mouse: Tg. CAG-Cre	(37)	MGI: 3586452	
Mouse: Sox2-Cre, Edil3Tg(Sox2-	(38)	MCI: 2656530	
Cre)1Amc	(50)	1101. 2030337	
Mouse: UBQ-CreERT2,	(50)	MGI: 123200	
NdorTg(UBC-Cre/ERT2)1Ejb	(50)	11011 120200	
Mouse: Zp3-Cre,	(40)	MGI: 2176187	
Tg(Zp3-Cre)93Knw			
Mouse: Uri_lox	(30)	NR	
Oligonucleotides			
Primers For Genotyping	This Paper, Table S4	N/A	
Primers For qRT-PCR	This Paper, Table S4	N/A	
Software and Algorithms			
		https://bioconductor.org/pa	
ATACseqQC 1.26	PMID: 29490630	ckages/release/bioc/html/A	
		TACseqQC.html	
D	DMID. 100/1174	https://github.com/BenLang	
Bowtle2 2.4.4	PMID: 19261174	mead/bowtie2	
		https://bioconductor.org/pac	
ClusterProfiler 4.4.2	PMID: 34557778	kages/release/bioc/html/clust	
		erProfiler.html	
DeepTools 3.0.2	PMID: 27070075	https://deeptools.readthedocs	
Deep10015 5.0.2	1 11112. 21012213	.io/en/develop/	

edgeR 4.0.2	PMID: 19910308	https://bioconductor.org/pa ckages/release/bioc/html/e dgeR
csaw 1.36	PMID: 26578583	https://bioconductor.org/pa ckages/release/bioc/html/cs aw
Cutadapt 3.4.1	PMID: 28715235	https://github.com/marcelm/ cutadapt
DESeq2 1.32	PMID: 25516281	https://bioconductor.org/pac kages/release/bioc/html/DES eq2.html
FastICA 1.2.3	PMID: 10946390	https://CRAN.R- project.org/package=fastICA
FastQC 0.11.8	Babraham bioinformatics	https://www.bioinformatics. babraham.ac.uk/projects/fast gc/
FIJI/ImageJ 1.53i	PMID: 22743772	https://imagej.net/software/fi ji
Galaxy project	PMID: 35446428	https://galaxyproject.org/
	H. Wickham. ggplot2:	
Gamlet 2336	Elegant Graphics for Data	https://CRAN.R-
Ogplotz 5.5.0	Analysis. Springer-Verlag New York, 2016	project.org/package=ggplot2
GraphPad Prism 9.4.0	GraphPad Software	https://www.graphpad.com/s cientific-software/prism/
HISAT2 2.1	PMID: 25751142	http://daehwankimlab.github .io/hisat2/
HOMER 4.11	PMID: 20513432	http://homer.ucsd.edu/hom er/index.html
Illustrator 26.3.1	Adobe	https://.adobe.com/products/i llustrator.html
Imaris 8.4.1	Bitplane	http://www.bitplane.com/im aris/imaris
MACS2 2.1.1	PMID: 18798982	https://github.com/macs3-

		https://bioconductor.org/pac
msa 1.34		kages/release/bioc/html/msa.
		<u>html</u>
		https://www.bioconductor.or
PcaMethods 1.88	PMID: 17344241	g/packages/release/bioc/html
		/pcaMethods.html
Photoshop 23.4.0	Adobe	https://adobe.com/products/p
1 10105100 23.4.0	Adobe	hotoshop.html
Picard 2 18 2	Broad Institute	https://broadinstitute.github.i
1 lead 2.10.2	broad institute	o/picard/
	Revelle, W.R. Procedures for	
	Psychological, Psychometric,	https://CRAN R-
Psych 2.2.5	and Personality Research.	project org/package=psych
	Northwestern University,	project.org/puckage=psych
	Evanston, Illinois, 2022	
pyGenomeTracks 3.7	PMID: 32745185	https://github.com/deeptools/
		pyGenomeTracks
R 4.1.0	The R Foundation for	https://www.r-project.org/
	Statistical Computing	
RStudio 1.4.1717	Integrated Development for	https://www.rstudio.com/
	R. RStudio	-
SAMtools 1.9	PMID: 19505943	https://github.com/samtools/
		samtools
		https://cran.r-
Seurat v5	PMID: 37231261	project.org/web/packages/Se
		<u>urat/</u>
Sra-tools 2.11	PMID: 21062823	https://github.com/ncbi/sra-
		tools
ssGSEA 2.0	PMID: 16199517	https://github.com/broadinsti
		tute/ssGSEA2.0
Statmod 1.4.36	PMID: 21044043	https://CRAN.R-
		project.org/package=statmod
StringTie2 2.2.2	PMID: 31842956	<u>https://ccb.jhu.edu/software/</u>
		<u>stringtie/</u>

		https://bioconductor.org/pac
Sva 3.44	PMID: 16632515	kages/release/bioc/html/sva.
		html
		https://github.com/FelixKrue
Trim Galore 0.6.3	Babraham bioinformatics	ger/TrimGalore
T	DMID: 24605404	http://usadellab.org/cms/?pa
Trimmomatic 0.38	PMID: 24695404	<u>ge=trimmomatic</u>
Other		
Dialysis cassette (10000 MWCO)	ThermoFisher	66380
Glass bottom 35mm dish	Ibidi	81158
In vitro fertilization (IVF) multidishes	Sigma	Z688754
Digital sonifier	Branson	S450D
Electroporation Cuvettes (2mm gap)	NepaGene	EC-002S
Fluorescence confocal microscopy	Leica	TCS SP5 WLL
Fluorescence confocal microscopy	Leica	TCS SP8 MP
Fluorescence microscopy	Olympus	BX61
Inverted phase-contrast microscope	Leica	DMIRE2
Irradiator	Theratronics	Gammacell 1000
Manual pneumatic microinjector	Eppendorf	CellTram 4r Oil
Microinjector for embryos	Eppendorf	Femtojet 4i
Micromanipulator for embryos	Eppendorf	TransferMan 4r
NEPA21 electroporator	NepaGene	CU500
Ultracentrifuge (SW28 rotor)	Beckman	Avanti J-25
Low protein-biding tubes	ThermoFisher	90410

Gene	Technique	Sequence (5'-3')
Cre(Cpxm1)-F	Genotyping	CCATCTGCCACCAGCCAG
Cre(Cpxm1)-R	Genotyping	TCGCCATCTTCCAGCAGG
Cre-F	Genotyping	ACTGGGATCTTCGAACTCTTTGGAC
Cre-R	Genotyping	GATGTTGGGGCACTGCTCATTCACC
GFP-F	Genotyping	TGACCCTGAAGTTCATCTGCA
GFP-R	Genotyping	TCACGAACTCCAGCAGGACCA
Rosa26-rtTA-F	Genotyping	AAAGTCGCTCTGAGTTGTTAT
Rosa26-rtTA-R1	Genotyping	GGAGCGGGAGAAATGGATATG
Rosa26-rtTA-R2	Genotyping	GCGAAGAGTTTGTCCTCAACC
Sox2-Cre-F1	Genotyping	CTTGTGTAGAGTGATGGCTTGA
Sox2-Cre-F2	Genotyping	TAGTGCCCCATTTTTGAAGG
Sox2-Cre-R	Genotyping	CCAGTGCAGTGAAGCAAATC
URI-delta-lox-F1	Genotyping	CGTGAAGAGAGGTGAAGAAC
URI-delta-lox-F2	Genotyping	CCCTCTTGCCTTCATGCC
URI-delta-lox-R	Genotyping	AAACACAAGTGTAAAATGTCCC
mActin-F	qRT-PCR	CACAGCTGAGAGGGAAATCG
mActin-R	qRT-PCR	AGTTTCATGGATGCCACAGG
mGapdh-F	qRT-PCR	CGTCCCGTAGACAAAATGGT
mGapdh-R	qRT-PCR	TCAATGAAGGGGTCGTTGAT
Gm4340-F	qRT-PCR	CGAGGCACTGGGTCTAAGAG
Gm4340-R	qRT-PCR	CCAATGAACAGGTCATGCTG
mDub1-F	qRT-PCR	GGAGACATGGTGGTTGCTCT
mDub1-R	qRT-PCR	CTCTCCCAACTCAGACTGTGC
mDux-F	qRT-PCR	ACTTCTAGCCCCAGCGACTC
mDux-R	qRT-PCR	CCATGCTGCCAGGATTTCTA

Table S4. Primer sequences for genotyping and qRT-PCR

MERVL-LTR-F	qRT-PCR	CTTCCATTCACAGCTGCGACTG
MERVL-LTR-R	qRT-PCR	CTAGAACCACTCCTGGTACCAAC
MERVL-pol-F	qRT-PCR	CCCATCATGAGCTGGGTACT
MERVL-pol-R	qRT-PCR	CGTGCAGAGCCATCAGTAAA
mIAPEz-F	qRT-PCR	CAGACTGGGAGGAAGAAGCA
mIAPEz-R	qRT-PCR	ATTGTTCCCTCACTGGCAAA
mLINE1-F	qRT-PCR	TTTGGGACACAATGAAAGCA
mLINE1-R	qRT-PCR	CTGCCGTCTACTCCTCTTGG
MMERVK10C-F	qRT-PCR	CAAATAGCCCTACCATATGTCAG
MMERVK10C-R	qRT-PCR	GTATACTTTCTTCTTCAGGTCCAC
mNanog-F	qRT-PCR	AGGGTCTGCTACTGAGATGCTCTG
mNanog-R	qRT-PCR	CAACCACTGGTTTTTCTGCCACCG
mPou5f1-F	qRT-PCR	CTGTAGGGAGGGCTTCGGGCACTT
mPou5f1-R	qRT-PCR	CTGAGGGCCAGGCAGGAGCACGAG
mSox2- F	qRT-PCR	GGCAGCTACAGCATGATGCAGGAGC
mSox2- R	qRT-PCR	CTGGTCATGGAGTTGTACTGCAGG
mSp110-F	qRT-PCR	AAGGATCCAGGAACCCCTTA
mSp110-R	qRT-PCR	GCATAGGCGATGTTCACCTT
mTcstv1-F	qRT-PCR	TGAACCCTGATGCCTGCTAAGACT
mTcstv1-R	qRT-PCR	AGATGGCTGCAAAGACACAACTGC
mTcstv3-F	qRT-PCR	AGAAAGGGCTGGAACTTGTGACCT
mTcstv3-R	qRT-PCR	AAAGCTCTTTGAAGCCATGCCCAG
mZfp352-F	qRT-PCR	AAAGCCTTGATCCTCAGGTG
mZfp352-R	qRT-PCR	GCCGAAGAGTTTTTCTGAGG
mZscan4-F	qRT-PCR	GAGATTCATGGAGAGTCTGACTGATGAGTG
mZscan4-R	qRT-PCR	GCTGTTGTTTCAAAAGCTTGATGACTTC