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Section 1 | Atomic bremsstrahlung with shaped electron wavefunctions  

Differential cross section of bremsstrahlung emission 

Fig. S1 Feynman diagram for atomic bremsstrahlung. 

Bremsstrahlung is a typical second-order QED process, which an input electron 

1
�2𝑝𝑝0

𝑒𝑒−
𝑖𝑖
ℏ𝑝𝑝

𝜇𝜇𝑥𝑥𝜇𝜇𝑢𝑢𝑠𝑠(𝑝𝑝) (four-momentum 𝑝𝑝 and spin 𝑠𝑠) is scattered by potential 𝐴𝐴(𝑥𝑥) (nucleus) 

into output electron 1

�2𝑝𝑝′0
𝑒𝑒−

𝑖𝑖
ℏ𝑝𝑝

′𝜇𝜇𝑥𝑥𝜇𝜇𝑢𝑢𝑠𝑠′(𝑝𝑝′) (four-momentum 𝑝𝑝′  and spin 𝑠𝑠′ ) and emitting

photon 𝐴𝐴ph𝑟𝑟
′ (𝑘𝑘′, 𝑥𝑥) (four-momentum ℏ𝑘𝑘′ and polarization 𝑟𝑟′) . The transition matrix element 

𝑀𝑀𝑘𝑘′𝑝𝑝′𝑝𝑝
𝑟𝑟′𝑠𝑠′𝑠𝑠  is given by

𝑀𝑀𝑘𝑘′𝑝𝑝′𝑝𝑝
𝑟𝑟′𝑠𝑠′𝑠𝑠 = � d4𝑥𝑥 d4𝑦𝑦

⎩
⎨

⎧ 1
√𝑉𝑉

1

�2𝑝𝑝′0
𝑒𝑒−

𝑖𝑖
ℏ𝑝𝑝

′𝜇𝜇𝑥𝑥𝜇𝜇𝑢𝑢𝑠𝑠′(𝑝𝑝′)

⎭
⎬

⎫∞

−∞

× ��𝑖𝑖
𝑞𝑞e
ℏ
𝛾𝛾𝜇𝜇𝐴𝐴ph𝑟𝑟

′ (𝑘𝑘′, 𝑥𝑥)𝜇𝜇� [𝑖𝑖SF(𝑥𝑥 − 𝑦𝑦)] �𝑖𝑖
𝑞𝑞e
ℏ
𝛾𝛾𝜈𝜈𝐴𝐴(𝑦𝑦)𝜈𝜈��������������������������������

Correspond to Fig. S1b

+ �𝑖𝑖
𝑞𝑞e
ℏ
𝛾𝛾𝜇𝜇𝐴𝐴(𝑥𝑥)𝜇𝜇� [𝑖𝑖SF(𝑥𝑥 − 𝑦𝑦)] �𝑖𝑖

𝑞𝑞e
ℏ
𝛾𝛾𝜈𝜈𝐴𝐴ph𝑟𝑟

′ (𝑘𝑘′,𝑦𝑦)𝜈𝜈��������������������������������
Correspond to Fig. S1a

�

× �
1
√𝑉𝑉

1
�2𝑝𝑝0

𝑒𝑒−
𝑖𝑖
ℏ𝑝𝑝

𝜇𝜇𝑥𝑥𝜇𝜇𝑢𝑢𝑠𝑠(𝑝𝑝)�    , 

(S1.1) 
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where spacetime integral ∫ d4𝑥𝑥∞
−∞ = ∫ d𝑡𝑡 ∫ d3𝐫𝐫 ∞

−∞
∞
−∞ , 𝑞𝑞e is the elementary charge and 𝑉𝑉 is 

the interaction volume. We follow metric tensor and gamma matrix conventions of ref. [1], 

relevant details are listed below: 

Pauli matrices: 

𝜎𝜎𝜇𝜇 = �1,𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦,𝜎𝜎𝑧𝑧�, 𝜎𝜎𝑥𝑥 = �0 1
1 0� , 𝜎𝜎𝑦𝑦 = �0 −𝑖𝑖

𝑖𝑖 0 � , 𝜎𝜎𝑧𝑧 = �1 0
0 −1�  ; (S1.2) 

gamma matrices: 

𝛾𝛾0 = �02×2 12×2
12×2 02×2

� , 𝛾𝛾𝑗𝑗 = �02×2 𝜎𝜎𝑗𝑗

−𝜎𝜎𝑗𝑗 02×2
� , 𝑗𝑗 = 1, 2, 3 ; (S1.3) 

electron Dirac four-vector: 

𝑢𝑢𝑠𝑠(𝑝𝑝) = �
�𝑝𝑝𝜇𝜇𝜎𝜎𝜇𝜇𝜉𝜉𝑠𝑠

�𝑝𝑝𝜇𝜇𝜎𝜎𝜇𝜇𝜉𝜉𝑠𝑠
� =

�
�{𝑝𝑝0 + 𝑚𝑚e𝑐𝑐}𝐼𝐼 − 𝐩𝐩 ∙ 𝛔𝛔�𝜉𝜉𝑠𝑠

�{𝑝𝑝0 + 𝑚𝑚e𝑐𝑐}𝐼𝐼 + 𝐩𝐩 ∙ 𝛔𝛔�𝜉𝜉𝑠𝑠
�

�2{𝑝𝑝0 + 𝑚𝑚e𝑐𝑐}
, 𝑢𝑢�𝑠𝑠′(𝑝𝑝′) = �𝑢𝑢𝑠𝑠′(𝑝𝑝′)�

†
𝛾𝛾0; (S1.4) 

photon four-vector: 

𝐴𝐴ph𝑟𝑟
′ (𝑘𝑘′, 𝑥𝑥) = �

ℏ
2𝜀𝜀0𝜔𝜔𝑘𝑘′𝑉𝑉

𝜖𝜖𝑟𝑟′𝑒𝑒−𝑖𝑖𝑘𝑘′
𝜇𝜇𝑥𝑥𝜇𝜇 , 𝑟𝑟′ = 1,2; (S1.5) 

photon polarization four-vector: 

𝜖𝜖1 = �

0
cos 𝜃𝜃𝑘𝑘′ cos𝜙𝜙𝑘𝑘′
cos𝜃𝜃𝑘𝑘′ sin𝜙𝜙𝑘𝑘′
− sin 𝜃𝜃𝑘𝑘′

� , 𝜖𝜖2 = �

0
sin𝜙𝜙𝑘𝑘′
− cos𝜙𝜙𝑘𝑘′

0

� , 

𝑘𝑘𝜇𝜇𝜖𝜖𝜇𝜇𝑟𝑟
′ = 0, 𝜖𝜖𝑟𝑟1′

𝜇𝜇
𝜖𝜖𝜇𝜇
𝑟𝑟2′ = −𝛿𝛿𝑟𝑟1′,𝑟𝑟2′  , 𝑟𝑟1′, 𝑟𝑟2′ = 1,2; 

(S1.6) 

Dirac propagators:  

SF(𝑥𝑥) = �
d4𝑞𝑞

{2𝜋𝜋ℏ}4
𝑒𝑒−

𝑖𝑖
ℏ𝑞𝑞

𝜇𝜇𝑥𝑥𝜇𝜇

1
ℏ𝛾𝛾

𝜈𝜈𝑞𝑞𝜈𝜈 −
𝑚𝑚e𝑐𝑐
ℏ 𝐼𝐼

∞

−∞

 ; (S1.7) 

where 𝑞𝑞𝜇𝜇  has the form of momentum four-vector. In our model we consider Yukawa 

potential as the static field and its potential four-vector has the form 𝐴𝐴(𝑥𝑥) = {𝐴𝐴Yu(𝐱𝐱), 0, 0, 0}. 

Details for Yukawa potential 𝐴𝐴Yu(𝐱𝐱) can be found in Supp. Sect. 2. 
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From equation (S1.1) we obtain 

𝑀𝑀𝑘𝑘′𝑝𝑝′𝑝𝑝
𝑟𝑟′𝑠𝑠′𝑠𝑠 = �

1
𝑉𝑉3

ℏ𝑐𝑐2

8𝜀𝜀0𝜔𝜔𝑘𝑘′𝐸𝐸𝑝𝑝′𝐸𝐸𝑝𝑝
2𝜋𝜋𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′  �𝐴𝐴Yu(𝛋𝛋)ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝

𝑟𝑟′𝑠𝑠′𝑠𝑠  , (S1.8) 

where 𝐴𝐴Yu(𝐤𝐤)  is the Fourier transform of 𝐴𝐴Yu(𝐱𝐱)and 𝛋𝛋 = 𝐩𝐩
ℏ
− 𝐤𝐤′ − 𝐩𝐩′

ℏ
. The Dirac delta 

distribution 𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′  � represents the energy conservation 𝐸𝐸𝑝𝑝 = 𝐸𝐸𝑝𝑝′ + ℏ𝜔𝜔𝑘𝑘′, and 

ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝
𝑟𝑟′𝑠𝑠′𝑠𝑠 = −i𝑞𝑞e2�𝑢𝑢𝑠𝑠

′(𝑝𝑝′)�
†
�𝛾𝛾0 �𝛾𝛾𝜇𝜇𝜖𝜖𝜇𝜇𝑟𝑟

′∗�
𝛾𝛾𝜈𝜈(𝑝𝑝′ + ℏ𝑘𝑘′)𝜈𝜈 + 𝑚𝑚e𝑐𝑐𝐼𝐼

2(𝑝𝑝′)𝜇𝜇(ℏ𝑘𝑘′)𝜇𝜇
𝛾𝛾0

+
𝛾𝛾𝜈𝜈(𝑝𝑝 − ℏ𝑘𝑘′)𝜈𝜈 + 𝑚𝑚e𝑐𝑐𝐼𝐼

−2𝑝𝑝𝜇𝜇(ℏ𝑘𝑘′)𝜇𝜇
�𝛾𝛾𝜇𝜇𝜖𝜖𝜇𝜇𝑟𝑟

′∗�� {𝑢𝑢𝑠𝑠(𝑝𝑝)}  . 
(S1.9) 

Note that equation (S1.9) has the same form as equation (2) in the main text.  

The cross section 𝜎𝜎  of bremsstrahlung involving a single-shaped electron 

wavefunction comprising  𝑁𝑁s  electron momentum states ∑ 𝑐𝑐𝑚𝑚𝑢𝑢𝑠𝑠𝑚𝑚(𝑝𝑝𝑚𝑚)𝑒𝑒−
𝑖𝑖
ℏ 𝑝𝑝𝑚𝑚𝜇𝜇𝑥𝑥𝜇𝜇𝑁𝑁s

𝑚𝑚=1  

(complex coefficients 𝑐𝑐𝑚𝑚) can be expressed as  

(1) the coherent summation over the different transition matrix elements 𝑀𝑀𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚
𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚  

associated with each input electron momentum state 𝑝𝑝𝑚𝑚 and spin 𝑠𝑠𝑚𝑚, and  

(2) an incoherent summation over all possible final electron momentum states 𝑝𝑝′ and 

spin 𝑠𝑠′, corresponding to trace out the final free-electron degrees of freedom, as the 

latter is not measured,  

given by 

𝜎𝜎 =
𝑉𝑉3

𝑣𝑣𝑣𝑣
�

d3𝐩𝐩′

{2𝜋𝜋ℏ}3
d3𝐤𝐤′

{2𝜋𝜋}3                                                                                                  

           × ���
1
𝑉𝑉3

ℏ𝑐𝑐2

8𝜀𝜀0𝜔𝜔𝑘𝑘′𝐸𝐸𝑝𝑝′𝐸𝐸𝑝𝑝
2𝜋𝜋𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′� � 𝐴𝐴Yu(𝛋𝛋𝑚𝑚)𝑐𝑐𝑚𝑚ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚

𝑁𝑁s

𝑚𝑚=1

�

2

𝑟𝑟′,𝑠𝑠′
 

(S1.10) 

where 𝑣𝑣 is the interaction time, 𝑣𝑣 is the speed of input particles and 𝛋𝛋𝑚𝑚 = 𝐩𝐩𝑚𝑚
ℏ
− 𝐤𝐤′ − 𝐩𝐩′

ℏ
. 

Note that the Dirac delta distribution 𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′�  only keep those electron 



5  

momentum states with identical energy 𝐸𝐸𝑝𝑝. Therefore, only those electron momentum states 

can effectively interfere with each other and affect the cross section.  

The absolute square of Dirac delta can be recast as 

�2𝜋𝜋𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′��
2

= lim
𝑇𝑇→∞

�
d𝑡𝑡
ℏ

𝑇𝑇
2

−𝑇𝑇2

𝑒𝑒𝑖𝑖�𝐸𝐸𝑝𝑝−ℏ𝜔𝜔𝑘𝑘′−𝐸𝐸𝑝𝑝′�
𝑡𝑡
ℏ2𝜋𝜋𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′�

= lim
𝑇𝑇→∞

𝑣𝑣
ℏ

2𝜋𝜋𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′�

= lim
𝑇𝑇→∞

𝑣𝑣
ℏ

2𝜋𝜋𝛿𝛿[|𝐩𝐩′| − |𝐩𝐩′|0 ]

��
d�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′�

d|𝐩𝐩′| �
|𝐩𝐩′|=|𝐩𝐩′|0

�

= lim
𝑇𝑇→∞

𝑣𝑣
ℏ

2𝜋𝜋
𝛿𝛿[|𝐩𝐩′| − |𝐩𝐩′|0 ]

|𝐩𝐩′|0𝑐𝑐2
𝐸𝐸𝑝𝑝′0

 

(S1.11) 

where 𝐸𝐸𝑝𝑝′ = �|𝐩𝐩′|2𝑐𝑐2 + (𝑚𝑚e𝑐𝑐2)2 , 𝐸𝐸𝑝𝑝′0 = 𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ = �|𝐩𝐩′|0
2𝑐𝑐2 + (𝑚𝑚e𝑐𝑐2)2.  

 Recasting the integrals ∫d3𝐩𝐩′ = ∫|𝐩𝐩′|2d|𝐩𝐩′|dΩ𝑝𝑝′ and ∫d3𝐤𝐤′ =

1
𝑐𝑐3 ∫(𝜔𝜔𝑘𝑘′)2d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′  (solid angles Ω𝑝𝑝′ , Ω𝑘𝑘′  and 𝜔𝜔𝑘𝑘′ = |𝐤𝐤′|𝑐𝑐 ), and speed 𝑣𝑣 = |𝐩𝐩|𝑐𝑐2

𝐸𝐸𝑝𝑝
  , we 

proceed to compute the differential cross section (cross section 𝜎𝜎 per unit angular frequency 

𝜔𝜔𝑘𝑘′ per unit solid angle Ω𝑘𝑘′) as 

d𝜎𝜎
d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′

=
𝜔𝜔𝑘𝑘′

8𝜀𝜀0{2𝜋𝜋}5ℏ3𝑐𝑐5|𝐩𝐩|�dΩ𝑝𝑝′                                                                                     

             × �d|𝐩𝐩′| �
𝐸𝐸𝑝𝑝′0
𝐸𝐸𝑝𝑝′

|𝐩𝐩′|2

|𝐩𝐩′|0
𝛿𝛿[|𝐩𝐩′| − |𝐩𝐩′|0 ] �� 𝐴𝐴Yu(𝛋𝛋𝑚𝑚)𝑐𝑐𝑚𝑚ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚

𝑁𝑁s

𝑚𝑚=1

�

2

𝑟𝑟′,𝑠𝑠′
 , 

(S1.12) 

carrying out the integral of Dirac delta we finally obtain 
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d𝜎𝜎
d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′

= �� dΩ𝑝𝑝′𝛿𝛿𝐸𝐸𝑝𝑝−ℏ𝜔𝜔𝑘𝑘′−𝐸𝐸𝑝𝑝′
𝜔𝜔𝑘𝑘′|𝐩𝐩′|0

8𝜀𝜀0{2𝜋𝜋}5ℏ3𝑐𝑐5|𝐩𝐩| �� 𝐴𝐴Yu(𝛋𝛋𝑚𝑚) �𝑐𝑐𝑚𝑚ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚
𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚 �

𝑁𝑁s

𝑚𝑚=1

�

2

𝑟𝑟′,𝑠𝑠′
 

(S1.13) 

where we purposely insert unitless Kronecker delta  𝛿𝛿𝐸𝐸𝑝𝑝−ℏ𝜔𝜔𝑘𝑘′−𝐸𝐸𝑝𝑝′
 as a reminder for energy 

conservation. Note that equation (S1.13) is the same as equation (1) in main text, only the 

Yukawa potential 𝐴𝐴Yu(𝛋𝛋𝑚𝑚) is not explicitly written out in summation form. 

 

 

 

 

Section 2 | Yukawa potential and crystal structure  

Yukawa potential of crystal lattice   

For an arbitrary crystal lattice containing 𝑁𝑁a atoms, the total Yukawa potential 𝐴𝐴Yu(𝐱𝐱) in 

space domain can be expressed as 

𝐴𝐴Yu(𝐱𝐱) = � �
−𝑍𝑍𝑛𝑛𝑞𝑞e
4𝜋𝜋𝜀𝜀0

𝐶𝐶𝑗𝑗𝑛𝑛𝑒𝑒
−
𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0

|𝐱𝐱−𝐝𝐝𝑛𝑛|

|𝐱𝐱 − 𝐝𝐝𝑛𝑛|
𝑗𝑗𝑛𝑛

𝑁𝑁a

𝑛𝑛 = 1

  , (S2.1) 

where 𝑞𝑞e is the elementary charge, 𝜀𝜀0 is the vacuum permittivity, 𝑎𝑎0 is the Bohr radius and 

𝐱𝐱 denotes the position vector. For 𝑛𝑛 th atom in the crystal lattice, 𝑍𝑍𝑛𝑛  denotes the atomic 

number, 𝐝𝐝𝑛𝑛  is the lattice vector,   𝐶𝐶𝑗𝑗𝑛𝑛  and 𝜇𝜇𝑗𝑗𝑛𝑛  are the screening function parameters 

analytically fitted to Dirac-Hartree-Fock-Slater (DHFS) self-consistent data as given in refs 

[2,3]. In our study, we consider 2D crystalline materials including graphene, WS2, MoSe2 

and WSe2. Information regarding crystal structures and lattice parameters used in our 

calculation are from The Materials Project [4]. Other relevant physical parameters are listed 

in Table 1. 



7  

Table 1. Atomic numbers and screening function parameters. 

Element   𝑍𝑍 𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝜇𝜇1 𝜇𝜇2 𝜇𝜇3 

C   6 0.1537    0.8463      8.0404 1.4913  

S 16 0.5459 −0.5333 0.9874     6.3703 2.5517 1.6753 

Se 34 0.4836    0.5164      8.7824 1.6967  

Mo 42 0.2693    0.5763 0.1544 14.044 2.8611 1.0591 

W 74 0.1500    0.6871 0.1629 28.630 4.2426 1.2340 

 

In the calculation we need to Fourier transform the Yukawa potential into momentum 

space. Utilizing the infinite space integral, one can transform the Cartesian coordinate 𝐱𝐱 −

𝐝𝐝𝑛𝑛 to drop the 𝐝𝐝𝑛𝑛 such that for arbitrary wavevector 𝐤𝐤, the Fourier transform is computed: 

� d3𝐱𝐱
𝑒𝑒−

𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0

|𝐱𝐱−𝐝𝐝𝑛𝑛|𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐱𝐱

|𝐱𝐱 − 𝐝𝐝𝑛𝑛|

∞

−∞

→ � d3𝐱𝐱
𝑒𝑒−

𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0

|𝐱𝐱|𝑒𝑒𝑖𝑖𝐤𝐤⋅(𝐱𝐱+𝐝𝐝𝑛𝑛)

|𝐱𝐱|

∞

−∞

= 𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐝𝐝𝑛𝑛 � d3𝐱𝐱
𝑒𝑒−

𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0

|𝐱𝐱|+𝑖𝑖𝐤𝐤⋅𝐱𝐱

|𝐱𝐱|

∞

−∞

  . (S2.2) 

Without loss of generality we can always choose the Cartesian coordinate system 

such that the z-axis is parallel to the wavevector 𝐤𝐤. One can then simplify the integrals by 

tranforming Eq (S2.2) into spherical coordinate system: 

𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐝𝐝𝑛𝑛 � d3𝐱𝐱
𝑒𝑒−

𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0

|𝐱𝐱|+𝑖𝑖𝐤𝐤⋅𝐱𝐱

|𝐱𝐱|

∞

−∞

= 𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐝𝐝𝑛𝑛 � d𝑟𝑟 � d𝜃𝜃 � d𝜙𝜙 𝑟𝑟2 sin𝜃𝜃
𝑒𝑒−

𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0

𝑟𝑟+𝑖𝑖|𝐤𝐤|𝑟𝑟 cos𝜃𝜃 

𝑟𝑟

2𝜋𝜋

0

𝜋𝜋

0

∞

0

  . (S2.3) 

The Yukawa potential in Fourier space is given by 

𝐴𝐴Yu(𝐤𝐤) = � 𝐴𝐴𝑛𝑛(𝐤𝐤)
𝑁𝑁a

𝑛𝑛 = 1

= � 𝑎𝑎𝑛𝑛(𝐤𝐤)𝑒𝑒𝑖𝑖𝐤𝐤⋅𝐝𝐝𝑛𝑛
𝑁𝑁a

𝑛𝑛 = 1

   ,    

𝑎𝑎𝑛𝑛(𝐤𝐤) = �
−𝑍𝑍𝑛𝑛𝑞𝑞e
𝜀𝜀0

𝐶𝐶𝑗𝑗𝑛𝑛

�
𝜇𝜇𝑗𝑗𝑛𝑛
𝑎𝑎0
�
2

+ |𝐤𝐤|2𝑗𝑗𝑛𝑛

∈ ℝ    . 

(S2.4) 
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Crystalline structure and reciprocal lattice vectors 

For the first example in the main text (Fig. 1) we choose the 2D graphene (oriented in the 

xy-plane) as our scatterer for bremsstrahlung. 

 
Fig. S2 Illustration of graphene.  

In Fig. S2, the graphene (or other 2D crystal lattice with hexagonal structure) is 

oriented in xy-plane, with lattice basis vectors 𝐚𝐚, 𝐛𝐛 and 𝐜𝐜 and lattice constant 𝑎𝑎: 

|𝐚𝐚| = |𝐛𝐛| =  𝑎𝑎,      |𝐜𝐜| =
√3
3
𝑎𝑎,      ∡𝐚𝐚𝐛𝐛 = 120°,       ∡𝐚𝐚𝐜𝐜 = ∡𝐜𝐜𝐛𝐛 = 30°, 

𝐚𝐚 = 𝑎𝑎{1,   0,   0},    𝐛𝐛 = 𝑎𝑎 �−
1
2

,   
√3
2

,   0� ,    𝐜𝐜 = 𝑎𝑎 �
1
2

,   
√3
6

,   0�  , 

(S2.5) 

Each unit cell contains 2 carbon atoms, therefore, for 𝑛𝑛th atom in the crystal lattice, 

its lattice vector 𝐝𝐝𝑛𝑛 can always be expressed as 𝐝𝐝𝑛𝑛 = 𝑛𝑛1𝐚𝐚 + 𝑛𝑛2𝐛𝐛 or 𝐝𝐝𝑛𝑛 = 𝐜𝐜 + 𝑛𝑛1𝐚𝐚 + 𝑛𝑛2𝐛𝐛, 

where 𝑛𝑛1, 𝑛𝑛2 ∈ ℤ. The former gives reciprocal lattice vectors 

𝐆𝐆1 = 2𝜋𝜋
𝐛𝐛 × {0, 0, 1}

𝐚𝐚 ⋅ (𝐛𝐛 × {0, 0, 1}) =
2𝜋𝜋
𝑎𝑎
�1,   

√3
3

,   0� ,  (S2.6) 

𝐆𝐆2 = 2𝜋𝜋
{0, 0, 1} × 𝐚𝐚

𝐚𝐚 ⋅ (𝐛𝐛 × {0, 0, 1}) =
2𝜋𝜋
𝑎𝑎
�0,   

2√3
3

,   0� , (S2.7) 

and the latter gives reciprocal lattice vectors 

𝐆𝐆1′ = 2𝜋𝜋
(𝐛𝐛 + 𝐜𝐜) × {0, 0, 1}

(𝐚𝐚 + 𝐜𝐜) ⋅ �(𝐛𝐛 + 𝐜𝐜) × {0, 0, 1}�
=

2𝜋𝜋
𝑎𝑎
�
2
3

,   0,   0� ,  (S2.8) 

x

y

a

b

c
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𝐆𝐆2′ = 2𝜋𝜋
{0, 0, 1} × (𝐚𝐚+ 𝐜𝐜)

(𝐚𝐚 + 𝐜𝐜) ⋅ �(𝐛𝐛 + 𝐜𝐜) × {0, 0, 1}�
=

2𝜋𝜋
𝑎𝑎
�−

1
6

,   
√3
2

,   0� , (S2.9) 

We can construct shaped electron wavefunctions via selecting those electron 

momentum states with transverse wavevectors 𝐩𝐩⊥,𝑚𝑚/ℏ = 𝑚𝑚1𝐆𝐆1 + 𝑚𝑚2𝐆𝐆2  (or 𝐩𝐩⊥,𝑚𝑚/ℏ =

𝑚𝑚1𝐆𝐆1′ + 𝑚𝑚2𝐆𝐆2′ ), where 𝑚𝑚1,𝑚𝑚2 ∈ ℤ. The resulting electron spatial probability distribution 

possesses the same periodicity as those atoms with lattice vectors 𝐝𝐝𝑛𝑛 = 𝑛𝑛1𝐚𝐚 + 𝑛𝑛2𝐛𝐛 (or 𝐝𝐝𝑛𝑛 =

𝐜𝐜 + 𝑛𝑛1𝐚𝐚 + 𝑛𝑛2𝐛𝐛). For a “real” 2D crystal, i.e. all atoms lie in same plane such as graphene, 

there are conditions where one can choose wavevectors  𝐩𝐩⊥,𝑚𝑚/ℏ = 𝑚𝑚1𝐆𝐆1 + 𝑚𝑚2𝐆𝐆2 =

𝑚𝑚1
′𝐆𝐆1′ + 𝑚𝑚2

′ 𝐆𝐆2′  for some particular integers 𝑚𝑚1,𝑚𝑚2,𝑚𝑚1
′ ,𝑚𝑚2

′ . The resulting electron spatial 

probability distribution possesses the same periodicity as all the atoms, but also note that 

since some of the choices of reciprocal lattice vectors are omitted, the density of available 

momentum states also decreases. 

For other 2D materials considered in our study, i.e., WS2 (𝑎𝑎 = 3.1907Å), MoSe2 

(𝑎𝑎 = 3.3269Å), and WSe2 (𝑎𝑎 = 3.3271Å), they have similar hexagonal structure as graphene 

(𝑎𝑎 = 2.4680Å), but each atoms in the unit cell (total 6 atoms) is located at different layer 

along longitudinal direction (z-axis). Therefore, we only choose the reciprocal lattice vectors 

from one of the layers of heavier atoms (transition-metal) as the basic of selecting the suitable 

electron momentum states. In Fig. S3, the black dots represent reciprocal lattice vectors of 

one layer of tungsten atoms (with lattice vectors 𝑚𝑚1𝐆𝐆1 + 𝑚𝑚2𝐆𝐆2 for integers 𝑚𝑚1, 𝑚𝑚2) in the 

unit cell of WSe2. The black dots falling in the same circle have the same magnitude. For 

electron momentum states with fixed energy (20 keV in Fig. S2), we can only choose those 

with transverse wavevectors denoted by the black dots, the incident angle θ of the electron 

momentum state can be calculated accordingly.  



10  

 

Fig. S3 Reciprocal lattice vectors of one layer of tungsten atoms in the unit cell of WSe2. The θ 
denotes the incident angle of a 20 keV electron momentum state with transverse wavevectors falling 
in the corresponding circles. The first circle (red) has 6 available wavevectors, the second circle 
(yellow) has another 6 available wavevectors, etc. 
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Section 3 | Simplified models based on approximations related to coherence, 

paraxiality and recoil   

Coherent and incoherent emission 

Considering a Dirac electron wavefunction Ψ𝑝𝑝(𝑥𝑥) comprising a discrete superposition of 

𝑁𝑁s plane waves with different four-momenta 𝑝𝑝𝑚𝑚, and identical energy 𝐸𝐸𝑝𝑝 and spin 𝑠𝑠: 

Ψ𝑝𝑝(𝑥𝑥) = � 𝑐𝑐𝑚𝑚𝑒𝑒
−𝑖𝑖ℏ𝑝𝑝𝑚𝑚

𝜇𝜇 𝑥𝑥𝜇𝜇  𝑢𝑢𝑠𝑠(𝑝𝑝𝑚𝑚) 
𝑁𝑁s

𝑚𝑚=1

,      𝑝𝑝𝑚𝑚0 =
𝐸𝐸𝑝𝑝
𝑐𝑐

 for all 𝑚𝑚, (S3.1) 

where each discrete electron momentum state is associated with the normalized complex 

coeffiecient  

𝑐𝑐𝑚𝑚 = |𝑐𝑐𝑚𝑚|𝑒𝑒𝑖𝑖𝜓𝜓𝑚𝑚  (amplitude |𝑐𝑐𝑚𝑚|  and phase 𝜓𝜓𝑚𝑚 ). We assume that all the input electron 

momentum states are spin-up, i.e., 𝑠𝑠 = ↑ for all 𝑚𝑚 throughout the paper. 

The spatial probability distribution function of electron wavefunction Ψi
†Ψi(𝐱𝐱) can 

be written as 

Ψ𝑝𝑝
†Ψ𝑝𝑝(𝐱𝐱) = � |𝑐𝑐𝑚𝑚|2

𝑁𝑁s

𝑚𝑚=1

+ � � 𝑐𝑐𝑚𝑚′
∗ 𝑐𝑐𝑚𝑚𝑒𝑒

𝑖𝑖
ℏ�𝐩𝐩𝑚𝑚−𝐩𝐩𝑚𝑚′�⋅𝐱𝐱[𝑢𝑢𝑠𝑠(𝑝𝑝𝑚𝑚′)]†[𝑢𝑢𝑠𝑠(𝑝𝑝𝑚𝑚)]

𝑁𝑁s

𝑚𝑚=1,
𝑚𝑚′≠1

𝑁𝑁s

𝑚𝑚=1

 , (S3.2) 

where the second summations contibute to shaping of the electron spatial probability 

distribution function. Similarly, we can rewrite the differential cross section expression from 

equation (S1.8) as 
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d𝜎𝜎
d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′

= �

⎩
⎨

⎧
� |𝑐𝑐𝑚𝑚|2
𝑁𝑁s

𝑚𝑚=1

× �dΩ𝑝𝑝′𝛿𝛿𝐸𝐸𝑝𝑝−ℏ𝜔𝜔𝑘𝑘′−𝐸𝐸𝑝𝑝′
𝜔𝜔𝑘𝑘′|𝐩𝐩′|0

8𝜀𝜀0{2𝜋𝜋}5ℏ3𝑐𝑐5|𝐩𝐩| �𝐴𝐴Yu
(𝛋𝛋𝑚𝑚)ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚 �
2

𝑟𝑟′,𝑠𝑠′

+ � � 𝑐𝑐𝑚𝑚′
∗ 𝑐𝑐𝑚𝑚

𝑁𝑁s

𝑚𝑚′=1,
𝑚𝑚′≠𝑚𝑚

𝑁𝑁s

𝑚𝑚=1

× �dΩ𝑝𝑝′𝛿𝛿𝐸𝐸𝑝𝑝−ℏ𝜔𝜔𝑘𝑘′−𝐸𝐸𝑝𝑝′
𝜔𝜔𝑘𝑘′|𝐩𝐩′|0

8𝜀𝜀0{2𝜋𝜋}5ℏ3𝑐𝑐5|𝐩𝐩| �𝐴𝐴Yu
(𝛋𝛋𝑚𝑚′)ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚′

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚′  
�
∗
�𝐴𝐴Yu(𝛋𝛋𝑚𝑚)ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚 �

⎭
⎬

⎫
 

(S3.3) 

As mentioned in the main text, the first summations can be referred as the incoherent 

component of the output emission (incoherent emission). The second summations can be 

seen as the interference component resulting from electron weaveshaping, and the overall 

summations give the coherent emission. 

 

Incoherent summation of number of atoms 𝑁𝑁𝐚𝐚 

We can fully expand the differential cross section from equation (S1.13) into summations of 

both number of electron momentum states 𝑁𝑁s and number of atoms 𝑁𝑁a as 

d𝜎𝜎
d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′

= ��� � �� � 𝑐𝑐𝑚𝑚′
∗ 𝑐𝑐𝑚𝑚

𝑁𝑁s

𝑚𝑚′=1

𝑁𝑁s

𝑚𝑚=1

𝑁𝑁a

𝑛𝑛′ = 1

𝑁𝑁a

𝑛𝑛 = 1𝑟𝑟′,𝑠𝑠′

× �dΩ𝑝𝑝′𝛿𝛿𝐸𝐸𝑝𝑝−ℏ𝜔𝜔𝑘𝑘′−𝐸𝐸𝑝𝑝′
𝜔𝜔𝑘𝑘′|𝐩𝐩′|0

8𝜀𝜀0{2𝜋𝜋}5ℏ3𝑐𝑐5|𝐩𝐩|

× �𝑎𝑎𝑛𝑛′(𝛋𝛋𝑚𝑚′)𝑎𝑎𝑛𝑛(𝛋𝛋𝑚𝑚)𝑒𝑒𝑖𝑖�𝛋𝛋𝑚𝑚⋅𝐝𝐝𝑛𝑛−𝛋𝛋𝑚𝑚′⋅𝐝𝐝𝑛𝑛′�� �ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚′

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚′  
�
∗
�ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚 ��� 

(S3.4) 

where Yukawa potential 𝑎𝑎𝑛𝑛(𝛋𝛋𝑚𝑚) is given in equation (S2.4) and 𝛋𝛋𝑚𝑚 = 𝐩𝐩𝑚𝑚
ℏ
− 𝐤𝐤′ − 𝐩𝐩′

ℏ
. The 

term 𝑎𝑎𝑛𝑛′(𝛋𝛋𝑚𝑚′)𝑎𝑎𝑛𝑛(𝛋𝛋𝑚𝑚)𝑒𝑒𝑖𝑖�𝛋𝛋𝑚𝑚⋅𝐝𝐝𝑛𝑛−𝛋𝛋𝑚𝑚′⋅𝐝𝐝𝑛𝑛′� can be expressed in its Fourier form as 
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𝑎𝑎𝑛𝑛′(𝛋𝛋𝑚𝑚′)𝑎𝑎𝑛𝑛(𝛋𝛋𝑚𝑚)𝑒𝑒𝑖𝑖�𝛋𝛋𝑚𝑚⋅𝐝𝐝𝑛𝑛−𝛋𝛋𝑚𝑚′⋅𝐝𝐝𝑛𝑛′�

= �
𝑞𝑞𝑒𝑒

4𝜋𝜋𝜀𝜀0
�
2
𝑍𝑍𝑛𝑛′𝑍𝑍𝑛𝑛��𝐶𝐶𝑗𝑗𝑛𝑛′

′ 𝐶𝐶𝑗𝑗𝑛𝑛
𝑗𝑗𝑛𝑛′
′𝑗𝑗𝑛𝑛

× � d3𝐫𝐫′d3𝐫𝐫

⎣
⎢
⎢
⎡𝑒𝑒−
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(S3.6) 

The magnitude of equation (S3.6) is determined by three fast decaying components (first two 

represent the Yukawa potentials, third is the sinc function), which peak at 𝐫𝐫′ ≈ 𝐝𝐝𝑛𝑛′ , 𝐫𝐫 ≈ 𝐝𝐝𝑛𝑛 

and �𝐩𝐩
′�
ℏ

|𝐫𝐫 − 𝐫𝐫′| ≈ 0 respectively. Those three components only have their peaks overlap at 

𝐝𝐝𝑛𝑛′ = 𝐝𝐝𝑛𝑛, and thus those terms with 𝐝𝐝𝑛𝑛′ = 𝐝𝐝𝑛𝑛 in equation (S3.4) are dominant, which gives 
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𝜔𝜔𝑘𝑘′|𝐩𝐩′|0
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�

2

�  . 

(S3.7) 

Therefore, the total bremsstrahlung differential cross section can be treated as the 

incoherent summation of individual components occurring at each atom, hence results in the 

linear 𝑁𝑁a  scaling. This argument is valid in our interested regime, supported by our 

simulation results. 

 

Paraxial approximation 

To show that some of the results could be arrived at using the paraxial approximation, while 

others cannot, we assume identical spin 𝑠𝑠𝑚𝑚 = 𝑠𝑠 for all 𝑚𝑚 and 

𝑢𝑢𝑠𝑠𝑚𝑚(𝑝𝑝𝑚𝑚) ≈ 𝑢𝑢𝑠𝑠(𝑝𝑝0), 𝐴𝐴Yu(𝛋𝛋𝑚𝑚) ≈ 𝐴𝐴Yu(𝛋𝛋0), ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝𝑚𝑚′

𝑟𝑟′𝑠𝑠′𝑠𝑠𝑚𝑚 ≈ℳ𝑘𝑘′𝑝𝑝′𝑝𝑝0
𝑟𝑟′𝑠𝑠′𝑠𝑠  , (S3.8) 

where the subscript 0 denotes the unshaped electron momentum state, i.e., momentum solely 

in positive longitudinal direction (+z-axis). The paraxial approximation allows us to extract 

the integral component out of the summation over 𝑚𝑚 in equation (S3.7), which gives 
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where 

Ƥ𝑛𝑛 = � |𝑐𝑐𝑚𝑚|2
𝑁𝑁s

𝑚𝑚=1

+ � � 𝑐𝑐𝑚𝑚′
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𝑒𝑒𝑖𝑖�
𝐩𝐩𝑚𝑚
ℏ −

𝐩𝐩𝑚𝑚′
ℏ �⋅𝐝𝐝𝑛𝑛

𝑁𝑁s

𝑚𝑚=1

 (S3.10) 

can be interpreted as the electron spatial probability distribution function at 𝑛𝑛th atom (refer 

to equation (S3.2)).  

Conclusively speaking, the total bremsstrahlung differential cross section as the 

incoherent summation of individual components at each individual atom. Moreover, under 

the scheme of paraxial approximation, each component is directly proportional to the 

electron spatial probability distribution function at the corresponding atom location. 

 In Fig. 1, we show the scaling properties for shaped electron wavefunction 

converging to Bessel beam of order 0 (off-axis emission) and order 1 (on-axis emission). 

Since each electron momentum states with momentum 𝐩𝐩𝑚𝑚 has their transverse momentum 

constructed from the reciprocal vectors of the lattice vectors 𝐝𝐝𝑛𝑛 (in xy-plane), we have the 

relation 𝐩𝐩𝑚𝑚
ℏ
⋅ 𝐝𝐝𝑛𝑛 = 2𝑙𝑙𝜋𝜋 for all 𝑚𝑚 and 𝑛𝑛, where 𝑙𝑙 ∈ ℤ . We can then calculate Ƥ𝑛𝑛 for 

(1)  Discrete Bessel beam of order 0 (off-axis emission) 

complex amplitude 𝑐𝑐𝑚𝑚 = 1
�𝑁𝑁s

 for all 𝑚𝑚, which gives 

Ƥ𝑛𝑛 = Ψ𝑝𝑝
†Ψ𝑝𝑝(𝐝𝐝𝑛𝑛) ≈

1
𝑁𝑁s

� � 1
𝑁𝑁s

𝑚𝑚′=1

𝑁𝑁s

𝑚𝑚=1

=
1
𝑁𝑁s

× 𝑁𝑁s × 𝑁𝑁s = 𝑁𝑁s  ; (S3.11) 

(2) Discrete Bessel beam of order 1 (on-axis emission) 

complex amplitude 𝑐𝑐𝑚𝑚 = 1
�𝑁𝑁s

ei{𝑚𝑚−1}2𝜋𝜋
𝑁𝑁s for all 𝑚𝑚, which gives 
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Ƥ𝑛𝑛 = Ψ𝑝𝑝
†Ψ𝑝𝑝(𝐝𝐝𝑛𝑛) ≈

1
𝑁𝑁s

� � ei�𝑚𝑚−𝑚𝑚′�2𝜋𝜋𝑁𝑁s

𝑁𝑁s

𝑚𝑚′=1

𝑁𝑁s

𝑚𝑚=1

=
1
𝑁𝑁s

1 − ei𝑁𝑁s
2𝜋𝜋
𝑁𝑁s

1 − ei
2𝜋𝜋
𝑁𝑁s

1 − e−i𝑁𝑁s
2𝜋𝜋
𝑁𝑁s

1 − e−i
2𝜋𝜋
𝑁𝑁s

= 0  . (S3.12) 

For off-axis emission (equation (S3.11)), the paraxial approximation predicts linear 

𝑁𝑁s scaling  � d𝜎𝜎
d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′

�
paraxial

∝ 𝑁𝑁s which match our exact simulation. However, for on-axis 

emission (equation (S3.12)), the paraxial approximation predicts vanishing 

� d𝜎𝜎
d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′

�
paraxial

→ 0  (no emission), which is not the case from our exact simulation. These 

examples show that paraxial approximation does not work universally for all the cases of 

shaped electron wavefunction, which outlines the non-intuitive features of electron 

waveshaping in QED process.  

 

Non-recoil approximation 

For extremely small photon energy ℏ𝜔𝜔𝑘𝑘′ (compared to input electron kinetic energy 𝐸𝐸𝑝𝑝), i.e. 

ℏ𝜔𝜔𝑘𝑘′ ≪ 𝐸𝐸𝑝𝑝 , one can further approximate the supposing energy conservation Dirac delta 

𝛿𝛿�𝐸𝐸𝑝𝑝 − ℏ𝜔𝜔𝑘𝑘′ − 𝐸𝐸𝑝𝑝′� ≈ 𝛿𝛿�𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑝𝑝′�  , i.e. electron energy is treated as 𝐸𝐸𝑝𝑝′ ≈ 𝐸𝐸𝑝𝑝  for 

negligible recoil. 

The results implemented with both paraxial and non-recoil approximations are 

compared with the exact simulation in Fig. 3 from the main text. The full paraxial and non-

recoil approximation still predict the linear 𝑁𝑁s scaling for off-axis emission, but the scaling 

factor differ from exact simulation due to large emitted photon energy (large recoil).  
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Section 4 | Further examples of tailoring bremsstrahlung via electron waveshaping 

As a counterpart for Fig. 4, we show examples in Fig. S4 with a different set of parameters, 

i.e., a much smaller incidence angle (0.005π rad) for all the electron momentum states. One 

can observe that the angular emission profile of the bremsstrahlung inherits the symmetries 

of the shaped electron wavefunction (in xy-plane). 

 

Fig. S4 Complex shaping of bremsstrahlung emission via engineering multi-state electron 
wavefunctions. Panels a - d(i) show the spatial probability distribution (prob. dist.) of 20-state 300 
keV electron (incident angle 0.005π rad) converging to a(i) HG00 beam, b(i) HG01 beam, c(i) HG10 
beam and d(i) HG11 beam, respectively. Panels a - d(ii) show the corresponding bremsstrahlung 
differential cross section d𝜎𝜎/d𝜔𝜔𝑘𝑘′dΩ𝑘𝑘′(photon energy 250 keV).  
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Section 5 | Enhancement of bremsstrahlung X-ray in 3D bulk crystalline materials 

In this section, we extend our theory to 3D bulk crystalline materials, i.e., multilayer graphite. 

In Fig. S5, we show that the bremsstrahluhnf X-ray differential cross section scales linearly 

as the number of layers of graphite, for both unshaped (1-state) and shaped (6-state) electron 

wavepackets, which the later also shows a 6-times enhancement. Using 6-state shaped 

electron wavepacket, we are able to make the electron’s periodic spatial profile to be focused 

at each carbon atoms of the graphite, as shown in  the inset of Fig. S5. The shaped electron’s 

spatial profile remains invariant along the longitudinal direction (z-axis), resulting in the 

same contribution to the emitted X-ray photon flux from each layers of the graphite crystal 

plane. 

 
Fig. S5 Linear enhancement of bremsstrahlung X-ray in multilayer graphite. In both cases of 
unshaped (1-state) and shaped (6-state) electron wavepackets, the resulting bremsstrahlung X-ray 
differential cross sections (at optimum emission angles 𝜃𝜃𝑘𝑘′= 0.3 [π rad], 𝜙𝜙𝑘𝑘′= 0 [π rad]) scale linearly 
as the number of layers of graphite. Each layer consists of 48 C atoms. The inset depicts the 6-state 
shaped electron’s spatial profile (in xy-plane), which is periodically aligned with the C atoms (denoted 
by red circles) and remains invariant along z-direction. Compared to unshaped case, the case of 6-
state shaped electron also shows a 6-fold enhancement in the X-ray differential cross section.  
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Section 6 | Experimental proposals for proof-of-concept demonstrations 

The purpose of this section is to propose experiments that can demonstrate the main 

conclusions of this work, and also to show that the needed experimental apparatus are 

commercially available or well-within the state-of-the-art. The setup we propose is shown 

in Fig. S6, and can be realized, for instance, in a customized transmission electron 

microscope (TEM). The electron source is a field emission gun (FEG) or photoemission DC 

gun that produces 20 to 300 keV electron beam with high spatial coherence, similar to those 

used in electron holography. The electron's quantum wavefunction is then shaped by passing 

the electron through an adaptive electrostatic phase plate with 36 programmable elements, a 

realistic device given that 48-element programmable phase plates have been very recently 

designed and demonstrated [5]. Our proposed experiments require the phase plate’s elements 

to possess phase resolution of 1×10−2 π, which is well within reach today given that the 

aforementioned 48-element phase plate has been reported to possess phase resolution of 

3×10−3 π [5]. New electron waveshaping techniques, such as using short intense laser pulses 

[6], surface plasmon polaritons [7] etc. to modulate the electron beam are being developed, 

and can potentially be utilized in future experiments. The shaped electron beam then 

impinges on the 2D crystal, which can be chosen from the enormous family of 2D van der 

Waals materials. In our experimental plan presented here, we choose graphene as an 

exemplary target material for generating bremsstrahlung. The single-layer graphene is 

mounted on a nanopositioning piezoelectric stage. To ensure that the shaped electron’s 

transverse spatial profile is aligned to the crystal lattice periodicity and stabilized, we require 

the stage to possess the following properties: (1) sub-nanometer mechanical resolution, e.g., 

< 0.02 nm, as has been realized in ref. [8], for closed loop control (feedback in real time); 

(2) 6 degrees of freedom, i.e., 3 linear and 3 rotational motion axes, as has been realized in 

ref. [9]; and (3) a clear aperture that allows transmission of X-rays [9]. As these 

specifications are well-within the state-of-the-art and even realized in existing commercial 

products, such a nanopositioning piezoelectric stage is feasible today, at the expense of some 

customization in the worst case scenario. The generated X-ray photon is captured by an X-

ray detector. The X-ray detector is mounted on a motorized stage, which can be rotated to 
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enable a sufficient portion of the X-ray emission angular profile to be recorded and compared 

against the results of our theoretical predictions. 

 

 
Fig. S6 Proposed experimental setup for demonstrating enhancement and shaping of 
bremsstrahlung by electron waveshaping. The field emission gun (FEG) or photoemission DC gun 
produces 20 to 300 keV electron beam with high spatial coherence. A 36-element programmable 
phase plate is used to shape the electron transverse profile into periodic patterns matching the crystal 
lattice. A nanopositioning piezoelectric stage with 3 linear (resolution < 0.02 nm) and 3 rotational 
(resolution < 0.1 μrad) motion axes controls the alignment between electron transverse profile and 
crystal lattice with real time feedback (closed loop control). Bremsstrahlung X-ray in forward 
direction is generated when the electron impinges the crystal, transmitted through the clear aperture 
of the stage, and recorded by the X-ray detector. The X-ray detector can move angularly to fully cover 
the emission angular profile of the X-ray. 

 

Using the above proposed experimental setup, we design two experiments that would 

provide proof-of-concept confirmation for our theory, while achieving unprecedented 

enhancement and shaping of X-ray bremsstrahlung. The aim of the first proposed experiment 

(Fig. S7) is to demonstrate the enhancement of bremsstrahlung -- we show in Fig. S7 that 

our theory predicts as much as 18 times intensity enhancement. The aim of the second 

proposed experiment (Fig. S8) is to demonstrate the ability to shape the bremsstrahlung 

angular profile by shaping the electron wavefunction -- we show in Fig. S8 that our theory 

predicts that the emission pattern can indeed be substantially altered using experimental 

parameters that are already feasible today. Our results not only serve as a confirmation that 

the phenomena we predict are within reach of experimental setups that are realistic today, 

but further motivates the already rapidly progressing development of multi-element phase 

plates for electron waveshaping and high-precision nanopositioning stages. 
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We now delve into the technical details surrounding our two proposed experiments. 

In the experimental plan illustrated in Fig. S7, we use 300 keV electron source and 2D 

graphene as the cyrstalline scatterer for bremsstrahlung. For the first experiment, we 

investigate the enhancement in output bremsstrahlung X-ray photon flux via electron 

waveshaping. We use the 36-element phase plate (illustrated in Fig. S7 a(i), 50 μm in 

diameter [5]) to split the electron beam into 36 components. Each components is converged 

into different incident angles, which corresponds to a specific electron momentum state. 

Under ideal conditions, the resulting waveshaped electron spatial profile (in xy-plane, z = 0) 

is shown in Fig. S7 a(ii), aligned to the graphene lattice structure (red circles representing 

carbon atoms). Our theory predicts that an enhancement of around 18 times for 250 keV X-

ray output flux (Fig S7 b(ii)) compared to unshape case (Fig S7 b(i)) would be 

experimentally observed. 

 
Fig. S7 Proposed experiment to demonstrate enhancement of bremsstrahlung X-ray flux 
intensity up to 18 times via electron waveshaping. We assume 300 keV electron beam of current 
density 107 A/m2 and an active area of 100 μm2 (the area which the electron periodic spatial profile 
is considered ideally aligned with the graphene atoms). In a(i), the 36-element phase plate shapes the 
electron beam into 36-state beam, each momentum state has incident angle corresponding to the 
position of each phase element, i.e., 9.21 mrad, 15.95 mrad, 18.42 mrad, 24.37 mrad and 27.64 mrad, 
from inner to outer position. Panel a(ii) shows the shaped electron periodic spatial profile, ideally 
aligned with the graphene lattice where the C atoms are denoted by red circles. The 250 keV output 
X-ray flux emission angular profiles for unshaped and shaped cases are simulated and presented in 
b(i) and b(ii), respectively, showing enhancement up to 18 times in X-ray flux intensity for 
waveshaped electron. 
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In the experimental plan depicted in Fig. S8, we explore the ability of electron 

waveshaping to tailor the bremsstrahlung X-ray emission angular profile. Using the same 

36-element phase plate, we vary the phases of each splitted components that corresponds to 

a specific electron momentum state, as shown in Figs. S8 a(i) and b(i), respectively. Under 

ideal conditions, the resulting waveshaped electron spatial profiles (in xy-plane, z = 0) are 

shown in Figs. S8 a(ii) and b(ii) respectively, aligned to the graphene lattice structure (red 

circles representing carbon atoms). The corresponding simulated emission angular profiles 

for 250 keV X-ray are presented in Figs. S8 a(iii) and b(iii), respectively, showing distinct 

shapes that would provide a strong proof-of-concept for the shaping of the bremsstrahlung 

emission angular profile via electron waveshaping. 

 
Fig. S8 Proposed experiment to demonstrate shaping of the X-ray emission angular profile by 
shaping the electron wavefunction. We assume 300 keV electron beam of current density 109 A/m2 
and an active area of 100 μm2 (the area which the electron periodic spatial profile is considered ideally 
aligned with the graphene atoms). In a(i) and b(i), we assume two phase configurations for the 36-
element phase plate in order to obtain distinct electron waveshaping results. Panels a(ii) and b(ii) 
show the corresponding shaped electron periodic spatial profiles, ideally aligned with the graphene 
lattice (C atoms are denoted by red circles). The output 250 keV X-ray flux emission angular profile 
for both shaped cases are simulated and presented in a(iii) and b(iii), respectively, which the former 
shows a uniform central peak and the latter shows a 4-pointed-star shape.  
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