
Supplementary Note 1: Installation of kallisto and bustools from source or installation of
specific versions of the software.

Installing kallisto and bustools from source

kallisto (version 0.50.1):

git clone --branch v0.50.1 https://github.com/pachterlab/kallisto
cd kallisto
mkdir build
cd build
cmake ..
make
make install

bustools (version 0.43.1):

git clone --branch v0.43.1 https://github.com/BUStools/bustools
cd bustools
mkdir build
cd build
cmake ..
make
make install

Note: The --branch argument can be omitted to install the latest version of the software.

Using kb_python with kallisto and bustools installed from source

kb_python can be run with compiled binaries by supplying the paths to the binaries as follows:

kb ref --kallisto=/path/to/kallisto --bustools=/path/to/bustools …

kb count --kallisto=/path/to/kallisto --bustools=/path/to/bustools …

Installing a specific version of kb_python

A specific version of kb_python (e.g. version 0.28.0) can installed as follows:

pip install kb_python==0.28.0

1



Supplementary Note 2: Indexing a custom set of k-mers.

Indexing a custom set of k-mers

When multiple sequences may belong to the same “target”, as is the case with genetic
polymorphisms, it can be desirable to index k-mers distributed across multiple targets rather
than across a single contiguous target sequence. The target names in the input FASTA file
must be numbers (specifically, zero-indexed numerical identifiers). Each k-mer in the target
sequence is associated with the target name specified in the header line. Indexing this FASTA
file can then be accomplished in the custom workflow using the --distinguish keyword.

custom workflow (--distinguish):

kb ref --workflow=custom -i index.idx --distinguish custom.fasta

kallisto index -t 8 -i index.idx --distinguish custom.fasta

Example custom.fasta file (with 3 targets):

>0
ACTCTATCATCATCTACTACTACTCGCAGCGACGACATCAGCTTTTTT
>1
GCGCGCCGCCGACGACACGCAGAGAAGAAAGCGCGACGAC
>2
TTATGTGTCGTGTAGTCGTAGTGTGTCGTGCCGCCGCGCGCAAA
>2
ATATACGATCATCAGCGACAGACTACTTCAGAAGACTATCA
>0
GTCGATCGGTGTCACATGCGCAAGCGTCAGCGACACGACTTCGG

D-listing a custom set of k-mers

When FASTA sequences are supplied to --d-list, distinguishing flanking k-mers (DFKs) are
extracted from those sequences and placed in a D-list. Reads containing D-list k-mers will not
be mapped. One can also specify a custom set of k-mers to be in the D-list, by using an
empty sequence header. In the following example, since the header is absent, all k-mers in
the sequence will be D-listed (if a header were present, only DFKs would be D-listed).

>
ACGCGACATAGCAGACTAGACATTATTTACGTATTATGATAGTAGAT

2



Supplementary Note 3: Filtering GTF entries when constructing the reference.

kb ref: --include-attributes and --exclude-attributes to filter GTF entries

Specific GTF entries can be included or excluded when building a reference transcriptome
from a genome FASTA and GTF file. This can be done by using the following arguments to kb
ref:

--include-attribute KEY:VALUE

--exclude-attribute KEY:VALUE

Where KEY is the name of the field (e.g. gene_biotype) in the GTF file and the VALUE is the
value of the field (e.g. protein_coding).

The box below shows an example of how to use --include-attribute to include only certain
gene biotypes (the remaining gene biotypes present in the GTF file will not be included). Note
that these are the same biotypes included in the Ensembl GRCh38 Cell Ranger reference (as
of Cell Ranger version 7.1.0).

kb ref -i index.idx -g t2g.txt -f1 cdna.fasta \
--include-attribute gene_biotype:protein_coding \
--include-attribute gene_biotype:lncRNA \
--include-attribute gene_biotype:lincRNA \
--include-attribute gene_biotype:antisense \
--include-attribute gene_biotype:IG_LV_gene \
--include-attribute gene_biotype:IG_V_gene \
--include-attribute gene_biotype:IG_V_pseudogene \
--include-attribute gene_biotype:IG_D_gene \
--include-attribute gene_biotype:IG_J_gene \
--include-attribute gene_biotype:IG_J_pseudogene \
--include-attribute gene_biotype:IG_C_gene \
--include-attribute gene_biotype:IG_C_pseudogene \
--include-attribute gene_biotype:TR_V_gene \
--include-attribute gene_biotype:TR_V_pseudogene \
--include-attribute gene_biotype:TR_D_gene \
--include-attribute gene_biotype:TR_J_gene \
--include-attribute gene_biotype:TR_J_pseudogene \
--include-attribute gene_biotype:TR_C_gene \
genome.fasta genome.gtf

3



Supplementary Manual: Reference for kallisto and bustools commands.

1. kallisto

Running kallisto usually involves two steps: 1) Indexing a FASTA file of target sequences via
kallisto index, and 2) Mapping sequencing reads to kallisto index using kallisto bus.

1.1 kallisto index

Builds a kallisto index.

Usage: kallisto index [arguments] FASTA-files

Required argument:

-i, --index=STRING Filename for the kallisto index to be constructed

Optional arguments:

-k, --kmer-size=INT k-mer (odd) length (default: 31, max value: 31)

-t, --threads=INT Number of threads to use (default: 1)

-d, --d-list=STRING Path to a FASTA-file containing sequences to mask

from quantification (i.e. to extract distinguishing

flanking k-mers from).

--make-unique Replace repeated target names with unique names

--aa Generate index from a FASTA-file containing

amino acid sequences

--distinguish Generate index where sequences are distinguished

by the sequence name, for example, when indexing

k-mers distributed across multiple targets rather

than across a single contiguous target sequence.

-T, --tmp=STRING Temporary directory (default: tmp)

-m, --min-size=INT Length of minimizers (default: automatically chosen)

-e, --ec-max-size=INT Maximum number of targets in an equivalence class

(default: no maximum)

4



Among the optional arguments in kallisto index, in a general use case, typically only
-i (--index; to specify the name of the index output filename), -t (--threads; to specify the
number of threads), and -d (--d-list; to specify the filename from which to extract
distinguishing flanking k-mers) are used.

1.2 kallisto bus

Generates a BUS file containing the results from mapping sequencing reads to a kallisto index.

Usage:
kallisto bus [arguments] FASTQ-files
kallisto bus [arguments] --batch=batch.txt

Required arguments:

-i, --index=STRING Filename for the kallisto index to be used for

pseudoalignment

-o, --output-dir=STRING Directory to write output to

-x, --technology=STRING The “technology” string for the sequencing

technology used

Other arguments:

-l, --list List the technologies that are hard-coded into

kallisto so the name of the technology can

simply be supplied as the technology string

-B, --batch=FILE Path to a batch file. The batch file is a text

file listing all the samples to be analyzed

with the paths to their respective FASTQ files.

If a batch file is supplied, then one shouldn’t

supply FASTQ files on the command line.

-t, --threads=INT Number of threads to use (default: 1)

-b, --bam Input file is a BAM file rather than a set of

FASTQ files. Note: This is a nonstandard

workflow. It is strongly recommended to supply

FASTQ files rather than use this option and not

all technologies are supported by this option.

-n, --num Output read number in flag column of BUS file

5



The read number is zero-indexed. One can view

the read numbers by inspecting the BUS file

using bustools text. This option is useful for

pulling specific mapped reads out of the FASTQ

file or for examining which reads did not end

up being mapped by kallisto. (Important note:

BUS files with read numbers in the flag column

can NOT be used in quantification tasks with

bustools). (Note: incompatible with --bam)

-N, --numReads=INT Maximum number of reads to process from

supplied input. This is useful for processing

a small subset of reads from a large sequencing

experiment as a quick quality control.

Moreover, the program returns 1 if the number

of reads processed from the input is less than

the number supplied here. This is useful for

catching errors when we expect a certain number

of reads to be present in the input but not all

the reads end up being there.

-T, --tag=STRING 5′ tag sequence to identify UMI reads for

certain technologies. This is useful for

smart-seq3 where the UMI-containing reads have

an 11-bp tag sequence (ATTGCGCAATG) located at

the beginning of the UMI location. If this tag

sequence is present immediately before the UMI

location, then the UMI is processed into the

output BUS file; for all other sequences, the

UMI field in the BUS file is left empty (the

field is populated with the value -1 in binary

format).

Note: Matching the tag sequence is done with

a hamming distance error tolerance of 1 if the

tag is longer than 5 nucleotides. Otherwise,

no error tolerance is permitted.

Note: If strand-specificity is enabled, it will

only be applied to the UMI-containing reads.

--fr-stranded Strand specific reads, first read forward

--rf-stranded Strand specific reads, first read reverse

6



--unstranded Treat all read as non-strand-specific

--paired Treat reads as paired (i.e. if two biological

read sequences are present across two FASTQ

files, they will be mapped taking into account

their paired-endness: fragment length

distribution will be estimated for the read

pairs, and only one read in the pair needs to

map successfully in order to be considered

successful pseudoalignment)

--aa Align to index generated from a FASTA-file

containing amino acid sequences

--inleaved Specifies that input is an interleaved FASTQ

file. That is, only one FASTQ file is supplied

and the sequences are interleaved. For example,

instead of an R1 and R2 FASTQ file, a single

FASTQ file can be supplied where the reads are

listed in order of each R2 read immediately

following each R1 read. This is also useful

when piping interleaved output generated by

another program directly into

kallisto bus which can be done by

supplying - as the input file in lieu of

FASTQ file names.

--batch-barcodes Records both the generated sample-specific

barcodes as well as the cell barcodes extracted

from the reads in the output BUS file. If not

supplied, then the sample-specific barcodes are

not recorded.

In the output directory specified by -o or --output-dir, the following files are made:
● output.bus: A BUS file containing the mapped reads information, which will be further

processed using bustools.
● transcripts.txt: A text file containing a list of the names of the targets or transcripts used.
● matrix.ec: A text file containing the equivalence classes. The equivalence class number

(zero-indexed) is in the first column and a comma-separated list of target or transcript IDs
belonging to that equivalence class are in the second column. The transcript IDs are
numbers (zero-indexed) that correspond to the line numbers (zero-indexed) in the
transcripts.txt file.

● run_info.json: Contains information about the run, including percent of reads

7



pseudoaligned, number of reads processed, index version, etc.
● flens.txt: Only produced when using paired-end mapping. Contains the fragment length

distribution, which can be used by kallisto quant-tcc to produce TPM abundance
values.

1.3 kallisto quant-tcc

Quantifies abundance from pre-computed transcript-compatibility counts. It takes in a transcript
compatibility counts (TCC) matrix outputted by bustools count and runs an
expectation-maximization (EM) algorithm to produce transcript abundances. This is useful for
producing TPM values from bulk RNA-seq and smart-seq2 RNA-seq data. The output files can
be used by bulk RNA-seq differential gene expression programs.

Usage: kallisto quant-tcc [arguments] transcript-compatibility-counts-file

Required arguments:

-o, --output-dir=STRING Directory to write output to

-e, --ec-file=FILE File containing equivalence classes

(the equivalence class file in the same

directory as the output matrix file

should be used)

Other arguments:

-i, --index=STRING Filename for the kallisto index

to be used

(required if --txnames is not supplied

or if any of the fragment length

options: -f, -l, -s, is supplied

since the index contains transcript

lengths, which is necessary for length

normalization)

-T, --txnames=STRING File with names of transcripts

(required if index file not supplied)

-f, --fragment-file=FILE File containing fragment length

distribution (flens.txt outputted by

kallisto)

-l, --fragment-length=DOUBLE Estimated average fragment length

8



-s, --sd=DOUBLE Estimated standard deviation of fragment

length

(note: -l, -s values only should be

supplied when effective length

normalization needs to be performed

but --fragment-file is not specified)

Note: If none of the fragment length

options: -f -l, -s, are supplied, then

effective length normalization is not

performed (i.e. transcript length isn’t

taken into account when quantification

is performed).

-p, --priors=FILE Priors for the EM algorithm, either as

raw counts or as probabilities.

Pseudocounts are added to raw counts to

prevent zero valued priors. Supplied in

the same order as the transcripts in the

transcriptome (e.g. in --txnames).

-t, --threads=INT Number of threads to use (default: 1)

-g, --genemap=FILE File for mapping transcripts to genes

(this is the t2g.txt file produced by

kb ref in kb-python and is required for

obtaining gene-level abundances)

-G, --gtf=FILE GTF file for transcriptome information

(can be used instead of --genemap for

obtaining gene-level abundances)

-b, --bootstrap-samples=INT Number of bootstrap samples (default: 0)

Bootstrap samples are useful for

obtaining inferential variance which can

be used by programs such as sleuth.

--matrix-to-files Reorganize matrix output into abundance

tsv files

--matrix-to-directories Reorganize matrix output into abundance

tsv files across multiple directories

9



--seed=INT Seed for the bootstrap sampling

(default: 42)

--plaintext Output plaintext only, not HDF5

(When --matrix-to-directories or

--matrix-to-files are supplied, HDF5

files are outputted by default, in

addition to the plaintext abundance tsv

files since HDF5 files containing

abundance information are used by

programs such as sleuth; this option

disables that).

In the output directory specified by -o or --output-dir, the following files are made:
● matrix.abundance.mtx: A sample-by-transcript (or cell-by-transcript) MatrixMarket

sparse matrix file containing the estimated transcript counts.
● matrix.abundance.gene.mtx: A sample-by-gene (or cell-by-gene) MatrixMarket sparse

matrix file containing the estimated transcript counts summed up to gene-level. Only
made if a transcript-to-gene mapping was provided.

● matrix.abundance.tpm.mtx: A sample-by-transcript (or cell-by-transcript) MatrixMarket
sparse matrix file containing the normalized transcript abundances (if effective length
normalization is performed, then the results are in length-normalized TPM units;
otherwise the results are in CPM [counts-per-million] units wherein each value is
normalized by the sum of all counts for that particular sample or cell).

● matrix.abundance.gene.tpm.mtx: A sample-by-gene (or cell-by-gene) MatrixMarket
sparse matrix file containing the same information as matrix.abundance.tpm.mtx except
summed up to gene-level if a transcript-to-gene mapping was provided.

● transcripts.txt: A text file containing a list of the names of the targets or transcripts used
(not made if a transcripts file was already provided via --txnames). These transcripts
correspond to the columns of transcripts in the matrix abundance output files.

● genes.txt: A text file containing a list of genes, if a transcript-to-gene mapping was
provided. These genes correspond to the columns of genes in the matrix abundance
output files.

● --matrix-to-files: If this option is provided, the abundance output files will be named
abundance_{n}.tsv and abundance_{n}.h5 (hdf5 format) where {n} is the sample number
or cell number (which corresponds to the rows in the matrix files). If bootstrapping is
enabled, additional abundance tsv files (starting with the prefix bs_abundance_{n}_) will
be created for each bootstrap sample. If a transcript-to-gene mapping is provided,
abundance.gene_{n}.tsv files will be created as well with the gene-level quantification.

● --matrix-to-directories: If this option is provided, directories named abundance_{n}

10



(where {n} is the sample number or cell number, corresponding to the rows in the matrix
files) will be created. Within each directory, an abundance.tsv text file and abundance.h5
HDF5 file will be created containing the quantifications for that particular sample or cell.
If bootstrapping is enabled, additional abundance tsv files (starting with the prefix
bs_abundance_) will be created for each bootstrap sample. If a transcript-to-gene
mapping is provided, an abundance.gene.tsv file will be created within each directory
with the gene-level quantification.

The first few lines of an abundance tsv file looks as follows:

target_id length eff_length est_counts tpm
ENST00000641515.2 2618 2349.39 0 0
ENST00000426406.4 939 670.39 0 0
ENST00000332831.4 995 726.39 0 0
ENST00000616016.5 3465 3196.39 5.68407 0.128913
ENST00000618323.5 3468 3199.39 1.83535 0.041586

1.3 kallisto quant

kallisto quant is an old usage of kallisto when kallisto was first developed for bulk
RNA-seq quantification. It is now recommended that users use the kallisto bus command
instead.

As such, documentation for the old kallisto quant is not within the scope of this protocol.

1.4 kallisto inspect

Inspects and gives information about an index. The index can be loaded more quickly by using
multiple threads, which can be specified by the -t option.

Example usage:
kallisto inspect -t 8 /path/to/kallisto/index.idx

Sample output:
[index] k-mer length: 31
[index] number of targets: 252,301
[index] number of k-mers: 155,644,518
[index] number of distinguishing flanking k-mers: 7,425,493
[inspect] Index version number = 12
[inspect] number of unitigs = 9411252

11



[inspect] minimizer length = 23
[inspect] max EC size = 3873
[inspect] number of ECs discarded = 0

1.5 kallisto version

Prints out the version of the kallisto software that is being used

1.6 kallisto cite

Prints out citation information

2. bustools

bustools is run on BUS files generated by the kallisto bus command. The first step in
working with BUS files is usually to sort the BUS file using bustools sort. This will
organize the BUS file, making it suitable for use with other bustools commands. In a standard
workflow, the sorted BUS file is error-corrected to a barcode on list via bustools correct,
then sorted again, then quantified into count matrices via bustools count. There are many
bustools commands, some of which are outside the scope of this protocol and some of which are
in development, therefore only the bustools commands relevant to most RNA-seq analyses are
presented here.

Many of the bustools commands can read from the standard input (stdin), by specifying - as the
input file and write to standard output (stdout) using the -p flag if available.

2.1 bustools sort

Sorts a BUS file. bustools sort (using the default options) should always be done before any
additional processing of the BUS file following generation of the BUS file from the kallisto

bus command. Many bustools commands will not work properly with an unsorted BUS file.
Increasing the number of threads and maximum memory will speed up sorting.

The default behavior is to sort by barcode, UMI, equivalence class (ec), then the flag column.

Usage: bustools sort [options] bus-files

Arguments:

-t, --threads=INT Number of threads to use (default: 1)

12



-m, --memory=STRING Maximum memory used (default: 4G)

-T, --temp=STRING Location and prefix for temporary files

(required if using -p, otherwise

defaults to output)

-o, --output=STRING Filename to output sorted BUS file into

-p, --pipe Write to standard output

--umi Sort by UMI, barcode, then ec

--count Sort by multiplicity (count), barcode, UMI, then ec

--flags Sort by flag, ec, barcode, then UMI

--flags-bc Sort by flag, barcode, UMI, then ec

--no-flags Ignore and reset the flag column while sorting.

If read numbers are present in the flag column of

the BUS file, sorting using this option renders

BUS file suitable for use in generating

count matrices.

2.2 bustools correct

Error-corrects the barcodes in a BUS file to an “on list”.

Error correction is done based on a hamming distance 1 mismatch between each BUS file
barcode sequence and each “on list” sequence. For barcode error correction, the “on list” file
simply contains a list of sequences in the “on list”.

Another operation supported is the replacement operation: Each “on list” sequence (in the first
column of the “on list” file) has a replacement sequence (in the second column of the “on list”
file) designated therefore if a BUS file barcode has an exact match to one of those “on list”
sequences, it is replaced with its replacement sequence.

Note: The input BUS file need not be sorted.

Usage: bustools correct [options] bus-files

13



Arguments:

-o, --output=STRING Filename to output barcode-corrected BUS file into

-w, --onlist=FILE File containing the “on list” sequences

-p, --pipe Write to standard output

-r, --replace Perform the replacement operation rather than the

barcode error correction operation for the file

supplied in the -w option

2.3 bustools count

Generates count matrices from BUS files that have been sorted and barcode-error-corrected.

Usage: bustools count [options] sorted-bus-files

Arguments:

-o, --output=STRING The prefix of the output files for count matrices

-g, --genemap=FILE File for mapping transcripts to genes

(when using kb ref in kb-python, this is the

t2g.txt file produced by kb ref)

-e, --ecmap=FILE File for mapping equivalence classes to transcripts

-t, --txnames=FILE File with names of transcripts

--genecounts Aggregate counts to genes only.

This option generates a gene count matrix; if this

option is not supplied, a transcript-compatibility

counts (TCC) matrix (where each equivalence class

gets a count) is generated instead.

--umi-gene Handles cases of UMI collisions. For example, a case

may be where two reads with the same UMI

sequence and the same barcode map to different

genes. With this option enabled, those reads are

considered to be two distinct molecules which were

unintentionally labeled with the same UMI, and hence

each gene gets a count.

14



--cm Counts multiplicities rather than UMIs. In other

words, no UMI collapsing is performed and each

mapped read is its own unique molecule regardless of

the UMI sequence (i.e. the UMI sequence is ignored).

-m, --multimapping Include bus records that map to multiple genes.

When --genecounts is enabled, this option causes

counts to be distributed uniformly across all the

mapped genes (for example, if a read multimaps to

two genes, each gene will get a count of 0.5).

-s, --split=FILE Split output matrix in two (plus ambiguous) based on

the list of transcript names supplied in this file.

If a UMI (after collapsing) or a read maps to

transcripts found in this file, the count is entered

into a matrix file with the extension .2.mtx; if it

maps to transcripts not in this file, the count is

entered into a separate matrix file with the

extension .mtx; if it maps to some transcripts in

this file and some transcripts not in this file, the

count is entered into a third matrix file with the

extension .ambiguous.mtx.

When quantifying nascent, ambiguous, and mature RNA

species, the nascent transcript names (which will

actually simply be the gene IDs themselves) will

be listed in the file supplied to --split so that

the .mtx file contains the mature RNA counts, the

.2.mtx file contains the nascent RNA counts, and the

.ambiguous.mtx file contains the ambiguous RNA

counts. Note that kb-python renames .mtx to

.mature.mtx and renames 2.mtx to .nascent.mtx.

Output:
Each output file is prefixed with what is supplied to the --output option. In kb count within
kb-python, the prefix is cells_x_genes. Thus, the files outputted (when generating a gene count
matrix via --genecounts) will be cells_x_genes.mtx (the matrix file), cells_x_genes.barcodes.txt
(the barcodes; i.e. the rows of the matrix), and cells_x_genes.genes.txt (the genes; i.e. the
columns of the matrix). When generating a TCC matrix, cells_x_genes.ec.txt will be generated in
lieu of cells_x_genes.genes.txt as the columns of the matrix will be equivalence classes (ECs)
rather than genes. If both sample-specific barcodes and cell barcodes are supplied (as is the case
when one uses --batch-barcodes in kallisto bus), then an additional
cells_x_genes.barcodes.prefix.txt file will be created containing the sample-specific barcodes.

15



The lines of this file correspond to the lines in the cells_x_genes.barcodes.txt (both files will
have the same number of lines). Finally, when --split is supplied, additional .mtx matrix files
will be generated (see the --split option described above).

2.4 bustools inspect

Produces a report summarizing the contents of a sorted BUS file. The report can be output either
to standard output or to a JSON file.

Usage: bustools inspect [options] sorted-bus-file
Arguments:

-o, --output=STRING Filename to output sorted BUS file into

-e, --ecmap=FILE File for mapping equivalence classes to transcripts

-w, --onlist=FILE File containing the barcodes “on list”

-p, --pipe Write to standard output

Sample report output in standard output (using -p):
Read in 3148815 BUS records
Total number of reads: 3431849

Number of distinct barcodes: 162360
Median number of reads per barcode: 1.000000
Mean number of reads per barcode: 21.137281

Number of distinct UMIs: 966593
Number of distinct barcode-UMI pairs: 3062719
Median number of UMIs per barcode: 1.000000
Mean number of UMIs per barcode: 18.863753

Estimated number of new records at 2x sequencing depth: 2719327

Number of distinct targets detected: 70492
Median number of targets per set: 2.000000
Mean number of targets per set: 3.091267

Number of reads with singleton target: 1233940

Estimated number of new targets at 2x seuqencing depth: 6168

16



Number of barcodes in agreement with on-list: 92889 (57.211752%)
Number of reads with barcode in agreement with on-list: 3281671
(95.623992%)

Sample report output in JSON format:
{

"numRecords": 3148815,
"numReads": 3431849,
"numBarcodes": 162360,
"medianReadsPerBarcode": 1.000000,
"meanReadsPerBarcode": 21.137281,
"numUMIs": 966593,
"numBarcodeUMIs": 3062719,
"medianUMIsPerBarcode": 1.000000,
"meanUMIsPerBarcode": 18.863753,
"gtRecords": 2719327,
"numTargets": 70492,
"medianTargetsPerSet": 2.000000,
"meanTargetsPerSet": 3.091267,
"numSingleton": 1233940,
"gtTargets": 6168,
"numBarcodesOnOnlist": 92889,
"percentageBarcodesOnOnlist": 0.57211752,
"numReadsOnOnlist": 3281671,
"percentageReadsOnOnlist": 0.95623992

}

Note: The numTargets, medianTargetsPerSet, meanTargetsPerSet, numSingleton, and gtTargets
values are only generated if the --ecmap option is provided. The numBarcodesOnOnlist,
percentageBarcodesOnOnlist, numReadsOnOnlist, percentageReadsOnOnlist values are only
generated if the --onlist is provided.

2.5 bustools allowlist

Generates an “on list” based on the barcodes in a sorted BUS file. This is a way of generating an
on list that the barcodes in the BUS file will be corrected to, for technologies that don’t provide
an on list.

Usage: bustools allowlist [options] sorted-bus-file

17



Arguments:

-o, --output=STRING Filename to output the “on list” into

-f, --threshold=INT A highly optional parameter specifying the

minimum number of times a barcode must appear

to be included in “on list”. If not provided, a

threshold will be determined based on the first

200 to 100200 BUS records.

2.6 bustools capture

Separates a BUS file into multiple files according to the capture criteria.

Usage: bustools capture [options] bus-files

Capture options:

-F, --flags Capture list is a list of flags to capture

-s, --transcripts Capture list is a list of transcripts to capture

-u, --umis Capture list is a list of UMI sequences to capture

-b, --barcode Capture list is a list of barcodes to capture

Arguments:

-o, --output=STRING Name of file for the captured BUS output

-x, --complement Take complement of captured set

(i.e. output all BUS records that do NOT

match an entry in the capture list)

-c, --capture=FILE File containing the “capture list”

(i.e. list of transcripts, transcripts, flags,

UMI sequences, or barcode sequences)

-e, --ecmap=FILE File for mapping equivalence classes to

transcripts (required for --transcripts)

-t, --txnames=FILE File with names of transcripts

(required for --transcripts)

-p, --pipe Write to standard output

18



Note: If you use the -b (--barcode) option and want to capture all records containing a
sample-specific barcode from running --batch-barcodes in kallisto bus, in the “capture
list” file, enter the 16-bp sample-specific barcode followed by a * character (e.g.
AAAAAAAAAAAAAACT*).

2.7 bustools text

Converts a binary BUS file into its plaintext representation. The plaintext will have the columns
(in order): barcode, UMI, equivalence class, count, flag, and pad. (Note: The last two columns
will only be outputted if the respective option is specified by the user).

Usage: bustools text [options] bus-files

Arguments:

-o, --output=STRING Filename of the output text file

-f, --flags Write the flag column

-d, --pad Write the pad column

(the “pad” column is an additional 32-bit field

in the BUS file, in case one would like to use the

BUS format to store additional data for each BUS

record; this column is typically not used.)

-p, --pipe Write to standard output

-a, --showAll Show all 32 bases in the barcodes field (e.g. if

--batch-barcodes is specified in kallisto bus, the

cell barcodes are stored in barcodes field and are

used for bustools barcode correction to an on-list;

however, the artificial sample-specific barcodes

are stored as an additional “hidden” field in the

barcodes column, immediately preceding the cell

barcodes, and may be truncated or left-padded with

A’s to fill the 32 bases. For example, if the cell

barcode is 12 bases, there will be 4 A’s followed

by the 16-bp sample-specific barcode followed by

the 12-base cell barcode. If the cell barcode is 26

bases, the last 6 bases of the sample-specific

barcode will be shown followed by the 26-base cell

barcode).

19



An example of the plaintext output of a BUS file (with the flag column):
AAAAGATCACTATGCACTATCATC GCAAAACCTT 156 2 0
AAAAGATCAGATCGCACACTTTCA TAGAGTAACC 438 3 0
AAAAGATCAGATCGCAGCTCTACT TTAGGTATAG 1808 1 0
AAAAGATCAGCACCTCCTGACTTC AATCGGCATT 4481 1 0

If one runs kallisto bus with the -n (--num) option, the read number (zero-indexed) of the
mapped reads will be stored in the flags column (i.e. the fifth column). One can view those read
numbers using bustools text to identify which reads in the input FASTQ files mapped (and
which reads were unmapped).

2.8 bustools fromtext

Converts a plaintext representation of a BUS file to a binary BUS file. The plaintext input file
should have four columns: barcode, UMI, equivalence class, and count. Optionally, a fifth
column (the flags column) can be supplied.

Usage: bustools fromtext [options] text-files

Arguments:

-o, --output=STRING Filename to write the output BUS file

-p, --pipe Write to standard output

2.9 bustools extract

Extracts the successfully mapped sequencing reads from the input FASTQ files that were
processed with kallisto bus with the -n (--num) option, which places the read number
(zero-indexed) in the flags column of the BUS file. Although BUS files with read numbers
present in the flags column should not be used for downstream quantification, they can be used
by bustools extract to extract the original sequencing reads (as well as by
bustools text to view the sequencing read number along with the barcode, UMI, and
equivalence class).

Note: The BUS file must be sorted by flag. The output BUS file directly from kallisto should
already be sorted by flag, but, if not, one can use apply bustools sort --flag on the BUS
file.

Usage: bustools extract [options] sorted-by-flag-bus-file

20



Arguments:

-o, --output=STRING Directory that the output FASTQ files will be stored in

-f, --fastq=STRING FASTQ file(s) from which to extract reads

(comma-separated list). These should be the same files

used as input to kallisto bus.

-N, --nFastqs=INT Number of FASTQ file(s) per run. For example, in 10xv3

where there are two FASTQ files (and R1 and R2 file),

--nFastqs=2 should be set.

This is especially useful to use in conjunction with bustools capture when one wishes to
extract specific reads (e.g. reads that contain a certain barcode or reads whose equivalence class
contains a certain transcript). Below, we show an example of how to extract reads from two input
files: R1.fastq.gz and R2.fastq.gz entered into a kallisto bus run with results outputted into a
directory named output_dir. We’ll extract reads that are compatible with either the transcript
ENSMUST00000171143.2 or ENSMUST00000131532.2.

Create a file called capture.txt containing the following two lines:
ENSMUST00000171143.2
ENSMUST00000131532.2

Run the following:
bustools capture -c capture.txt --transcripts \
--ecmap=output_dir/matrix.ec \
--txnames=output_dir/transcripts.txt -p \
output_dir/output.bus | bustools extract --nFastqs=2 \
--fastq=R1.fastq.gz,R2.fastq.gz -o extracted_output -

The capture results are directly piped into the extract command, and the extracted FASTQ
sequencing reads output are placed into the paths extracted_output/1.fastq.gz and
extracted_output/2.fastq.gz (for the input files R1.fastq.gz and R2.fastq.gz, respectively).

bustools extract does not work when you have sample-specific barcodes in your BUS file
because each sample’s read number (as recorded in the flags column of the BUS file) starts
from 0. To work around this, you should first use bustools capture to isolate a specific
sample and then supply that specific sample’s FASTQ file(s).

2.10 bustools umicorrect

Implements the UMI correction algorithm of UMI-tools and outputs a BUS file with the

21



corrected UMIs.

Usage: bustools umicorrect [options] sorted-bus-file

Arguments:

-o, --output=STRING Filename of the output BUS file with UMIs corrected

-p, --pipe Write to standard output

-g, --genemap=FILE File for mapping transcripts to genes

(when using kb ref in kb-python, this is the

t2g.txt file produced by kb ref)

-e, --ecmap=FILE File for mapping equivalence classes to transcripts

-t, --txnames=FILE File with names of transcripts

2.11 bustools compress

Takes in a BUS file, sorted by barcode-umi-ec (i.e. the default option for bustools sort), and
compresses it.

Usage: bustools compress [options] sorted-bus-file

Arguments:

-N, --chunk-size=INT Number of rows to compress as a single block

-o, --output=STRING Filename for the output compressed BUS file

-p, --pipe Write to standard output

2.12 bustools decompress

Takes in a compressed BUS file and inflates (i.e. decompresses) it.

Usage: bustools decompress [options] compressed-bus-file

Arguments:

-o, --output=STRING Filename for the output decompressed BUS file

-p, --pipe Write to standard output

22



2.13 bustools version

Prints out the version of the bustools software that is being used.

2.14 bustools cite

Prints out citation information.

23



Supplementary Tutorial: An example mouse multiplexed single-nucleus SPLiT-seq
preprocessing workflow.

Here we describe how to process a mouse multiplexed single-nucleus SPLiT-seq assay. The
input FASTQ files are split across multiple subpools such that two cells may have the same cell
barcode but be in different subpools. The SPLiT-seq assay uses both oligo-dT and random
hexamer primers (which are represented in the third component of the cell barcode,
corresponding to the first round of split pooling). As a result, two sets of matrices will be
produced: One with both the oligo-dT and random hexamer barcodes in the same count matrix
and one with the oligo-dT barcodes converted into the random hexamer barcodes (so that each
barcode is unique to one nucleus). This facilitates investigation of each library type separately
(should one wish to generate an “oligo-dT” count matrix and a “random hexamer” count matrix)
as well as of the two library types combined together.

1. Install kb-python.

pip install kb_python

2. Download the mouse genome and annotation files.

wget ftp.ensembl.org/pub/release-108/fasta/mus_musculus/dna/Mus_musculus.GRCm39.dna.primary_assembly.fa.gz

wget ftp.ensembl.org/pub/release-108/gtf/mus_musculus/Mus_musculus.GRCm39.108.gtf.gz

24



3. Build the index.

To illustrate index generation with GTF filtering we show below how to filter the GTF file to only
keep the relevant biotypes (the same ones that are used in the CellRanger reference). This can
improve both accuracy and efficiency. Additional methods to optimize the GTF file can also be
used such as the one proposed in Pool et al., 202339 which can greatly increase gene detection
sensitivity.

kb ref --workflow=nac -i index.idx -g t2g.txt \
-c1 cdna.txt -c2 nascent.txt -f1 cdna.fasta -f2 nascent.fasta \
--include-attribute gene_biotype:protein_coding \
--include-attribute gene_biotype:lncRNA \
--include-attribute gene_biotype:lincRNA \
--include-attribute gene_biotype:antisense \
--include-attribute gene_biotype:IG_LV_gene \
--include-attribute gene_biotype:IG_V_gene \
--include-attribute gene_biotype:IG_V_pseudogene \
--include-attribute gene_biotype:IG_D_gene \
--include-attribute gene_biotype:IG_J_gene \
--include-attribute gene_biotype:IG_J_pseudogene \
--include-attribute gene_biotype:IG_C_gene \
--include-attribute gene_biotype:IG_C_pseudogene \
--include-attribute gene_biotype:TR_V_gene \
--include-attribute gene_biotype:TR_V_pseudogene \
--include-attribute gene_biotype:TR_D_gene \
--include-attribute gene_biotype:TR_J_gene \
--include-attribute gene_biotype:TR_J_pseudogene \
--include-attribute gene_biotype:TR_C_gene \
Mus_musculus.GRCm39.dna.primary_assembly.fa.gz \
Mus_musculus.GRCm39.108.gtf.gz

4. Map the input sequencing reads to the index.

This assay has multiple FASTQ files across multiple subpools as well as two primer types. To
process this, we supply a batch.txt file containing the FASTQ files along with their designated
subpool, a barcodes.txt file containing the three barcode components (since the assay contains
three 8-bp barcodes, each separated by a linker, in the first read file), and a replace.txt file
designating how to convert the random hexamer barcodes to the oligo-dT barcodes for the
“combined” matrix. The final command to run with these files is as follows:

kb count --strand=forward -r replace.txt -w barcodes.txt \
--workflow=nac -i index.idx -g t2g.txt -c1 cdna.txt \
-c2 nascent.txt -x 1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 \
--sum=total -o output_dir --batch-barcodes batch.txt

25

https://paperpile.com/c/OA1bhn/vqwCq


5. Analyze the output.

Output (both the oligo-dT and random hexamer barcodes in the same count matrix):
● output_dir/counts_unfiltered/cells_x_genes.mature.mtx
● output_dir/counts_unfiltered/cells_x_genes.nascent.mtx
● output_dir/counts_unfiltered/cells_x_genes.ambiguous.mtx
● output_dir/counts_unfiltered/cells_x_genes.cell.mtx
● output_dir/counts_unfiltered/cells_x_genes.nucleus.mtx
● output_dir/counts_unfiltered/cells_x_genes.total.mtx
● output_dir/counts_unfiltered/cells_x_genes.barcodes.txt
● output_dir/counts_unfiltered/cells_x_genes.barcodes.prefix.txt
● output_dir/counts_unfiltered/cells_x_genes.genes.txt
● output_dir/counts_unfiltered/cells_x_genes.genes.names.txt

Output (the oligo-dT and random hexamer barcodes are combined):
● output_dir/counts_unfiltered_modified/cells_x_genes.mature.mtx
● output_dir/counts_unfiltered_modified/cells_x_genes.nascent.mtx
● output_dir/counts_unfiltered_modified/cells_x_genes.ambiguous.mtx
● output_dir/counts_unfiltered_modified/cells_x_genes.cell.mtx
● output_dir/counts_unfiltered_modified/cells_x_genes.nucleus.mtx
● output_dir/counts_unfiltered_modified/cells_x_genes.total.mtx
● output_dir/counts_unfiltered_modified/cells_x_genes.barcodes.txt
● output_dir/counts_unfiltered_modified/cells_x_genes.barcodes.prefix.txt
● output_dir/counts_unfiltered_modified/cells_x_genes.genes.txt
● output_dir/counts_unfiltered_modified/cells_x_genes.genes.names.txt

Note that the cells_x_genes.barcodes.prefix.txt will contain a unique identifier for each subpool.

26



Information about batch.txt, barcodes.txt, and replace.txt files:

batch.txt:

Example with three subpools, each sequenced on four lanes:

subpool_1 S1_lane1_R1.fastq.gz S1_lane1_R2.fastq.gz
subpool_1 S1_lane2_R1.fastq.gz S1_lane2_R2.fastq.gz
subpool_1 S1_lane3_R1.fastq.gz S1_lane3_R2.fastq.gz
subpool_1 S1_lane4_R1.fastq.gz S1_lane4_R2.fastq.gz
subpool_2 S2_lane1_R1.fastq.gz S2_lane1_R2.fastq.gz
subpool_2 S2_lane2_R1.fastq.gz S2_lane2_R2.fastq.gz
subpool_2 S2_lane3_R1.fastq.gz S2_lane3_R2.fastq.gz
subpool_2 S2_lane4_R1.fastq.gz S2_lane4_R2.fastq.gz
subpool_3 S3_lane1_R1.fastq.gz S3_lane1_R2.fastq.gz
subpool_3 S3_lane2_R1.fastq.gz S3_lane2_R2.fastq.gz
subpool_3 S3_lane3_R1.fastq.gz S3_lane3_R2.fastq.gz
subpool_3 S3_lane4_R1.fastq.gz S3_lane4_R2.fastq.gz

In this configuration, subpool_1 will have the sample-specific barcode AAAAAAAAAAAAAAAA,
subpool_2 will have the sample-specific barcode AAAAAAAAAAAAAAAC, and subpool_3 will
have the sample-specific barcode AAAAAAAAAAAAAAAG. This mapping can be found in the
output_dir/matrix.cells and output_dir/matrix.sample.barcodes files. These sample-specific
barcodes are found in cells_x_genes.barcodes.prefix.txt to identify the subpool a specific cell
barcode originated from when inspecting the count matrices.

barcodes.txt:

The cell barcodes contain three 8-bp components so we should correct each component
individually to its own “on list”. This can be done by having multiple columns in the barcodes.txt
file. Note that the first two columns have 96 barcodes and the third column has 192 barcodes.

AACGTGAT AACGTGAT CATTCCTA
AAACATCG AAACATCG CTTCATCA
ATGCCTAA ATGCCTAA CCTATATC
AGTGGTCA AGTGGTCA ACATTTAC
ACCACTGT ACCACTGT ACTTAGCT
ACATTGGC ACATTGGC CCAATTCT
CAGATCTG CAGATCTG GCCTATCT
CATCAAGT CATCAAGT ATGCTGCT
CGCTGATC CGCTGATC CATTTACA
ACAAGCTA ACAAGCTA ACTCGTAA
CTGTAGCC CTGTAGCC CCTTTGCA

27



AGTACAAG AGTACAAG ACTCCTGC
AACAACCA AACAACCA ATTTGGCA
AACCGAGA AACCGAGA TTATTCTG
AACGCTTA AACGCTTA TCATGCTC
AAGACGGA AAGACGGA CATACTTC
AAGGTACA AAGGTACA CCGTTCTA
ACACAGAA ACACAGAA GCTTCATA
ACAGCAGA ACAGCAGA CTCTGTGC
ACCTCCAA ACCTCCAA CCCTTATA
ACGCTCGA ACGCTCGA ACTGCTCT
ACGTATCA ACGTATCA CTCTAATC
ACTATGCA ACTATGCA ACCCTTGC
AGAGTCAA AGAGTCAA ATCTTAGG
AGATCGCA AGATCGCA CATGTCTC
AGCAGGAA AGCAGGAA TCATTGCA
AGTCACTA AGTCACTA ACACCTTT
ATCCTGTA ATCCTGTA AATTTCTC
ATTGAGGA ATTGAGGA ATTCATGG
CAACCACA CAACCACA ACTTTACC
GACTAGTA GACTAGTA CTTCTAAC
CAATGGAA CAATGGAA CTATTTCA
CACTTCGA CACTTCGA TCTCATGC
CAGCGTTA CAGCGTTA ATCCTTAC
CATACCAA CATACCAA TAAATATC
CCAGTTCA CCAGTTCA TTACCTGC
CCGAAGTA CCGAAGTA CACTTTCA
CCGTGAGA CCGTGAGA CACCTTTA
CCTCCTGA CCTCCTGA CTGACTTC
CGAACTTA CGAACTTA CATTTGGA
CGACTGGA CGACTGGA GCTCTACT
CGCATACA CGCATACA GTTACGTA
CTCAATGA CTCAATGA CCTGTTGC
CTGAGCCA CTGAGCCA CTATCATC
CTGGCATA CTGGCATA GCTATCAT
GAATCTGA GAATCTGA ACATTCAT
CAAGACTA CAAGACTA TTCGCTAC
GAGCTGAA GAGCTGAA CATTCTAC
GATAGACA GATAGACA CACTTATC
GCCACATA GCCACATA ATAAGCTC
GCGAGTAA GCGAGTAA TCATCCTG
GCTAACGA GCTAACGA CCTGGTAT
GCTCGGTA GCTCGGTA TGGTATAC
GGAGAACA GGAGAACA TTGGGAGA
GGTGCGAA GGTGCGAA ACTTCATC

28



GTACGCAA GTACGCAA TCTCTAGC
GTCGTAGA GTCGTAGA ATGCCCTT
GTCTGTCA GTCTGTCA CCCAATTT
GTGTTCTA GTGTTCTA ACTATATA
TAGGATGA TAGGATGA CTCTATAC
TATCAGCA TATCAGCA CTGTCTCA
TCCGTCTA TCCGTCTA GACCTTTC
TCTTCACA TCTTCACA GATTTGGC
TGAAGAGA TGAAGAGA CGTCTAGG
TGGAACAA TGGAACAA TACTCGAA
TGGCTTCA TGGCTTCA CAGCCTTT
TGGTGGTA TGGTGGTA CCTCATTA
TTCACGCA TTCACGCA CTTATACC
AACTCACC AACTCACC TCTATTAC
AAGAGATC AAGAGATC CCTGCATT
AAGGACAC AAGGACAC CAATCCTT
AATCCGTC AATCCGTC TTGTCTTA
AATGTTGC AATGTTGC TCACTTTA
ACACGACC ACACGACC TGCTTGGG
ACAGATTC ACAGATTC CGCTCATT
AGATGTAC AGATGTAC GCCTCTAT
AGCACCTC AGCACCTC GAGCACAA
AGCCATGC AGCCATGC CTCTTAAC
AGGCTAAC AGGCTAAC TCTAGGCT
ATAGCGAC ATAGCGAC AATTCTGC
ATCATTCC ATCATTCC CATTCTCA
ATTGGCTC ATTGGCTC ACTTGCCT
CAAGGAGC CAAGGAGC ATCATTGC
CACCTTAC CACCTTAC GTTCAACA
CCATCCTC CCATCCTC CCATTTGC
CCGACAAC CCGACAAC GACTTTGC
CCTAATCC CCTAATCC ATTGGCTC
CCTCTATC CCTCTATC GTGCTAGC
CGACACAC CGACACAC CTTTCAAC
CGGATTGC CGGATTGC ACTATTGC
CTAAGGTC CTAAGGTC ACTGGCTT
GAACAGGC GAACAGGC ATTAGGCT
GACAGTGC GACAGTGC GCCTTTCA
GAGTTAGC GAGTTAGC ATTCTAGG
GATGAATC GATGAATC CCTTACAT
GCCAAGAC GCCAAGAC ACATTTGG
- - CATCATCC
- - CTGCTTTG
- - CTAAGGGA

29



- - GCTTATAG
- - TCTGATCC
- - TCTCTTGG
- - CAATTTCC
- - AGTCTCTT
- - TGCTGCTC
- - GTATTTCC
- - TTCCTGTG
- - GCTGCTTC
- - TATGTGTC
- - CAATTCTC
- - TGGTCTCC
- - GCTCTTTA
- - GCTGCATG
- - ACTCATTT
- - AGTCTTGG
- - GGTTCTTC
- - TCATGTTG
- - ATTTTGCC
- - CTTCTGTA
- - GTCCATCT
- - GCTATCTC
- - TAGTTTCC
- - TCCATTAT
- - AGGATTAA
- - AATCTTTC
- - GTCATATG
- - GTGCTTCC
- - ATGTGTTG
- - CCATCTTG
- - TACTGTCT
- - TTCATCGC
- - ACTGTGGG
- - TCTGTGCC
- - TCAATCTC
- - GTCCTCTG
- - TTACATTC
- - ATTCTGTC
- - TGTGTATG
- - TCCATTTG
- - TTAGCTTC
- - GTGCTTGA
- - GTTTGTGA
- - GAAATTAG

30



- - GCAAATTC
- - GAGGTTGA
- - CCTGTCTG
- - GTGGGTTC
- - TTTGCATC
- - AGGTAATA
- - GTGCCTTC
- - ATGTTTCC
- - CTTAATTC
- - TCTGGCTC
- - CATCATTT
- - GTTGTCTC
- - ATCTTCTG
- - TGTTTGCC
- - TTCTGTCA
- - ACGGACTC
- - TTTGGTCA
- - TATCCGGG
- - TGTCATTC
- - ATTCTCTG
- - TGGCTTCC
- - TTGTTGCC
- - GTCATCTC
- - TTGCTCAT
- - CTGTCTGC
- - TATATTCC
- - ATATTGGC
- - GTGTCCTC
- - ATCTTCAT
- - CGTGGTTG
- - TTGCATCC
- - TCTTAATC
- - TGCATTTC
- - GATGTTTC
- - ATCTTGTC
- - TCATATTC
- - TGGCCTCT
- - CGTTGTCT
- - TCTTGTCA
- - TATTCCTG
- - TCCATGTC
- - TTGTCATC
- - ATTTCCTG
- - GTGTCTCC

31



- - GTGTGTGT
- - TATGCTTC
- - ATGGTGTT
- - GAATAATG
- - CCTCTGTG

replace.txt:

This file contains the instructions on how to produce the “modified” count matrix in
output_dir/counts_unfiltered_modified/ – the output directory which contains the combined
oligo-dT and random hexamer barcodes wherein the random hexamer barcodes (first column of
the file) are converted to their oligo-dT counterparts (second column of the file). These
barcodes, being the third component of the barcode, occur at the end of the final barcode string.
The asterisk (*) at the beginning of the replacement string tells bustools to convert the
nucleotides at the end of the barcode sequence. As an example, the barcode sequence
AACAACCATGAAGAGACATCATCC will be converted into AACAACCATGAAGAGACATTCCTA
in the final output in the output_dir/counts_unfiltered_modified/ directory.

CATCATCC *CATTCCTA
CTGCTTTG *CTTCATCA
CTAAGGGA *CCTATATC
GCTTATAG *ACATTTAC
TCTGATCC *ACTTAGCT
TCTCTTGG *CCAATTCT
CAATTTCC *GCCTATCT
AGTCTCTT *ATGCTGCT
TGCTGCTC *CATTTACA
GTATTTCC *ACTCGTAA
TTCCTGTG *CCTTTGCA
GCTGCTTC *ACTCCTGC
TATGTGTC *ATTTGGCA
CAATTCTC *TTATTCTG
TGGTCTCC *TCATGCTC
GCTCTTTA *CATACTTC
GCTGCATG *CCGTTCTA
ACTCATTT *GCTTCATA
AGTCTTGG *CTCTGTGC
GGTTCTTC *CCCTTATA
TCATGTTG *ACTGCTCT
ATTTTGCC *CTCTAATC
CTTCTGTA *ACCCTTGC
GTCCATCT *ATCTTAGG

32



GCTATCTC *CATGTCTC
TAGTTTCC *TCATTGCA
TCCATTAT *ACACCTTT
AGGATTAA *AATTTCTC
AATCTTTC *ATTCATGG
GTCATATG *ACTTTACC
GTGCTTCC *CTTCTAAC
ATGTGTTG *CTATTTCA
CCATCTTG *TCTCATGC
TACTGTCT *ATCCTTAC
TTCATCGC *TAAATATC
ACTGTGGG *TTACCTGC
TCTGTGCC *CACTTTCA
TCAATCTC *CACCTTTA
GTCCTCTG *CTGACTTC
TTACATTC *CATTTGGA
ATTCTGTC *GCTCTACT
TGTGTATG *GTTACGTA
TCCATTTG *CCTGTTGC
TTAGCTTC *CTATCATC
GTGCTTGA *GCTATCAT
GTTTGTGA *ACATTCAT
GAAATTAG *TTCGCTAC
GCAAATTC *CATTCTAC
GAGGTTGA *CACTTATC
CCTGTCTG *ATAAGCTC
GTGGGTTC *TCATCCTG
TTTGCATC *CCTGGTAT
AGGTAATA *TGGTATAC
GTGCCTTC *TTGGGAGA
ATGTTTCC *ACTTCATC
CTTAATTC *TCTCTAGC
TCTGGCTC *ATGCCCTT
CATCATTT *CCCAATTT
GTTGTCTC *ACTATATA
ATCTTCTG *CTCTATAC
TGTTTGCC *CTGTCTCA
TTCTGTCA *GACCTTTC
ACGGACTC *GATTTGGC
TTTGGTCA *CGTCTAGG
TATCCGGG *TACTCGAA
TGTCATTC *CAGCCTTT
ATTCTCTG *CCTCATTA
TGGCTTCC *CTTATACC

33



TTGTTGCC *TCTATTAC
GTCATCTC *CCTGCATT
TTGCTCAT *CAATCCTT
CTGTCTGC *TTGTCTTA
TATATTCC *TCACTTTA
ATATTGGC *TGCTTGGG
GTGTCCTC *CGCTCATT
ATCTTCAT *GCCTCTAT
CGTGGTTG *GAGCACAA
TTGCATCC *CTCTTAAC
TCTTAATC *TCTAGGCT
TGCATTTC *AATTCTGC
GATGTTTC *CATTCTCA
ATCTTGTC *ACTTGCCT
TCATATTC *ATCATTGC
TGGCCTCT *GTTCAACA
CGTTGTCT *CCATTTGC
TCTTGTCA *GACTTTGC
TATTCCTG *ATTGGCTC
TCCATGTC *GTGCTAGC
TTGTCATC *CTTTCAAC
ATTTCCTG *ACTATTGC
GTGTCTCC *ACTGGCTT
GTGTGTGT *ATTAGGCT
TATGCTTC *GCCTTTCA
ATGGTGTT *ATTCTAGG
GAATAATG *CCTTACAT
CCTCTGTG *ACATTTGG

The commands run by kb count in this example:

mkdir -p output_dir/tmp

mkdir -p output_dir

kallisto bus -i index.idx -o output_dir -x
1,10,18,1,48,56,1,78,86:1,0,10:0,0,0 -t 8 --fr-stranded
--batch-barcodes --batch batch.txt

bustools sort -o output_dir/tmp/output.s.bus -T output_dir/tmp -t 8
-m 4G output_dir/output.bus

34



bustools inspect -o output_dir/inspect.json -w barcodes.txt
output_dir/tmp/output.s.bus

bustools correct -o output_dir/tmp/output.s.c.bus -w barcodes.txt
output_dir/tmp/output.s.bus

bustools sort -o output_dir/output.unfiltered.bus -T output_dir/tmp
-t 8 -m 4G output_dir/tmp/output.s.c.bus

mkdir -p output_dir/counts_unfiltered

bustools count -o output_dir/counts_unfiltered/cells_x_genes -g
t2g.txt -e output_dir/matrix.ec -t output_dir/transcripts.txt -s
nascent.txt --genecounts --umi-gene
output_dir/output.unfiltered.bus

mv output_dir/counts_unfiltered/cells_x_genes.mtx
output_dir/counts_unfiltered/cells_x_genes.mature.mtx

mv output_dir/counts_unfiltered/cells_x_genes.2.mtx
output_dir/counts_unfiltered/cells_x_genes.nascent.mtx

bustools correct -o output_dir/tmp/output.unfiltered.c.bus -w
replace.txt output_dir/output.unfiltered.bus --replace
bustools sort -o output_dir/output_modified.unfiltered.bus -T
output_dir/tmp -t 8 -m 4G output_dir/tmp/output.unfiltered.c.bus

mkdir -p output_dir/counts_unfiltered_modified

bustools count -o
output_dir/counts_unfiltered_modified/cells_x_genes -g t2g.txt -e
output_dir/matrix.ec -t output_dir/transcripts.txt -s nascent.txt
--genecounts --umi-gene output_dir/output_modified.unfiltered.bus

mv output_dir/counts_unfiltered_modified/cells_x_genes.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.mature.mtx

mv output_dir/counts_unfiltered_modified/cells_x_genes.2.mtx
output_dir/counts_unfiltered_modified/cells_x_genes.nascent.mtx

rm -rf output_dir/tmp

35


