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Supplementary Figure S1. Transfer of A42a bulge into Mm05 and Dh02 tRNAPY' sequences. (A) tRNAPY
variant cloverleaf structures. (B) In vivo fluorescent readthrough assays show the effect of the A-bulge on
translation with MaPyIRS. Data shown is the average of at least three biological replicates with the error
bars representing the standard deviation. Percent activity is calculated with Ma tRNAPyI at 100%. Statistical
analysis performed with a paired t-test and significance shown as stars.
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Supplementary Figure S2. Cryo-EM data processing of Ma tRNAPY' in complex with the ribosome. (A)
Representative micrograph collected with a Titan Krios transmission electron microscope and corresponding
power spectrum. (B) Representative 2D class averages from reference-free 2D classification. (C) Particle
classification and structural refinement procedures used. (D) Local resolution estimation of the cryo-EM
density map of the ribosome. The density map is displayed in surface representation and colored according
to the local resolution (see color bar). (E) mA tRNAPY in the A site of the ribosome. (F) Local resolution
estimation of the cryo-EM density map of mA tRNAPY in the A site of the ribosome. The density map is
displayed in surface representation and colored according to the local resolution (see color bar). (G) The
mask used for resolution estimation (left) including all components of the reconstruction. FSC curve for
cryo-EM reconstruction (right).
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Supplementary Figure S3. Cryo-EM data processing of Mm tRNAPY in complex with the ribosome. (A)
Representative micrograph collected with a Titan Krios transmission electron microscope and
corresponding power spectrum. (B) Representative 2D class averages from reference-free 2D
classification. (C) Particle classification and structural refinement procedures used. (D) Local resolution
estimation of the cryo-EM density map of the ribosome. The density map is displayed in surface
representation and colored according to the local resolution (see color bar). (E) mM tRNAP in the A site of
the ribosome. (F) Local resolution estimation of the cryo-EM density map of mM tRNAPY' in the A site of the
ribosome. The density map is displayed in surface representation and colored according to the local
resolution (see color bar). (G) The mask used for resolution estimation (left) including all components of the
reconstruction. FSC curve for cryo-EM reconstruction (right).
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Supplementary Figure S4. Ma tRNAPY variant characterization. (A) Native poly-acrylamide gel of all
tRNAPY variants. Mm and Dh01 have the largest population of higher molecular weight species. (B)
Averaged simulations of the Ma tRNAPY variants show decreased rigidity around the mutation area. Root

mean squared fluctuation (RMSF) values were calculated for each nucleotide and colored accordingly (see
color bar).
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Supplementary Figure S5. Distance distribution of the simulated tRNAPY variants from nucleotide 6-11

Distance (A)

(distance 1). tRNAPY variants that are well-recognized by MaPyIRS have a narrow distribution centered

around 10.5 A.
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Supplementary Figure S6. Distance distribution of the simulated tRNAPY variants from nucleotide 4-10
(distance 2). tRNAPY variants that are well-recognized by MaPyIRS have a narrow distribution centered
around 22 A.
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Supplementary Figure S7. Distance distribution of the simulated tRNAPY' variants from nucleotide 26a-69
(distance 3). tRNAPY variants that are well-recognized by MaPyIRS have a narrow distribution centered
around 27 A.



