Discovery of novel and potent CDK8 inhibitors for the treatment of acute myeloid leukemia

Zhuoying Chen^{§,‡}, Quan Wang^{§,‡}, Yao Yao Yan[‡], Dalong Jin[‡], Yumeng Wang[‡], Xing Xing Zhang^{*,†}, Xin Hua Liu^{*,‡}

[‡] School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China [†]School of Biology, Food and Environment, Hefei University, Hefei, 230601, China

Contents

1.	Experimental section		1
----	-----------------------------	--	---

1. Experimental section

1.1 General methods for chemistry

Reactions were monitored by thin layer chromatography (TLC) on pre-coated silica GF_{254} plates. ¹H and ¹³C NMR spectra are obtained by Agilent DD2 500 MHz (¹H, 500 MHz; ¹³C, 126 MHz) spectrometer with DMSO-*d*₆ as the solvents and TMS as the internal standard. High-resolution mass spectrometry (HRMS) was recorded on an Agilent Technologies LC-TOF instrument.

General procedure for synthesis of compound 1

Compound **a1** (165 mg, 1.0 mmol), compound **b1** (238 mg, 1.2 mmol), K₂CO₃ (552 mg, 4.00 mmol), Pd(dppf)Cl₂ (72 mg, 0.1 mmol), 1,4-dioxne (15 mL) and H₂O (4 mL) were added into flask, then stirred at 80 °C for 20 h under nitrogen. After the reaction was completed, it was added ethyl acetate and H₂O, then the mixture was extracted with ethyl acetate (60 mL×2), washed with saturated brine solution, dried over anhydrous Na₂SO₄, and concentrated to give the yellow solid, then purified by chromatography (gradient elution of PE/EA 10/90, v/v) to obtain compound **1**.

3-(5H-pyrrolo[2,3-b]pyrazin-2-yl)benzamide (1)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.14 (s, 1H), 8.95 (s, 1H), 8.66 (s, 1H), 8.30 (d, *J* = 6.7 Hz, 1H), 8.17 (s, 1H), 7.95 (s, 2H), 7.62 (t, *J* = 7.0 Hz, 1H), 7.47 (s, 1H), 6.74 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.31, 145.38, 141.11, 139.01, 138.43, 135.40, 135.21, 132.61, 129.59, 129.30, 127.95, 125.98, 101.16. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₃H₁₀N₄O:239.0927; found:239.0927.

General procedure for synthesis of compounds 2-11

Compounds **2-11** were obtained according to the similar procedures with compound **1**.

3-(1H-pyrazolo[3,4-b]pyridin-5-yl)benzamide (2)

¹H NMR (400 MHz, DMSO-*d*₆) δ 13.76 (s, 1H), 8.92 (d, *J* = 2.2 Hz, 1H), 8.56 (d, *J* = 2.1 Hz, 1H), 8.28 – 8.20 (m, 2H), 8.13 (s, 1H), 7.91 (td, *J* = 8.2, 1.5 Hz, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.47 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.15, 151.80, 148.61, 138.42, 135.54, 134.16, 130.24, 129.60, 129.23, 128.29, 127.07, 126.45, 115.03. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₃H₁₀N₄O:239.0927; found:239.0929.

3-(6-aminopyridin-3-yl)benzamide (3)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.33 (d, *J* = 2.2 Hz, 1H), 8.09 (s, 1H), 8.07 (s, 1H), 7.77 (dd, *J* = 8.6, 2.5 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.44 (s, 1H), 6.55 (d, *J* = 8.6 Hz, 1H), 6.15 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.39, 159.86, 146.42, 138.55, 135.91, 135.31, 129.34, 128.45, 125.91, 124.65, 123.70, 108.42. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₂H₁₁N₃O:214.0975; found:214.0974.

3-(6-amino-5-chloropyridin-3-yl)benzamide (4)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.36 (d, *J* = 2.1 Hz, 1H), 8.11 (s, 2H), 8.02 (d, *J* = 2.2 Hz, 1H), 7.80 (ddd, *J* = 6.6, 4.1, 1.6 Hz, 2H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.46 (s, 1H), 6.51 (s, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.20, 155.53, 144.90, 136.99, 135.35, 135.10, 129.45, 128.75, 126.58, 125.32, 124.87, 114.08. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₂H₁₀N₃OC1:239.0927; found:248.0583.

3-(isoquinolin-4-yl)benzamide (5)

¹H NMR (500 MHz, DMSO-*d*6) δ 9.39 (s, 1H), 8.51 (s, 1H), 8.25 (d, J = 8.1 Hz, 1H), 8.12 (s, 1H), 8.08 (s, 1H), 8.05 (d, J = 7.6 Hz, 1H), 7.83 (q, J = 8.4 Hz, 2H), 7.76 (t, J = 7.1 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.49 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 168.05, 152.75, 143.09, 136.87, 135.25, 133.58, 133.12, 132.41, 131.74, 129.31, 129.25, 128.62, 128.47, 128.07, 127.70, 124.40. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₂N₂O:249.1022; found:249.1022.

3-(1-aminoisoquinolin-4-yl)benzamide (6)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.33 (d, *J* = 6.0 Hz, 1H), 8.10 (s, 1H), 7.96 (s, 1H), 7.92 (d, *J* = 6.5 Hz, 1H), 7.81 (s, 1H), 7.71 – 7.62 (m, 2H), 7.59 (dd, *J* = 9.5, 4.2 Hz, 2H), 7.54 (ddd, *J* = 8.1, 5.8, 2.5 Hz, 1H), 7.41 (s, 1H), 6.97 (s, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.38, 157.69, 142.31, 138.40, 135.23, 135.07, 133.09, 130.78, 129.25, 128.97, 126.49, 125.98, 124.94, 124.23, 121.97, 117.10. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₆H₁₃N₃O:264.1131; found:264.1131.

3-(1H-indol-5-yl)benzamide (7)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.21 (s, 1H), 8.21 (s, 1H), 8.15 (s, 1H), 7.91 (s, 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz, 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz), 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz), 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz), 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz), 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz), 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz), 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz), 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz), 1H), 7.87 – 7.75 (m, 2H), 7.53 (d, *J* = 7.6 Hz), 1H), 7.50 (s, 1H), 7.48 (d, *J* = 1.4 Hz), 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s, 1H)), 7.50 (s, 1H), 7.50 (s, 1H)), 7.50 (s,

1H), 7.46 (s, 1H), 7.41 (t, J = 2.7 Hz, 1H), 6.52 (s, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 184.70, 168.55, 142.30, 136.08, 135.25, 131.16, 129.82, 129.21, 128.73, 126.67, 126.11, 125.83, 120.88, 118.83, 112.32, 102.05. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₁N₂O:237.1022; found:237.1019.

3-(1-methyl-1H-indol-5-yl)benzamide (8)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.21 (d, *J* = 1.5 Hz, 1H), 8.11 (s, 1H), 7.91 (s, 1H), 7.82 (td, *J* = 7.8, 1.5 Hz, 2H), 7.52 (dd, *J* = 13.8, 4.3 Hz, 3H), 7.39 (s, 1H), 7.37 (d, *J* = 3.0 Hz, 1H), 6.50 (d, *J* = 3.0 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.53, 142.11, 136.63, 135.31, 131.25, 130.94, 129.83, 129.22, 129.09, 126.11, 125.91, 120.90, 119.09, 110.62, 101.33, 33.04. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₆H₁₄N₂O:251.1179; found:251.1182.

3-(benzofuran-5-yl)benzamide (9)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.22 (s, 1H), 8.13 (s, 1H), 8.06 (d, J = 2.1 Hz, 1H), 8.01 (d, J = 1.4 Hz, 1H), 7.86 (dd, J = 14.1, 7.8 Hz, 2H), 7.69 (dt, J = 8.6, 5.2 Hz, 2H), 7.56 (t, J = 7.7 Hz, 1H), 7.44 (s, 1H), 7.06 – 7.00 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.34, 154.57, 147.25, 141.02, 135.41, 135.39, 130.13, 129.37, 128.42, 126.66, 126.44, 124.13, 120.07, 112.10, 107.48. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₅H₁₁NO₂:238.0863; found:238.0861.

3-(benzo[b]thiophen-5-yl)benzamide (10)

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.27 (d, *J* = 4.7 Hz, 2H), 8.19 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 1.7 Hz, 1H), 7.89 (d, *J* = 1.7 Hz, 1H), 7.83 (d, *J* = 5.4 Hz, 1H), 7.76 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 5.4 Hz, 1H), 7.45 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.31, 140.70, 140.69, 139.05, 136.49, 135.47, 130.07, 129.44, 128.79, 126.94, 126.40, 124.73, 123.87, 123.57, 122.23. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₅H₁₁NOS:254.0634; found: 254.0639. *3-(3-chloro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide* (**11**)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.24 (s, 1H), 8.73 (d, *J* = 2.1 Hz, 1H), 8.55 (d, *J* = 2.1 Hz, 1H), 8.23 (s, 1H), 8.15 (s, 1H), 7.93 (t, *J* = 7.3 Hz, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.49 (s, 1H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 169.37, 168.04, 153.38, 149.72, 136.46, 135.62, 132.02, 131.90, 129.74, 129.65, 127.80, 125.89, 124.15, 74.50.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀N₃OCl:272.0585; found:272.0580. General procedure for synthesis of compounds **12-40**

Compound **a2** (3 g, 15.23 mmol) was dissolved in THF (60 mL), then NaOH (1.22 g, 30.46 mmol) and H₂O (6 mL) were added into the solution. Then, the mixture was stirred at 30°C for 10 min. *p*-toluenesulfonyl chloride under was added under ice bath. Then, the mixture was stirred at 30 °C for 6 h. The reaction was concentrated to obtain yellow oil, then EA was added and the mixture was washed with saturated brine solution, dried over anhydrous Na₂SO₄, then purified by column chromatography (gradient elution of PE/EA 85/15, v/v) to obtain compound **M1**.

Compound M2 was obtained according to the similar procedures with compound 1. Compound M2 (2 g, 5.71 mmol) was dissolved in DMF (60 mL), then NIS (1.67 g, 7.41 mmol) was added into the solution under ice bath. Then, the mixture was stirred at 65 °C for 12 h. After the reaction was completed, the reaction was quenched with aqueous sodium thiosulfate solution, then extracted with EA (200 mL×2). The combined organic layer was washed with saturated brine solution, dried over anhydrous Na₂SO₄, then purified by column chromatography (gradient elution of PE/ EA 30/70, v/v) to obtain compound M3.

Compounds M4-M32 were obtained according to the similar procedures with compound 1. Compound M4 (200 mg), NaOH (60 mg) and H₂O (2 mL) and CH₃CH₂OH (20 mL) were added into flask. Then, the mixture was stirred at 75 °C for 2 h. The reaction was concentrated, then EA was added and the mixture was washed with saturated brine solution, dried over anhydrous Na₂SO₄, then purified by column chromatography (gradient elution of PE/EA 10/90, v/v) to obtain compound 12.

3-(3-(furan-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (12)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.91 (s, 1H), 8.64 (d, *J* = 2.0 Hz, 1H), 8.47 (d, *J* = 1.9 Hz, 1H), 8.38 (s, 1H), 8.26 (s, 1H), 8.16 (s, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.75 (t, *J* = 1.6 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.49 (s, 1H), 7.02 (d, *J* = 1.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.35, 148.97, 143.80, 142.53, 139.33, 138.25, 135.42, 130.44, 129.42, 128.45, 126.69, 126.37 (2C), 124.80, 119.74, 117.62, 109.81, 107.05. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₈H₁₃N₃O₂:239.0927; Compounds **13-40** were obtained according to the similar procedures with compound **12**.

found:304.1084. *3-(3-(thiophen-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide* (**13**) ¹H NMR (400 MHz, DMSO-*d6*) δ 11.98 (s, 1H), 8.62 (d, *J* = 22.3 Hz, 2H), 8.22 (d, *J* = 36.9 Hz, 2H), 7.97 (t, *J* = 10.3 Hz, 3H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.65 (s, 2H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.50 (s, 1H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 168.31, 148.98, 142.59, 139.41, 135.70, 135.42, 130.43, 129.44, 128.66, 127.26, 126.71, 126.61, 126.38, 126.27, 125.24, 118.71, 117.69, 111.16. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₈H₁₃N₃OS: 320.0852; found:320.0853.

3-(3-(thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (14)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.10 (s, 1H), 8.68 (d, J = 1.7 Hz, 1H), 8.54 (d, J = 1.5 Hz, 1H), 8.27 (s, 1H), 8.17 (s, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.71 (s, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.48 (s, 1H), 6.88 (d, J = 3.1 Hz, 1H), 6.61 (d, J = 1.7 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.32, 150.02, 148.69, 143.04, 141.25, 139.24, 135.50, 130.37, 129.49, 128.92, 126.80, 126.40, 126.36, 123.94, 116.52, 112.00, 106.89, 104.14. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₃N₃OS:320.0852; found: 320.0855.

3-(3-(1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (15)

¹H NMR (500 MHz, DMSO-*d*₆) δ 13.52 (s, 1H), 8.63 (d, *J* = 2.1 Hz, 1H), 8.45 (d, *J* = 8.4 Hz, 1H), 8.29 (d, *J* = 2.0 Hz, 1H), 8.12 (s, 1H), 8.09 (s, 1H), 8.06 – 7.95 (m, 1H), 7.82 (d, *J* = 7.7 Hz, 2H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.41 (s, 3H).¹³C NMR (126 MHz, DMSO-*d*₆) δ 189.51, 168.24, 158.82, 151.64, 141.24, 138.65, 137.65, 135.41, 133.27, 129.45, 129.03, 126.50, 125.08, 123.81, 122.29, 122.12, 114.10. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₇H₁₃N₅O:304.1193; found: 304.1169

3-(3-(1-methyl-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (16)

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.83 (s, 1H), 8.62 (d, *J* = 1.9 Hz, 1H), 8.45 (d, *J* = 1.7 Hz, 1H), 8.27 (d, *J* = 3.4 Hz, 2H), 8.20 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.92 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 2.3 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.51 (s, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.35, 148.81, 142.40, 139.52, 136.65, 135.41, 130.41, 129.41, 128.29, 127.56, 126.63, 126.40, 125.99,

123.26, 117.85, 115.62, 107.36, 60.23. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₅N₅O:318.1349; found:318.1346.

3-(3-(1-(1-ethoxyethyl)-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (17)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.82 (s, 1H), 8.62 (d, *J* = 1.6 Hz, 1H), 8.49 (s, 1H), 8.44 (s, 1H), 8.26 (s, 1H), 8.14 (s, 1H), 8.02 (s, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.83 (d, *J* = 2.2 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.45 (s, 1H), 5.60 (t, *J* = 6.0 Hz, 1H), 3.47 (dq, *J* = 14.1, 7.0 Hz, 1H), 3.28 (dq, *J* = 14.2, 7.1 Hz, 1H), 1.68 (d, *J* = 6.0 Hz, 3H), 1.07 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.35, 148.85, 142.48, 139.55, 136.98, 135.43, 130.48, 129.39, 128.39, 126.62, 126.48, 126.10, 124.52, 123.66, 117.77, 116.24, 107.19, 86.75, 63.42, 21.70, 15.25. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₂₁N₅O₂:376.1768; found: 376.1771.

3-(3-(1-(difluoromethyl)-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (18)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.96 (s, 1H), 8.81 (s, 1H), 8.65 (d, *J* = 1.5 Hz, 1H), 8.54 (s, 1H), 8.35 (s, 1H), 8.27 (s, 1H), 8.13 (s,1H), 8.00-7.97 (m, 2.25H), 7.89 (d, *J* = 7.7 Hz, 14H), 7.84 (d, *J* = 10.4 Hz, 0.5H), 7.73 (s, 0.25H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.46 (s,1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.35, 148.86, 142.74, 140.90, 139.41, 135.43, 130.53, 129.37, 128.70, 126.68, 126.52, 126.12, 124.85, 124.43, 118.51, 117.61, 113.13, 111.16, 109.20, 105.63. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₈H₁₃N₅OF₂:354.1161; found: 354.1136.

3-(3-phenyl-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (19)

¹H NMR (400 MHz, DMSO-*d*6) δ 12.08 (s, 1H), 8.65 (d, J = 1.5 Hz, 1H), 8.53 (s, 1H), 8.26 (s, 1H), 8.18 (s, 1H), 7.95 (d, J = 6.4 Hz, 2H), 7.89 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.7 Hz, 1H), 7.47 (t, J = 7.5 Hz, 3H), 7.28 (t, J = 7.3 Hz, 1H).¹³C NMR (101 MHz, DMSO-*d*6) δ 168.29, 149.24, 142.61, 139.49, 135.42, 135.37, 130.39, 129.48, 129.42 (2C), 128.75, 126.95 (2C), 126.72, 126.38, 126.25, 126.09, 125.24, 117.78, 115.26. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₅N₃O:314.1288; found:314.1286.

3-(3-(2-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (20)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.19 (s, 1H), 8.68 (d, *J* = 1.8 Hz, 1H), 8.35 (s, 1H), 8.23 (s, 1H), 8.14 (s, 1H), 7.87 (ddd, *J* = 24.7, 14.3, 7.5 Hz, 4H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.41 (d, *J* = 39.8 Hz, 2H), 7.34 (dd, *J* = 16.0, 8.7 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.27, 160.49, 158.54, 148.77, 142.76, 139.41, 135.47, 130.59, 130.55, 130.32, 129.50, 128.78, 128.50, 128.33, 128.27, 127.21, 127.17, 126.73, 126.45, 126.42, 126.36, 125.99, 125.39, 125.37, 122.70, 122.58, 118.30, 116.58, 116.40, 108.94. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₁₄N₃OF:332.1194; found: 332.1196. *3-(3-(2-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide* (**21**)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.17 (s, 3H), 8.66 (d, *J* = 1.8 Hz, 3H), 8.52 (d, *J* = 1.8 Hz, 3H), 8.26 (s, 3H), 8.15 (s, 4H), 8.07 (s, 2H), 7.95 (d, *J* = 7.7 Hz, 3H), 7.89 (d, *J* = 7.7 Hz, 3H), 7.86 – 7.79 (m, 6H), 7.59 (t, *J* = 7.7 Hz, 3H), 7.49 (dd, *J* = 16.2, 8.1 Hz, 6H), 7.32 (d, *J* = 7.8 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.25, 149.21, 142.84, 139.41, 137.64, 135.42, 134.16, 131.23, 130.47, 129.48, 129.02, 126.76, 126.46, 126.27(2C), 126.08, 125.98, 125.48, 117.55, 113.79. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀H₁₄N₃OCl:348.0898; found: 348.0898.

3-(3-(2-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (22)

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.13 (s, 1H), 8.67 (d, *J* = 2.4 Hz, 1H), 8.08 (s, 1H), 8.02 (s, 1H), 7.84 (dd, *J* = 16.4, 5.0 Hz, 4H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.48 – 7.38 (m, 2H), 7.38 – 7.32 (m, 1H), 6.99 (dd, *J* = 12.8, 7.8 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 198.13, 168.16, 158.88, 155.36, 152.85, 141.07, 137.61, 135.53, 132.53, 129.85, 129.54, 128.67, 127.10, 126.42, 124.98, 123.69, 119.69, 116.80, 112.68. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₁₅N₃O₂:330.1237; found: 330.3334.

3-(3-(o-tolyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (23)

¹H NMR (500 MHz, DMSO- d_6) δ 11.99 (s, 1H), 8.65 (d, J = 1.9 Hz, 1H), 8.18 (s, 1H), 8.12 (s, 1H), 8.08 (d, J = 1.6 Hz, 1H), 7.92 – 7.82 (m, 2H), 7.65 (d, J = 2.1 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.41 (s, 1H), 7.36 (d, J = 7.0 Hz, 1H), 7.32 – 7.21 (m, 2H), 2.35 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 168.28, 148.63, 142.45, 139.44, 136.34, 135.46, 134.17, 131.01, 130.75, 130.20, 129.46, 128.44, 127.08, 126.64, 126.40, 126.32, 126.23, 125.77, 119.21, 114.71, 21.05. HRMS (ESI):

m/z [M+H]⁺ calcd for C₂₁H₁₇N₃O:328.1444; found: 328.1449.

3-(3-(2-ethylphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (24)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.97 (s, 1H), 8.65 (s, 1H), 8.17 (s, 1H), 8.12 (s, 1H), 8.01 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 2H), 7.57 (d, *J* = 21.5 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.48 – 7.35 (m, 3H), 7.31 (dt, *J* = 19.4, 7.1 Hz, 2H), 2.68 (q, *J* = 7.4 Hz, 2H), 1.07 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.28, 148.58, 142.81, 142.46, 139.39, 135.47, 133.51, 131.33, 130.15, 129.46, 129.10, 128.40, 127.56, 126.63, 126.29, 126.20, 125.84, 125.48, 119.57, 114.67, 26.39, 15.98. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₁₉N₃O:342.1601; found: 342.1606.

3-(3-(2-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (25)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.95 (s, 1H), 8.62 (d, *J* = 1.5 Hz, 1H), 8.26 (s, 1H), 8.21 (s, 1H), 8.13 (s, 1H), 7.88 (t, *J* = 8.5 Hz, 2H), 7.76 (d, *J* = 2.2 Hz, 1H), 7.62 (d, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.42 (s, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.31, 156.70, 148.70, 142.21, 139.65, 135.48, 130.19, 130.18, 129.49, 128.29, 127.89, 126.84, 126.59, 126.31, 123.77, 121.24, 118.93, 112.13, 111.71, 55.78. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₁₇N₃O₂:344.1394; found: 344.1394.

```
3-(3-(2-isopropylphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (26)
```

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.96 (s, 1H), 8.66 (d, *J* = 1.6 Hz, 1H), 8.16 (s, 1H), 8.11 (s, 1H), 7.98 (s, 1H), 7.89 – 7.79 (m, 2H), 7.59 – 7.50 (m, 2H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.42 – 7.32 (m, 3H), 7.27 (t, *J* = 7.4 Hz, 1H), 3.18 (dq, *J* = 13.4, 6.6 Hz, 1H), 1.15 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.30, 148.53, 147.84, 142.47, 139.35, 135.52, 132.79, 131.50, 130.06, 129.48, 128.38, 127.93, 126.61, 126.18, 126.09, 126.04, 125.82, 125.23, 119.94, 114.72, 29.65, 24.63(2C). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₃H₂₁N₃O:356.1757; found: 356.1761.

3-(3-(2-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (27)

¹H NMR (500 MHz, DMSO- d_6) δ 12.10 (s, 1H), 8.68 (s, 1H), 8.16 (s, 1H), 8.11 (s, 1H), 8.04 (s, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.7 Hz, 2H), 7.76 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.64 – 7.57 (m, 2H), 7.54 (t, J = 7.7 Hz, 1H), 7.41 (s, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 168.26, 148.29, 142.77, 139.25, 135.47,

133.85, 133.56, 132.89, 130.19, 129.45, 128.71, 128.48, 128.25, 127.96, 126.90, 126.86, 126.69, 126.43, 126.23, 125.92, 125.33, 123.75, 119.81, 112.22. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₁₄N₃OF₃:382.1162; found: 382.1168.

3-(3-(2-(trifluoromethoxy)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (28)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.19 (s, 1H), 8.68 (s, 1H), 8.29 (s, 1H), 8.22 (s, 1H), 8.13 (s, 1H), 7.89 (t, *J* = 7.5 Hz, 2H), 7.86 – 7.80 (m, 2H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.46 (dd, *J* = 15.9, 7.1 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.26, 148.71, 145.88, 142.79, 139.37, 135.50, 131.75, 130.23, 129.50, 128.79, 128.57, 128.47, 128.37, 127.18, 126.72, 126.32, 126.30, 122.15, 121.60, 119.56, 118.35, 109.87. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₁₄N₃O₂F₃:398.1111; found: 398.1113.

3-(3-(3-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (29)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.15 (s, 1H), 8.66 (d, J = 1.7 Hz, 1H), 8.55 (d, J = 1.7 Hz, 1H), 8.26 (s, 1H), 8.15 (s, 1H), 8.05 (s, 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.56 – 7.38 (m, 2H), 7.14 – 7.04 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.28, 164.24, 162.31, 149.23, 142.80, 139.41, 137.93, 137.86, 135.44, 131.31, 131.24, 130.46, 129.46, 129.00, 126.76, 126.45, 126.18, 126.14, 122.88, 117.57, 114.10, 114.08, 113.33, 113.15, 112.90, 112.73. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄N₃OF:332.1194; found: 332.1195.

3-(3-(3-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (**30**)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.17 (s, 1H), 8.66 (d, *J* = 1.8 Hz, 1H), 8.52 (d, *J* = 1.8 Hz, 1H), 8.26 (s, 1H), 8.16 (s, 1H), 8.07 (s, 1H), 7.96 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.83 (d, *J* = 6.8 Hz, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.49 (dd, *J* = 17.5, 9.4 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.27, 149.22, 142.84, 139.42, 137.64, 135.44, 134.17, 131.23, 130.46, 129.48, 129.03, 126.76, 126.47, 126.28, 126.25, 126.07, 125.98, 125.48, 117.56, 113.80. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₁₄N₃OCl:348.0898; found: 348.0896.

3-(3-(3-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (**31**)

¹H NMR (500 MHz, DMSO- d_6) δ 12.01 (s, 1H), 9.41 (s, 1H), 8.64 (d, J = 1.9 Hz, 1H),

8.47 (d, J = 1.7 Hz, 1H), 8.24 (s, 1H), 8.16 (s, 1H), 7.96 – 7.84 (m, 3H), 7.59 (t, J = 7.7 Hz, 1H), 7.45 (s, 1H), 7.32 – 7.17 (m, 3H), 6.69 (dd, J = 7.8, 1.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 170.80, 168.26, 158.26, 149.23, 142.56, 139.57, 136.54, 135.47, 130.40, 130.34, 129.50, 128.72, 126.70, 126.39, 126.06, 125.07, 117.81, 115.38, 113.71, 113.38. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₅N₃O₂:330.1237; found: 330.1238.

3-(3-(3-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (32)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.05 (s, 1H), 8.65 (d, *J* = 1.5 Hz, 1H), 8.50 (s, 1H), 8.25 (s, 1H), 8.15 (s, 1H), 8.00 – 7.83 (m, 3H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.44 (s, 1H), 7.39 (d, *J* = 5.9 Hz, 2H), 7.31 (s, 1H), 6.93 – 6.81 (m, 1H), 3.84 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.28, 160.26, 149.24, 142.62, 139.50, 136.74, 135.46, 130.46, 130.34, 129.49, 128.76, 126.71, 126.38, 126.06, 125.50, 119.44, 117.83, 115.22, 112.45, 111.89, 55.53. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₁₇N₃O₂:344.1394; found: 344.1392.

3-(3-(3-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (33)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.22 (s, 1H), 8.67 (d, J = 1.7 Hz, 1H), 8.53 (d, J = 1.8 Hz, 1H), 8.26 (s, 1H), 8.23 – 8.04 (m, 4H), 7.93 (dd, J = 25.6, 7.7 Hz, 2H), 7.72 (t, J = 7.8 Hz, 1H), 7.60 (dd, J = 14.8, 7.3 Hz, 2H), 7.45 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.25, 149.25, 142.92, 139.41, 136.54, 135.46, 130.78, 130.50, 130.42, 130.16, 129.49, 129.10, 126.77, 126.48, 125.98, 125.92, 123.76, 123.07, 123.04, 122.60, 122.57, 117.57, 113.75. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₄N₃OF₃:382.1162; found: 382.1157.

3-(3-(3-(trifluoromethoxy)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (34)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.20 (s, 1H), 8.67 (d, *J* = 1.8 Hz, 1H), 8.53 (d, *J* = 1.8 Hz, 1H), 8.26 (s, 1H), 8.12 (d, *J* = 20.6 Hz, 2H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 2H), 7.75 (s, 1H), 7.60 (td, *J* = 7.8, 5.3 Hz, 2H), 7.45 (s, 1H), 7.26 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.25, 149.54, 149.24, 142.89, 139.40, 137.83, 135.45, 131.31, 130.42, 129.48, 129.07, 126.77, 126.47, 126.39, 126.03, 125.88, 121.70, 119.67, 119.12, 118.33, 117.53, 113.70. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₁₄N₃O₂F₃:330.1237; found: 330.1238.

3-(3-(4-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (35)

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.11 (s, 1H), 8.66 (d, J = 1.7 Hz, 1H), 8.50 (d, J = 1.5 Hz, 1H), 8.23 (d, J = 24.2 Hz, 2H), 7.88 (ddd, J = 15.1, 14.0, 6.7 Hz, 5H), 7.57 (dd, J = 22.0, 14.3 Hz, 2H), 7.30 (t, J = 8.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.29, 162.32, 159.91, 149.14, 142.66, 139.46, 135.40, 131.83, 130.41, 129.47, 128.77, 128.70, 126.73, 126.40, 125.98, 125.23, 117.68, 116.28, 116.07, 114.27. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄N₃OF:332.1194; found:332.1198.

3-(3-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (36)

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.17 (s, 1H), 8.66 (d, *J* = 1.4 Hz, 1H), 8.53 (s, 1H), 8.26 (s, 1H), 8.18 (s, 1H), 8.01 (d, *J* = 1.8 Hz, 1H), 7.95 (d, *J* = 7.6 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.27, 149.21, 142.76, 139.41, 135.41, 134.30, 130.59, 130.44, 129.47, 129.32 (2C), 128.90, 128.52 (2C), 126.76, 126.42, 126.09, 125.74, 117.58, 113.97. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₁₄N₃OCl:348.0898; found:348.0893.

3-(3-(4-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (37)

¹H NMR (500 MHz, DMSO-*d*₆) δ 10.35 (s, 1H), 8.63 (d, J = 2.2 Hz, 1H), 8.06 (d, J = 5.3 Hz, 2H), 7.97 (d, J = 2.2 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 8.6 Hz, 2H), 7.50 (t, J = 7.7 Hz, 1H), 7.41 (s, 1H), 7.29 (s, 2H), 6.91 (d, J = 8.6 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 195.67, 168.18, 162.02, 159.02, 151.40, 139.36, 137.59, 135.45, 132.53, 129.70, 129.50, 128.84, 126.45, 124.99, 123.29, 115.74, 113.26. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₅N₃O₂:330.1237; found: 330.1240.

3-(3-(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (38)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.93 (s, 1H), 8.64 (s, 1H), 8.47 (s, 1H), 8.25 (s, 1H), 8.15 (s, 1H), 7.91 (dd, *J* = 23.5, 7.7 Hz, 2H), 7.81 (d, *J* = 1.8 Hz, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.45 (s, 1H), 7.05 (d, *J* = 8.5 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.30, 158.13, 149.16, 142.46, 139.56, 135.45, 130.32, 129.46, 128.53, 128.18(2C), 127.84, 126.66, 126.34, 125.96, 124.27, 117.86, 115.12, 114.92(2C), 55.59. HRMS (ESI): *m/z* [M+H]⁺ calcd for

C₂₁H₁₇N₃O₂:344.1394; found: 344.1395.

3-(3-(4-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (39)

¹H NMR (500 MHz, DMSO-*d*₆) δ 12.26 (s, 1H), 8.69 (d, J = 1.6 Hz, 1H), 8.60 (s, 1H), 8.27 (s, 1H), 8.14 (s, 2H), 8.06 (d, J = 8.1 Hz, 2H), 7.97 (d, J = 7.7 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.2 Hz, 2H), 7.60 (t, J = 7.7 Hz, 1H), 7.46 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.27, 149.33, 142.96, 139.67, 139.33, 135.47, 130.46, 129.46, 129.19, 127.17, 126.81, 126.46, 126.23, 126.19, 126.12, 123.96, 117.59, 113.77. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₄N₃OF₃:382.1162; found: 382.1163.

3-(3-(4-(trifluoromethoxy)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (**40**) ¹H NMR (500 MHz, DMSO- d_6) δ 12.14 (s, 1H), 8.67 (d, J = 1.8 Hz, 1H), 8.54 (d, J = 1.8 Hz, 1H), 8.26 (s, 1H), 8.14 (s, 1H), 8.01 (s, 1H), 7.99 – 7.86 (m, 4H), 7.59 (t, J = 7.7 Hz, 1H), 7.45 (d, J = 8.5 Hz, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 168.27, 149.22, 146.81, 142.79, 139.40, 135.45, 134.88, 130.43, 129.45, 128.97, 128.48(2C), 126.76, 126.42, 126.04, 125.90, 122.07(2C), 121.71, 119.67, 117.61, 113.86. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₄N₃O₂F₃398.1111; found: 398.1115.

1.2 Cell Culture

All the cell lines were purchased from the Shanghai Cell Resource Bank. SW-480, HT-29, MV4-11, Molm-13, MGC-803, MDA-MB-231, A375, A549, and GES-1 cells were cultured in RPMI-1640 with 10% FBS (*Shanghai Shuangru Biology Science & Technology Co.,Ltd*, LONSERA) and 1% penicillin-streptomycin (Beyotime). HCT-116 cells were cultured in McCoy's 5A contained 10% FBS and 1% P/S. Human Umbilical Vein Endothelial cells (HUVEC) were cultured in DMEM contained 10% FBS and 1% P/S. Cells were cultured within a humidified incubator at 37 °C in the presence of 5% CO₂.

1.3 MTT Assay

The cell viability of the compound was assessed by CCK-8 (Biofroxx) assay. Cells were seeded in a 96-well plate at 8000 cells/well and cultured in a 37 °C and 5% CO_2 atmosphere incubator for 24 h. Then, medium with compound at the concentrations of 100, 20, 4, 0.8, 0.016 μ M was added into each well for another 48 h and incubated with CCK-8 (10 μ L) for 2 h at 37 °C. The absorbance value at 450 nm was measured by the microplate reader (PerkinElmer Envision).

1.4 Kinase Assay

The kinase inhibition was detected by ADP-GloTM Kinase Assay (Promega) using a black 384-well plate. The active CDK8 kinase was diluted in mixture (5 ng enzyme, 0.5 μ g substrate, 50 μ M DTT, 1 μ L reaction buffer and added ddH2O to 3 μ L each well) and the final ATP concentrations of was 50 μ M. After incubation at room temperature, ADP-GloTM solution and kinase detection reagent was added. The data was collected by the microplate reader.

1.5 Cellular thermal shift assay

HCT-116 cells were cultured in cell culture dishes and treated with 5 μ M compound 12 for 4 h. HCT-116 cells were collected, washed by PBS and cell suspensions were divided into 12 PCR tubes equally. Then,11 tubes were heated at 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, and 67 °C for 4 min, respectively. After that, cells were broken by ultrasonic treatment and centrifuged at 12000 rpm for 20 min. The supernatant was analyzed by western blot.

1.6 Biotin-pulldown assay

After co-treated with 2 μ M biotinylated compound and compound **12** for 12 h, HCT-116 cells were lysed with NP-40 containing PMSF and centrifuged at 14000 r for 30 min at 4 °C. Then, 40 μ L supernatant was used as the input by adding 10 μ L 5×SDS loading buffer, and the remains were mixed with Streptavidin Agarose (Novex, Carlsbad, CA, USA). After 6 h incubation at 4 °C, the beads were washed three times using lysis buffer and resuspended in 2×SDS loading buffer. HEK-293T cells overexpressed flag-tagged CDK8 were treated using above method. The samples were analyzed by western blot.

1.7 The effect of compound on phosphorylation of STAT1 S727

HCT-116 cells were seeded into 60 mm cultural dishes at a density of 1.5×10^6 cells per dishes. After incubated for 12 h, cells were treated with DMSO or 10ng/mL IFN- γ .1 hour later, cells were treated with or without different concentrations of compound for 12 h. Cells were lysed using RIPA containing PMSF and phosphatase inhibitor cocktail A. Then cell samples were treated by western blot. Levels of total STAT1, phosphorylated STAT1 S727, Y701 and GAPDH were analyzed.

1.8 The effect of compound on phosphorylation of STAT5 S726

HL-60 cells were seeded into 60 mm cultural dishes at a density of 2×10^6 cells per dishes. After incubated for 12 h, cells were treated with or without different concentrations of compound for 12 h. Cells were lysed using RIPA containing PMSF and phosphatase inhibitor cocktail A. Then cell samples were treated by western blot. Levels of total STAT5, phosphorylated STAT5 S726 and GAPDH were analyzed.

Statistical Analyses

The results were expressed as the means \pm SEMs (SPSS software), and the differences between groups were evaluated using Turkey's method (GraphPad Software). Differences between data were considered significant when the *P* value was <0.05.

3-(5H-pyrrolo[2,3-b]pyrazin-2-yl)benzamide (1)

H81/0

*

3-(1H-pyrazolo[3,4-b]pyridin-5-yl)benzamide (2)

 $\vdash he o$

3-(6-aminopyridin-3-yl)benzamide (3)

5-170

r

.

3-(isoquinolin-4-yl)benzamide (5)

20%

8'

3-(1-aminoisoquinolin-4-yl)benzamide (6)

· 2· · ..

220 Ad

r

3-(1H-indol-5-yl)benzamide (7)

3-(1-methyl-1H-indol-5-yl)benzamide (8)

3-(benzofuran-5-yl)benzamide (9)

3-(benzo[b]thiophen-5-yl)benzamide (10)

3-(3-chloro-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (11)

2-befo

F

3-(3-(furan-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (12)

1-9260

8

.

3-(3-(thiophen-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (13)

r

3-(3-(thiophen-2-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (14)

3-(3-(1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (15)

3-(3-(1-methyl-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (16)

£.

3-(3-(1-(1-ethoxyethyl)-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (17)

Z24-H-20230308 11.90 \$ PROTON DMSO D:\\ wal 54 -1E+09 -1E+09 -1E+09 -1E+09 -9E+08 -8E+08 -7E+08 -6E+08 H₂N -5E+08 -4E+08 -3E+08 -2E+08 -1E+08 -0 -1E+08 16 2 15 14 13 12 11 10 9 8 6 f1 (ppm) 5 4 3 0 -1 -2 -3 1 Z24-C-20230308 -168.35 -6E+08 C13CPD DMSO D:\\ wal 54 -5E+08

3-(3-(1-(difluoromethyl)-1H-pyrazol-4-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (18)

3-(3-phenyl-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (19)

-0.2	0	0.2	0.4	0.6	0.8	1.	1,2	1. 4.	1.6	1.8	N	2.2	2.4	2.6	2.8	a	3.2	3.4	3.6	3.8	×10 5 + Sci	Inj Vol Data Filename	Sample Name
																					an (1.979 min) WO-2023-0601-215 d	InjPosition	Positian
	a																	332.1196			Comment	SampleType	Instrument Name
																					Acquired Time	IRM Calibration Status	User Name

3-(3-(2-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (21)

3-(3-(2-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (22)

3-(3-(o-tolyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (23)

nj Vol Data Filenar	x10.5	1.2	1.15	1.1.	1.05	-	0.95	0.9	0.85	0.8	0.75	0.7	0.65	0.6	0.55	0.5	0.45	0.4	0.35	0.3	0.25	0.2	0.15	0.1	0.05	0	-0.05	
me	+ Scan																								-			160
	(2.68)																											180
	3 min)																									- Inder		200
InjPosition ACQ Me	WQ-00																											220
dan	302-5.0																									interim.		240
																										- Dr. 4		260
																										And allowing the		280
																												300
Sample					328.14										_							_	_	_		L		320
ment Nar eType ent					49																					f		340
ne																												360
																												380
																												400
IRM 0	when																											000
Name Calibratic	TOW THINK																											440
on Status																												ARO
2																												490
																												700

3-(3-(2-ethylphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (24)

nj vol lata Fileni	x10 5	1.6	1.5	1.4	٦.3	1.2	1.1	-	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0	-0.1
ame	+ Scan (2																	Relation 1	
	.582 mi																		
ACQ	n) WQ-																	al.	
Method	0602-4																		
	ā																	11.64	
Samp			345	042.															
deType			1808	1000														-	
																		ľ	
																		ł	
IRM	advice .																		
Calibratic	1000																		
on Status																			

3-(3-(2-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (25)

e <u>AQ Method</u> SampleType * Scan (2.038 min) WQ-2023-0601-217.d 344.1394
SampleType Comment 344.1394

3-(3-(2-isopropylphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (26)

3-(3-(2-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (27)

3-(3-(2-(trifluoromethoxy)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (28)

ê 8

3-(3-(3-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (29)
InjPosition SampleType ACQ Method Comment Scan (2.184 min) WQ-2023-0601-216.d 332.1195 332.1195 332.1195
3 332.1195

3-(3-(3-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (**30**)

3-(3-(3-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (31)

3-(3-(3-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (32)

3-(3-(3-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (33)

Inj Vol Data Filename	InjPosition ACQ Method	SampleType Comment
x10 5 + Scan (2.	286 min) WQ-2023-0601-22.d	
1.7		
1.6		382,1157
1.5		
1.4		
1.3		
1.2		
1.1.		
1		
0.9		
0.8		
0.7		
0,6		
0.5		
0.4		
0.3		
0.2		
0.1		
O the trans	and a second sec	
-0.1-		

3-(3-(3-(trifluoromethoxy)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (34)

Sampie Nac Inj Vol Data Filena	x10 5	3.8	3.6	3.4	3.2	3	2.8	2.6	2.4	2.2	N	1.8	1.6	1.4	1.2	1	0.8	0.6	0.4	0.2	0	-0.2
96	+ Scan																					
	(2.099																					
	min) W																				-	
vosition InjPositio NCQ Meth	19-202																					
od	3-0601																					
	-25.d																					
0 % =				36																		
nstrumen ampleTyp omment				98,1115	-			-		-							-	-	-	-	-	
e e																						
IRI	10																				ľ	
er Name M Calibra	failure an																					
tion Stat	10																					
5																						

of all 1

3-(3-(4-fluorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (35)

1-5-10

3-(3-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (36)

1-8260

.

3-(3-(4-hydroxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (37)

3-(3-(4-methoxyphenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (38)

3-(3-(4-(trifluoromethyl)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (39)

Position Instrument Name SampleType ACQ Method Comment 764 min) VVC-2023-0601-23.d 382.1163
Instrument Name Comment 382, 1163

3-(3-(4-(trifluoromethoxy)phenyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide (40)

Outs Filemate AcQ Method Conment Acquired Time 7,25	Inj Vol	InjPosition	SampleType	IRM Calibration Status
x10.5 + Scan (5.886 min) WQ-2023-0601-26.d 7.25 398.1115 6.75 6.25 6.75 5.25 5.75 5.25 5.2	Data Filename	ACQ Method	Comment	Acquired Time
723 723 723 723 825 825 825 825 825 825 825 825	×10 5 + Scan (5.8	386 min) WQ-2023-0601-26.d		
398.1115 8.25 8.	7.25			
8,75 8,25 8,25 5,55	7			
9.5 5.5 </td <td>6.75</td> <td></td> <td></td> <td></td>	6.75			
	6.5		398,1115	
5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	6.25			
5.75 5.55 5.55 5.55 5.55 5.55 5.55 5.55	6			
5.5 5.5 </td <td>5.75</td> <td></td> <td></td> <td></td>	5.75			
525 525 4.25 4.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3	ហ			
475 475 475 475 475 475 475 375 375 375 375 375 375 375 375 375 3	л () Л			
4.75 4.25 4.25 3.25 3.25 2.25 2.25 2.25 2.25 2.25 2	7.02.0			
4.5 4.25 3.25 3.25 3.25 3.25 3.25 2.25 2.25 2	4.75			
4.25 3.75 3.25 2.25 2.25 2.25 2.25 2.25 2.25 2.2	4.5			
3.75 3.25 3.25 3.25 3.25 2.25 2.25 2.25 2.2	4.25			
3.75 3.25 3.25 3.25 2.25 2.25 2.25 2.25 2.2	4			
3.25 2.25 2.25 2.25 2.25 2.25 2.25 1.25 1	3.75			
3.25 2.25 2.25 2.25 2.25 1.25 1.25 1.25 1	3.5			
2.75 2.25 1.25 1.25 1.25 0.75 0.75 0.5 0.5	3.25			
2.75 2.25 2.25 2.25 1.75 1.25 1.25 0.5 0.5 0.5	3			
2.25 2.25 1.75 1.25 1.25 0.25 0.25 0.25	2.75			
2.25 1.75 1.5 1.5 1.5 0.75 0.5 0.5 0.5	2.5			
1.75 1.75 1.25 1.25 0.75 0.5 0.5 0.5	2.25			
1.75 1.25 1.25 0.75 0.5 0.5	N			
	1.75			
	1,5-			
	1.20			
	0.75			
	0.5			
	0.25			
	0 0			